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1. Introduction 

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous 
system (CNS). In addition to functioning as a neurotransmitter at the majority of brain 
synapses, it is the substrate for synthesis of the major inhibitory transmitter Ǆ-aminobutyric 
acid (GABA). However, glutamate is also a neurotoxin, and a number of molecular control 
mechanisms are responsible for maintaining extracellular glutamate below excitotoxic 
levels. Na+-dependent excitatory amino acid transporters (EAATs) are crucial regulators of 
extracellular glutamate and also act to control the dynamics of excitatory transmission in the 
CNS (Danbolt, 2001). The Na+-dependent excitatory amino acid carrier 1 (EAAC1) is 
expressed in the somata and dendrites of many neuronal types, including pyramidal cells of 
the hippocampal formation and cortex, and many subtypes of GABAergic inhibitory 
neurons (Rothstein et al., 1994). The physiological significance of EAAC1 is unclear because 
the subcellular distribution and kinetic properties of this transporter would not allow for a 
substantial contribution to glutamate clearance from the synaptic cleft; rather, these 
functions are mediated by glial EAATs (EAAT1 and EAAT2) located in the perisynaptic 
region. Recent studies have demonstrated multiple functions for EAAC1 distinct from 
clearance of glutamate from CNS synapses (Kiryu-Seo et al., 2006; Levenson et al., 2002; 
Peghini et al., 1997; Sepkuty et al., 2002). For example, decreased EAAC1 expression in the 
CNS impairs neuronal glutathione (GSH) synthesis, leading to oxidative stress and age-
dependent neurodegeneration (Aoyama et al., 2006), suggesting that aberrant EAAC1 
expression contributes to the pathogenesis of neurodegenerative diseases. 

Studies conducted over the past decade on the kinetics of EAAC1 and regulation of 

transporter expression and function have lead to a greater appreciation of the physiological 

and pathophysiological relevance of EAAC1 (Aoyama et al., 2008b; Danbolt, 2001; Kanai & 

Hediger, 2004; Nieoullon et al., 2006), but there are many issues to be resolved for a 

thorough understanding of the significance of EAAC1 in normal brain function and disease. 

In particular, the regulatory mechanisms of EAAC1-mediated glutamate uptake are largely 

unknown. The recent discovery of addicsin (glutamate transporter-associated protein 3-18, 

GTRAP3-18) as an EAAC1 binding protein has contributed greatly to our understanding of 

the regulatory mechanisms of EAAC1 activity (Lin et al., 2001). Furthermore, we recently 
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proposed a regulatory model of EAAC1-mediated glutamate uptake by addicsin complexes 

(Akiduki & Ikemoto, 2008). In this chapter, we describe the regulation of EAAC1-mediated 

glutamate uptake based on our recent results. To better understand this regulatory 

mechanism, we first explain three key molecules involved in this regulatory pathway—

EAAC1, addicsin, and ADP-ribosylation factor-like 6 interacting protein 1 (Arl6ip1). 

1.1 EAAC1 

The EAAC1 protein was first identified as a Na+-dependent high-affinity glutamate 

transporter by expression cloning in Xenopus oocytes (Kanai & Hediger, 1992). 

Stoichiometric analysis demonstrates that EAAC1 transports L-glutamate, L-aspartate, and 

D-aspartate, accompanied by the cotransport of 3 Na+ and 1 H+, and the countertransport of 

1 K+ (Kanai & Hediger, 2003). In mammalian tissues, there are five different subtypes of 

EAATs—EAAT1 (glutamate/aspartate transporter, GLAST), EAAT2 (glutamate transporter 

1, GLT-1), EAAT3 (EAAC1), EAAT4, and EAAT5 (Danbolt, 2001). These EAATs are 

structurally similar; all have eight transmembrane domains and a pore loop between the 

seventh and eighth domain. Most EAATs play an important role in removing extracellular 

glutamate from the synaptic and extrasynaptic space (Kanai & Hediger, 2003), particularly 

GLAST and GLT-1. These two isoforms are primarily expressed in glial cells and play a 

major role in protecting neurons from glutamate-induced toxicity (Rothstein et al., 1994) as 

well as terminating glutamatergic transmission (Rothstein et al., 1993; Tong & Jahr, 1994). In 

contrast, EAAC1 is diffusely localized to the cell bodies and dendrites of neurons and is 

enriched in cortical and hippocampal pyramidal cells as well as in some inhibitory neurons 

(Conti et al., 1998; Rothstein et al., 1994). This subcellular localization and restricted 

distribution indicate that EAAC1 does not play a major role in glutamate clearance from the 

synaptic cleft (Rothstein et al., 1996). Recent studies suggest that EAAC1 contributes to 

multiple physiological functions distinct from glutamate clearance. Indeed, EAAC1 

transport provides cysteine as a substrate of GSH synthesis (Y. Chen & Swanson, 2003; Himi 

et al., 2003; Watabe et al., 2008; Zerangue & Kavanaugh, 1996). Neurons cannot transport 

extracellular GSH and therefore must transport cysteine from the extracellular space for de 

novo GSH synthesis from cysteine (Aoyama et al., 2008b). In the CNS, the depletion of GSH 

is associated with neurodegenerative disorders, including Alzheimer’s and Parkinson’s 

diseases (Ramassamy et al., 2000; Sian et al., 1994). Consistent with these results, EAAC1 

knockout mice show oxidative stress in neurons and age-dependent neurodegeneration, 

pathologies that are rescued by N-acetylcysteine, a membrane-permeable cysteine precursor 

(Aoyama et al., 2006). These mice also show alteration of zinc homeostasis and increased 

neural damage after transient cerebral ischemia (Won et al., 2010). Furthermore, in a 

knockin mouse model of Huntington’s disease, in which human huntingtin exon 1 with 140 

CAG repeats was inserted into the wild-type low CGA repeat mouse huntingtin gene, 

oxidative stress and cell death were caused by abnormal Rab11-dependent EAAC1 

trafficking to the cell surface (X. Li et al., 2010). In addition, 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine-treated mice, an animal model of Parkinson’s disease, show reduced 

EAAC1-mediated neuronal cysteine uptake, impaired GSH synthesis, and motor 

dysfunction (Aoyama et al., 2008a). These results indicate that dysfunctional EAAC1-

mediated cysteine transport increases neural vulnerability to oxidative stress and could 

contribute to the pathogenesis of neurodegenerative diseases.  
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In addition to cysteine transport, EAAC1 has several other functions unrelated to removal of 

extracellular glutamate. For instance, EAAC1 promotes GABA synthesis by supplying the 

substrate glutamate (Mathews & Diamond, 2003; Sepkuty et al., 2002). Therefore, EAAC1 

can strengthen inhibitory synapses in response to elevations in extracellular glutamate and 

contribute indirectly to GABA release (Mathews & Diamond, 2003). Indeed, a loss of EAAC1 

function leads to epilepsy (Sepkuty et al., 2002), underscoring the importance of EAAC1 in 

GABAergic transmission. Furthermore, EAAC1 plays a crucial role in preventing neuronal 

death by suppressing glutamate excitotoxicity (Kiryu et al., 1995; Murphy et al., 1989) and 

has a mitochondria-mediated anti-apoptotic function in injured motor neurons (Kiryu-Seo et 

al., 2006). These studies and those discussed in Section 3.4 strongly suggest that EAAC1 

contributes to multiple functions in the CNS distinct from glutamate clearance. 

The regulatory mechanisms of EAAC1 have been widely investigated in vitro. Cumulative 
evidence demonstrates that glutamate uptake by EAAC1 is facilitated by cell signaling 
molecules and accessory proteins that promote the redistribution of EAAC1 from the 
endoplasmic reticulum (ER) to the plasma membrane. First, several reports demonstrate that 
several kinase signaling cascades regulate EAAC1 activity. In C6BU-1 glioma cells and 
primary neuronal cultures, phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) 
activator, rapidly increases EAAC1-mediated glutamate uptake (Dowd & Robinson, 1996). 
This effect is regulated by mechanisms that are independent of de novo synthesis of new 
transporters but is related to the redistribution of EAAC1 from subcellular compartments to 
the plasma membrane (Davis et al., 1998; Fournier et al., 2004; Sims et al., 2000). 
Pharmacological analyses demonstrate that PKCǂ regulates EAAC1 translocation from 
intracellular compartments to the cell surface, and that PKCǆ increases EAAC1 functional 
activity (Gonzalez et al., 2002). PKCǂ interacts with EAAC1 in a PKC-dependent manner 
and phosphorylates EAAC1 (Gonzalez et al., 2003). Platelet-derived growth factor (PDGF) 
increases the delivery of EAAC1 to the cell surface through phosphatidylinositol 3-kinase 
(PI3K) activity (Fournier et al., 2004; Sheldon et al., 2006; Sims et al., 2000). Consistent with 
this result, wortmannin, a PI3K inhibitor, decreases cell surface expression of EAAC1 and 
inhibits EAAC1-mediated glutamate uptake (Davis et al., 1998). In addition, PKC and PDGF 
have different effects on trafficking and internalization of EAAC1; PMA, but not PDGF, 
reduces internalization of EAAC1 (Fournier et al., 2004). Thus, EAAC1 trafficking is 
regulated by two independent signaling pathways. In contrast, PKC negatively regulates 
EAAC1-mediated glutamate uptake in Xenopus oocytes (Trotti et al., 2001) and in Madin–
Darby canine kidney (MDCK) cells (Padovano et al., 2009) by inhibiting cell surface 
expression through calcineurin-mediated internalization (Padovano et al., 2009; Trotti et al., 
2001), suggesting that the regulatory mechanisms of EAAC1 surface expression and 
function by PKC are specific to cell type and depend on specific PKC isozymes. Second, 
accessory proteins regulate EAAC1 activity. For instance, ǅ opiod receptor interacts with 
EAAC1 and inhibits EAAC1-mediated glutamate uptake in Xenopus oocytes and rat 
hippocampal neurons (Xia et al., 2006). In addition, N-methyl-D-aspartate receptors 
containing NR1, NR2A, and/or NR2B interact with EAAC1 and facilitate the cell surface 
expression of EAAC1 in C6BU-1 cells and rat hippocampal neurons (Waxman et al., 2007). 
Moreover, the cell surface expression of EAAC1 is controlled by interactions with Na+/H+-
exchanger regulatory factor 3 (NHERF-3, also called PDZK1) and adaptor protein 2 (AP-2). 
While NHERF-3 promotes the delivery of EAAC1 to the plasma membrane, AP-2 regulates 
constitutive endocytosis of EAAC1 in MDCK cells (D’Amico et al., 2010). Furthermore, 
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reticulon 2B (RTN2B) interacts with EAAC1 and addicsin/GTRAP3-18, and promotes 
intracellular trafficking of EAAC1 in HEK293 cells and cultured cortical neurons (Liu et al., 
2008). Addicsin/GTRAP3-18 interacts with EAAC1 and inhibits EAAC1 trafficking in 
HEK293 cells (Ruggiero et al., 2008). Thus, multiple regulatory mechanisms control EAAC1 
trafficking and membrane expression, but the molecular details are generally unclear. In this 
study, we focus on the regulation of EAAC1 trafficking by addicsin. 

1.2 Addicsin 

In many papers, human addicsin and rat addicsin are called JWA and GTRAP3-18, 
respectively. Addicsin, GTRAP3-18, and JWA have been independently identified by several 
research groups (Ikemoto et al., 2002; Lin et al., 2001; Zhou et al., GeneBank, AF070523, 
unpublished observations). We first identified addicsin as a novel mRNA encoding a 22-kDa 
hydrophobic protein that is highly expressed in the basomedial nucleus of the mouse 
amygdala following repeated morphine administration (Ikemoto et al., 2002). Meanwhile, 
GTRAP3-18 cDNA was identified as encoding an EAAC1 binding protein by yeast two-
hybrid screening of a rat brain cDNA library using the C-terminal intracellular domain of 
EAAC1 as bait (Lin et al., 2001). The JWA gene was identified as an all-trans retinoic acid 
(RA)-responsive factor from human tracheobronchial epithelial cells (Zhou et al., GeneBank, 
AF070523, unpublished observations). Bioinformatic analysis demonstrates that JWA has a 
prenylated Rab acceptor 1 (PRA1) domain and 62% similarity with Jena-Muenchen 4 (JM4), 
a protein recently identified as PRA1 domain family member 2 (PRAF2) (Schweneker et al., 
2005). Proteins containing a large PRA1 domain form a new family of PRA1 domain family 
proteins (PRAFs) that regulate intracellular protein trafficking. Thus, addicsin is a new 
member of the PRAF family, PRAF3. 

The addicsin cDNA is approximately 1.4 kbp and consists of a 564-bp single open reading 
frame (Ikemoto et al., 2002). The addicsin gene contains three exons separated by two introns, 
and the sequence is highly conserved among vertebrates (Butchbach et al., 2002). 
Furthermore, addicsin is located on mouse chromosome 6, a location corresponding to 
human chromosome 3p (Butchbach et al., 2002; Ikemoto et al., 2002). 

Mouse addicsin is a 22-kDa protein of 188 amino acids with putative transmembrane 

segments (Butchbach et al., 2002; Ikemoto et al., 2002). Mouse addicsin is 98% identical to 

rat GTRAP3-18 and 95% similar to human JWA (Butchbach et al., 2002; Ikemoto et al., 

2002). Moreover, addicsin has two putative PKC phosphorylation motifs (amino acids 18–

20 and 138–140) as well as two putative cAMP-dependent protein kinase and 

calcium/calmodulin-dependent protein kinase II phosphorylation motifs (amino acids 27–

31 and 35–39) (Butchbach et al., 2002; Ikemoto et al., 2002) (Fig. 1). However, there is no 

evidence that these phosphorylation sites are phosphorylated by protein kinases in vitro 

and in vivo.  

Expression profiles of addicsin and addicsin mRNA were investigated in the developing and 

mature brain. In the developing rat brain, the expression levels of addicsin decrease 

significantly from embryonic day 17 to post-natal day 0 (Maier et al., 2009). Meanwhile, 

addicsin mRNA levels increase gradually during early maturation, peaking around post-

natal day 5, and then declining by about 50% by post-natal day 14 (Inoue et al., 2005). This 

developmental expression pattern corresponds to periods of elevated synaptogenesis, 
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suggesting that addicsin is involved in synapse formation. Indeed, later in this chapter, we 

discuss evidence that addicsin participates in intracellular protein trafficking of 

neurotransmitter receptors. Addicsin is widely distributed in the brain (Akiduki et al., 2007; 

Butchbach et al., 2002). In the mature CNS, addicsin is expressed in the cerebral cortex, 

amygdala, striatum, hippocampus (CA1–3 fields), dentate gyrus, and cerebellum. Addicsin 

is expressed in the somata of glutamatergic and GABAergic neurons and exhibits 

presynaptic localization in restricted regions such as CA3 stratum lucidum (Akiduki et al., 

2007). In situ hybridization analysis reveals that addicsin mRNA is widely distributed in the 

brain, predominantly expressed in principal neurons, including glutamatergic and 

GABAergic neurons in the mature CNS (Inoue et al., 2005). However, the precise subcellular 

localization of addicsin remains controversial. Recent reports found that addicsin is an 

integral ER membrane protein that prevents EAAC1 maturation and function by inhibiting 

ER trafficking (Ruggiero et al., 2008). However, our protein fractionation analysis using 

mouse whole brain lysates prepared in PBS, NaCl, or Na2CO3 buffer, all indicate that 

addicsin is predominantly present in the S1 soluble fraction, while the ER transmembrane 

protein calnexin is present in the P2 pellet fraction (Ikemoto et al., 2002). Our subcellular 

fractionation analysis with highly purified synaptic fractions prepared from mouse 

forebrain also support the notion that addicsin is present in the cytoplasmic and presynaptic 

membrane fractions (Akiduki et al., 2007). Furthermore, immunocytochemical studies reveal 

that addicsin is present in both the plasma membrane and the intracellular compartments, 

including the ER (Ikemoto et al., 2002; Watabe et al., 2007, 2008). Consistent with these 

findings, bioinformatic analysis demonstrates that the ǂ-helix is not long enough for a 

transmembrane domain; nevertheless, addicsin is predicted to be a hydrophobic protein 

composed of 62% ǂ-helix and 8% ǃ-sheet (Butchbach et al., 2002), suggesting that it is 

membrane-associated. Further investigations are needed to clarify the subcellular 

localization of addicsin, but it is apparent that this protein can exist in both soluble and 

membrane-associated forms. 

Addicsin easily forms homo- and heteromultimers (Ikemoto et al., 2002; Lin et al., 2001) and 

many reports demonstrate that addicsin can associate with a multitude of proteins (Akiduki 

& Ikemoto, 2008), including Arl6ip1 (Akiduki & Ikemoto, 2008), ARL6 (Ingley et al., 1999), ǅ 

opioid receptor (Wu et al., 2011), EAAC1 (Lin et al., 2001), Rab1 (Maier et al., 2009), and 

RTN2B (Liu et al., 2008). Moreover, recent studies using the yeast two-hybrid system 

revealed many potential addicsin-binding proteins (M.J. Ikemoto et al., unpublished data), 

strongly suggesting that addicsin exerts multiple physiological functions by forming various 

molecular complexes. It is vital to catalog these interacting proteins and to determine the 

presence and location of these molecular complexes. 

These potential functions remain largely speculative, but molecular studies have provided 
several intriguing candidates (Fig. 2). First, addicsin is involved in apoptosis induced by 12-
O-tetradecanoylphorbol-13-acetate, all-trans RA, N-(4-hydroxyphenyl) retinamide, arsenic 
trioxide, and cadmium (Mao et al., 2006; Zhou et al., 2008). Knockdown of addicsin 
attenuates all-trans RA-induced and arsenic trioxide-induced apoptosis (Mao et al., 2006; 
Zhou et al., 2008). Therefore, addicsin serves as a pro-apoptotic molecule. Second, addicsin 
acts as an environmental stress sensor to protect cells from oxidative stress and subsequent 
genomic damage. Addicsin is also involved in cellular responses to environmental stresses, 
including oxidative stress and heat shock, and in the differentiation of leukemia cells under 
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nonphysiological conditions (Cao et al., 2007; Huang et al., 2006a, 2006b; T. Zhu et al., 2005). 
Addicsin is upregulated after exposure to the pro-oxidants benzo[ǂ]pyrene and hydrogen 
peroxide through activation of the nuclear transcription factor I (NFI) (R. Chen et al., 2007). 
Addicsin facilitates DNA repair by interacting with X-ray cross-complementing group 1 
protein, a regulator of the DNA base excision repair processes that translocates to the 
nucleus in response to oxidative stress (R. Chen et al., 2007; Wang et al., 2009). Thus, NFI-
mediated addicsin upregulation protects against DNA damage induced by benzo[ǂ]pyrene 
and hydrogen peroxide. Third, addicsin also inhibits cancer cell migration as was observed 
in HeLa, B16, and HCCLM3 cancer cells. (H. Chen et al., 2007). Addicsin has an important 
role in maintaining the stability of F-actin and in the initiation of actin cytoskeletal 
rearrangements. Moreover, knockdown of addicsin results in the inactivation of the MEK–
ERK signaling cascade. Thus, addicsin inhibits cell migration by activating the mitogen-
activated protein kinase (MAPK) cascade and regulating the rearrangement of the F-actin 
cytoskeleton (H. Chen et al., 2007). Fourth, addicsin participates in the regulation of GSH 
synthesis; the association of addicsin with EAAC1 at the plasma membrane inhibits the 
uptake of cysteine for GSH synthesis and thus determines the intracellular GSH content in 
vitro and in vivo (Watabe et al., 2007, 2008). This suggests that addicsin is a therapeutic 
target for enhancing GSH levels in patients with neurodegenerative disorders, such as 
Alzheimer’s and Parkinson’s diseases, associated with oxidative stress. Fifth, addicsin 
significantly inhibits neurite growth in differentiated CAD cells by inactivating Rab1, a 
positive regulator of ER-to-Golgi trafficking (Maier et al., 2009). Finally, addicsin 
participates in the regulation of EAAC1-mediated glutamate uptake (Akiduki & Ikemoto, 
2008) and ER protein trafficking (Liu et al., 2008; Ruggiero et al., 2008). We discuss these 
latter two physiological functions in detail (Section 2). 

1.3 Arl6ip1  

The “ADP-ribosylation factor-like 6 interacting protein 1 (Arl6ip1)” is the new name 
assigned to three independently described factors: the original Arl6ip, apoptotic regulator in 
the membrane of the ER (ARMER), and protein KIAA0069. The Arl6ip1 protein was first 
identified by yeast two-hybrid screening using mouse ARL6 as bait (Ingley et al., 1999) and 
as a negative regulatory factor during myeloid differentiation by differential display 
(Pettersson et al., 2000). Moreover, a novel protein, designated ARMER, initially discovered 
as a false-positive clone by yeast two-hybrid screening using Bcl-xL as bait, is also Arl6ip1 
(Lui et al., 2003). In addition, Arl6ip1 has more than 96% homology with the human protein 
KIAA0069, the product of a cDNA isolated from the human myeloblast cell line KG-1 
during a systematic effort to characterize complete cDNAs (Nomura et al., 1994). Amino 
acid analysis of Arl6ip1 demonstrates that it is composed of 203 amino acids and encodes a 
23-kDa protein with four putative transmembrane segments (Pettersson et al., 2000). 
Several studies indicate that Arl6ip1 is an integral membrane protein localized to the ER 
(Lui et al., 2003; Pettersson et al., 2000). Furthermore, computational analysis of the 
topology of Arl6ip1 demonstrates that the N- and C-terminal ends are both exposed to the 
cytoplasm (Lui et al., 2003). Consistent with these results, Arl6ip1 has two putative casein 
kinase II phosphorylation motifs (amino acids 18–21 and 128–131), three putative PKC 
phosphorylation motifs (amino acids 94–96, 115–117, and 128–130), a N-glycosylation 
motif (amino acids 6–9), a prenyl group-binding motif (amino acids 72–75), and an ER 
retention signal in the C-terminal cytoplasmic region (amino acids 200–203) (Akiduki & 
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Ikemoto, 2008; Lui et al., 2003) (Fig. 1). Thus, Arl6ip1 function may be controlled by 
diverse intracellular cell signals, but it is unknown whether these motifs are 
physiologically functional. 

The functions of Arl6ip1 remain largely unknown, but culture studies have provided several 

intriguing possibilities. For example, Arl6ip1 protects HT1080 fibrosarcoma cells from 

apoptosis induced by serum starvation, doxorubicin, UV irradiation, tumor necrosis factor 

, and ER stressors by inhibiting caspase-9 activity (Lui et al., 2003). In addition, Arl6ip1 

suppresses cisplatin-induced apoptosis in CaSki human cervical cancer cells by regulating 

the expression of apoptosis-related proteins caspase-3, caspase-9, p53, NF-B, MAPK, Bcl-2, 

Bcl-xL, and Bax (Guo et al., 2010a). Furthermore, Arl6ip1 is involved in cell growth, cell 

cycle progression, and invasion of cancer cells. Downregulation of Arl6ip1 suppresses cell 

proliferation and colony formation, arrests cell cycling at the G0/G1 phase, and inhibits 

migration of CaSki human cervical cancer cells (Guo et al., 2010b). Most relevant to the 

present discussion, Arl6ip1 is involved in the regulation of EAAC1. Recently, we 

demonstrated that Arl6ip1 is a novel addicsin-associating factor that indirectly promotes 

PKC-dependent EAAC1-mediated glutamate uptake by decreasing the number of addicsin 

molecules available for suppression of EAAC1 (Akiduki & Ikemoto, 2008).  

2. Regulation of EAAC1 function by addicsin 

The mechanisms by which addicsin regulates EAAC1 activity have not been definitively 

established. However, the discovery of addicsin/GTRAP3-18 has contributed greatly to our 

understanding of EAAC1 function. Recent evidence demonstrates two major mechanisms of 

addicsin-mediated regulation of EAAC1 activity. One regulatory pathway is dependent on 

the dynamic competition for free addicsin molecules by other addicsin molecules to form 

the homocomplex and by Arl6ip1 to form a heterocomplex. This addicsin–Arl6ip1 complex 

sequesters addicsin molecules and blocks the interaction of addicsin with EAAC1 in the 

plasma membrane, thereby reducing the inhibitory effect of addicsin on EAAC1-mediated 

glutamate uptake (Akiduki & Ikemoto, 2008; Lin et al., 2001) (Fig. 3). Second, addicsin 

functions as a negative regulator of EAAC1 trafficking through the ER and inhibits the cell 

surface expression of EAAC1 (Liu et al., 2008; Ruggiero et al., 2008). In this section, we 

discuss these two mechanisms in detail. 

2.1 Modulation of EAAC1-mediated glutamate uptake by addicsin 

As an introduction to addicsin/GTRAP3-18-mediated regulation of EAAC1 activity, we 
discuss two early papers in detail. Lin et al. demonstrated that addicsin/GTRAP3-18 binds 
to EAAC1 and inhibits EAAC1-mediated glutamate uptake by this direct interaction (Lin et 
al., 2001). The second is our study showing that addicsin inhibits EAAC1-mediated 
glutamate uptake in a PKC activity-dependent manner while Arl6ip1 promotes glutamate 
uptake (also in a PKC activity-dependent manner) by inhibiting the interaction of addicsin 
with EAAC1 (Akiduki & Ikemoto, 2008). Lin et al. first identified addicsin/GTRAP3-18 as 
an EAAC1-interacting protein by yeast two-hybrid screening of a rat brain cDNA library. To 
evaluate whether addicsin/GTRAP3-18 modulates EAAC1 function, they examined the 
effect of increasing addicsin/GTRAP3-18 expression on EAAC1-mediated glutamate uptake 
in vitro and in vivo. First, they showed that glutamate uptake decreased progressively with 
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increasing expression of addicsin/GTRAP3-18 in HEK293 cells. Subsequent kinetic analyses 
in HEK293, C6BU-1, and COS7 cells revealed that elevated expression of addicsin decreased 
the glutamate affinity of EAAC1 without altering the maximal transport velocity (correlated 
with expression). Furthermore, HEK293 cells coexpressing addicsin/GTRAP3-18 and a 
truncated EAAC1 missing the addicsin/GTRAP3-18 association region showed higher 
glutamate uptake than cells expressing wild-type EAAC1. In addition, this truncated 
EAAC1 had a higher affinity for glutamate, suggesting that addicsin/GTRAP3-18 normally 
reduces EAAC1-mediated glutamate uptake by binding to this association region and 
reducing transporter glutamate affinity. Next, they evaluated the effect of intraventricular 
injection of an addicsin/GTRAP3-18 antisense mRNA on EAAC1-mediated glutamate 
uptake in vivo. The antisense treatment resulted in reduced addicsin/GTRAP3-18 
expression, a significant increase in cortical EAAC1-mediated glutamate uptake, and an 
increase in glutamate affinity compared to saline-treated or sense mRNA-treated control 
animals. In conclusion, addicsin/GTRAP3-18 can negatively modulate EAAC1-mediated 
glutamate uptake by a direct interaction with EAAC1. 

We first isolated addicsin as a novel protein richly expressed in the amygdala of mice under 

chronic morphine treatment. Addicsin has a tendency to form the multimeric complex in 

vitro (Ikemoto et al., 2002; Lin et al., 2001). The initial discovery of addicsin prompted us to 

perform yeast two-hybrid screening of an amygdala cDNA library constructed from chronic 

morphine-administered mice. From this screen, we identified Arl6ip1 as a candidate 

addicsin-interacting protein. As described in section 1.3, Arl6ip1 is an anti-apoptotic protein 

located in the ER. As previously described, addicsin inhibits EAAC1-mediated glutamate 

uptake by direct association at the plasma membrane (Lin et al., 2001), so we speculated that 

Arl6ip1 upregulates EAAC1-mediated glutamate transport by inhibiting the interaction 

between addicsin and EAAC1 (Fig. 3). 

As a first step to verify this hypothesis, we investigated whether addicsin could bind 

Arl6ip1 in vitro and in vivo. To eliminate the possibility of false-positive clones, 

reconfirmation tests using a full length mouse Arl6ip1 as prey or bait were performed. This 

tests revealed the specific interaction with addicsin in the yeast AH109 strain. We next 

examined the reproducibility of this screening result by yeast two-hybrid screening using a 

different cDNA library prepared from whole brains of 7-week-old mice. We obtained 20 

positive clones that clearly displayed ǂ-galactosidase activity (the gene driven by the 

protein–protein interaction in the two-hybrid screen). Among these positive clones, 11 were 

identical to Arl6ip1 cDNA (M.J. Ikemoto et al., unpublished data), confirming the interaction 

with addicsin and Arl6ip1 in the yeast AH109 strain. We then performed 

immunoprecipitation analysis, glycerol gradient analysis, and immunocytochemical 

analysis to directly test the interaction between Arl6ip1 and addicsin in vitro. For this 

purpose, we prepared cell lysates from NG108-15 cells expressing FLAG-tagged Arl6ip1 

(Arl6ip1-FLAG), Myc-tagged addicsin (addicsin-myc), or both. Immunoprecipitation 

analysis of these cell lysates demonstrated that Arl6ip1-FLAG specifically interacted with 

addicsin-myc in the cell lysates prepared from coexpressing cells, but not from cells 

expressing Arl6ip1-FLAG or addicsin-myc alone. Glycerol gradient analysis revealed that 

the elution profile of Arl6ip1-FLAG was similar to that of addicsin-myc. The elution peaks 

of both proteins were observed in the fraction with a deduced molecular mass of 24 kDa. 

Moreover, the elution peak of the addicsin homodimer was present in the 44-kDa fraction, 
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suggesting that addicsin forms Arl6ip1–addicsin heterodimers and addicsin–addicsin 

homodimers in vitro. Immunocytochemical analysis in NG108-15 cells overexpressing 

Arl6ip1-FLAG and addicsin-myc demonstrated subcellular colocalization (M.J. Ikemoto et 

al., unpublished data). To examine the interaction of both proteins in vivo, we performed in 

vivo immunoprecipitation assays of whole brain lysates using an anti-Arl6ip1 polyclonal 

antibody (generated from a synthetic peptide spanning amino acids 185–199 of mouse 

Arl6ip1) that again revealed a specific interaction between Arl6ip1 and addicsin. Western 

blot analysis demonstrated that Arl6ip1 was widely expressed in the mature brain and 

showed substantial regional overlap with addicsin. In addition, immunohistochemical 

staining confirmed that Arl6ip1 was widely expressed in the mature brain and localized in 

neuron-like cells. The neural expression pattern of Arl6ip1 was the same as addicsin, 

suggesting that Arl6ip1 is colocalized with addicsin in the mature CNS. We concluded that 

addicsin specifically interacted with Arl6ip1 in vitro and in vivo.  

As a second step, we then determined the Arl6ip1- and addicsin-binding regions on 

addicsin. If Arl6ip1 does regulate EAAC1 activity by competitively binding to addicsin 

molecules and thus preventing the formation of addicsin homodimers that downregulate 

EAAC1 activity, the Arl6ip1- and addicsin-binding regions on addicsin should be located 

close enough for such a competitive interaction. Immunoprecipitation assays using several 

addicsin truncation mutants indicated that Arl6ip1 associated with full length addicsin (wt), 

a truncation lacking the C-terminal region at amino acids 145–188 (d1), a deletion mutant of 

the N-terminal domain at amino acids 1–102 (d2), and a mutant missing the region 

containing the C-terminal phosphorylation motif at amino acids 136–144 (d3). However, 

Arl6ip1 could not interact with a mutant lacking a portion of the hydrophobic region at 

amino acids 103–117 (d4). As expected, addicsin was able to associate with the wt, d1, d2, or 

d3 mutant, but not the d4 truncation mutant, indicating that the hydrophobic region at 

amino acids 103–117 of addicsin is a crucial domain for the formation of addicsin–addicsin 

homodimers and addicsin-Arl6ip1 heterodimers (Fig. 1). These results strongly support our 

hypothesis that Arl6ip1 antagonizes addicsin-mediated downregulation of EAAC1 activity 

by sequestering free addicsin. 

As a third step, we investigated whether Arl6ip1 had a positive effect on EAAC1-mediated 
glutamate uptake. For this purpose, we selected C6BU-1 glioma cells that expressed EAAC1 
as the principal or only EAAT (Palos et al., 1996). We created two stably expressing C6BU-1 
cell lines, designated C6BU-1-pSw-addicsin and C6BU-1-pSw-Arl6ip1. In these cell lines, we 
could strictly control the expression levels of V5-tagged addicsin (addicsin-V5) or V5-tagged 
Arl6ip1 (Arl6ip1-V5) by exposure to 10 nM mifepristone (11ǃ-[4-dimethylamino]phenyl-
17ǃ-hydroxy-17-[1-propynyl]estra-4,9-dien-3-one), a synthetic 19-norsteroid. In addition, a 
cell viability assay demonstrated that upregulation of Arl6ip1-V5 or addicsin-V5 by 
exposure to 10 nM mifepristone was not cytotoxic, making these cell lines excellent models 
to evaluate the effects of changing Arl6ip1 and addicsin expression on the functional activity 
of EAAC1. Compared to control cells untreated with mifepristone or the PKC agonist PMA, 
the upregulation of Arl6ip-V5 or addicsin-V5 by 10 nM mifepristone alone did not change 
EAAC1-mediated glutamate uptake. When these cells were stimulated with 100 nM PMA 
alone, the glutamate uptake activity in C6BU-1-pSw-addicsin cells and C6BU-1-pSw-Arl6ip1 
cells increased about two-fold compared to untreated controls. EAAC1-mediated glutamate 
uptake was significantly lower in C6BU-1-pSw-addicsin cells stimulated with both 
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mifepristone and PMA compared to C6BU-1-pSw-addicsin cells treated with PMA alone, 
indicating that activation of addicsin expression inhibited PKC-dependent EAAC1 activity. 
In contrast, C6BU-1-pSw-Arl6ip1 cells treated with PMA and mifepristone exhibited a three-
fold increase in glutamate uptake compared to the same line treated with PMA alone, 
indicating that Arl6ip1 overexpression enhanced PKC-dependent EAAC1 activity. On the 
other hand, the nonstimulating PMA analog 4ǂ phorbol did not increase glutamate uptake 
relative to controls. 

To further support these conclusions, we performed a knockdown experiment by 
transient transfection of double-stranded siRNAs into C6BU-1-pSw-Arl6ip1 cells to 
investigate the effect of decreased addicsin expression on EAAC1-mediated glutamate 
uptake. As expected, cells transfected with either of two alternative addicsin siRNAs 
showed about a two-fold increase in glutamate uptake in response to PMA exposure 
compared to cells treated with control scrambled siRNA. The elevated glutamate uptake 
concomitant with addicsin knockdown strongly supported the proposed mechanism for 
EAAC1 regulation by addicsin and Arl6ip1.  

To investigate the molecular mechanisms for altered EAAC1-mediated glutamate uptake in 
C6BU-1-pSw-Arl6ip1 cells, we performed kinetic analysis of glutamate flux across C6BU-1-
pSw-Arl6ip1 cell membranes. When Arl6ip1 was conditionally overexpressed using 
mifepristone, PMA treatment increased the glutamate affinity but not the maximal velocity 
compared to vehicle-treated controls (PMA: Km = 647 μM, Vmax = 1.5 × 103 pmole/mg/min; 
vehicle: Km = 824 μM, Vmax = 1.5 × 103 pmole/mg/min) with no change of addicsin 
expression levels. Thus, Arl6ip1 promoted EAAC1-mediated glutamate uptake by 
increasing the catalytic efficacy of EAAC1. Specifically, Arl6ip1 blocked the addicsin-
mediated reduction in EAAC1 glutamate affinity. 

As a fourth step, we then examined the subcellular localization of Arl6ip1 in C6BU-1-pSw-
Arl6ip1 cells. Western blot analysis revealed that Arl6ip1-V5 expression levels were 
unaffected by 100 nM PMA exposure. Immunocytochemical analysis demonstrated that 
Arl6ip1-V5 was predominantly localized to cytoplasmic structures such as the ER and that 
this subcellular expression pattern was not changed by PMA. Furthermore, cell biotinylation 
analysis indicated that Arl6ip1 did not interact with the plasma membrane, consistent with 
our previous result that Arl6ip1 failed to interact with EAAC1 by immunoprecipitation. 
Therefore, Arl6ip1 was localized to the ER under all conditions tested and acted to “trap” 
addicsin molecules in Arl6ip1–addicsin heterodimers, thus preventing the direct interaction 
of addicsin with EAAC1. To confirm our hypothesis, we produced an addicsin mutant that 
lacked interaction with Arl6ip1 but not with other addicsin molecules. Fine mutational 
analysis was used to separate the Arl6ip1- and addicsin-binding regions within the addicsin 
d4 region. We compared addicsin sequences among various species and noted that two 
amino acids at positions 110 and 112 of mouse addicsin were completely conserved from 
fruit fly to human. We created a double-mutated form of addicsin that substituted both the 
native tyrosine at amino acid 110 and the leucine at amino acid 112 with alanine. The 
mutant, designated addicsin Y110A/L112A (or addicsinYL), showed markedly less binding 
to Arl6ip1 (40% of wild-type addicsin) but normal wild-type binding to addicsin, as 
revealed by immunoprecipitation. In addition, a cell biotinylation assay indicated that 
addicsinYL was unable to localize to the plasma membrane, suggesting that addicsinYL lost 
EAAC1-binding activity. To evaluate the effect of addicsinYL on EAAC1-mediated 

www.intechopen.com



 
Modulation of EAAC1-Mediated Glutamate Uptake by Addicsin 

 

351 

glutamate uptake, we created a conditional C6BU-1 cell line, designated C6BU-1-pSw-
addicsinYL. This cell line exhibited mifepristone-dependent upregulation of V5-tagged 
addicsinYL and increased glutamate uptake in response to PMA that was unchanged by 
mifepristone-induced upregulation of addicsinYL. That is, glutamate uptake was not 
reduced by induced addicsinYL expression. These data strongly suggest that addicsin is a 
key negative regulator of EAAC1 in the plasma membrane and that Arl6ip1 is a negative 
regulator of addicsin. 

As a final step, we examined the effect of addicsin PKC phosphorylation sites on EAAC1-
mediated glutamate uptake in C6BU-1 cells. Addicsin has putative PKC phosphorylation 
motifs at amino acids 18-20 and 138-140, and PKC activation increases EAAC1-mediated 
glutamate uptake. We established conditional C6BU-1 cell lines, designated C6BU-1-pSw-
addicsinS18A and C6BU-1-pSw-addicsinS138A. C6BU-1-pSw-addicsinS18A cells expressed 
a V5-tagged addicsin point mutant that substituted native serine 18 for alanine in the N-
terminal motif in response to mifepristone, while C6BU-1-pSw-addicsinS138A cells 
expressed a V5-tagged addicsin point mutant that substituted native serine 138 for alanine 
in the C-terminal motif. These cells showed no cytotoxicity in response to 10 nM 
mifepristone. In contrast to cells expressing wild-type addicsin, expression of addicsinS18A 
did not suppress the PMA-induced increase in EAAC1-mediated glutamate uptake. 
Moreover, increased expression of addicsinS18A caused a significant increase in glutamate 
uptake even without PMA stimulation by a dominant negative effect. Similarly, 
addicsinS138A expression did not suppress the PMA-induced increase in EAAC1-mediated 
glutamate uptake. Thus, these mutations abolished the inhibitory effect of addicsin. 
However, in contrast to addicsinS18A, addicsinS138A expression had no influence on 
EAAC1-mediated glutamate uptake activity in the absence of PMA stimulation. Both serine 
18 and serine 138 within the putative PKC phosphorylation motifs are critical for the 
negative regulation of EAAC1-mediated glutamate uptake and suggest that the PKC 
phosphorylation site at serine 138 is functional under physiological conditions. 

Based on these data, we proposed the regulatory model of EAAC1-mediated glutamate 
uptake illustrated in Fig. 3. If addicsin expression is high enough relative to Arl6ip1 to form 
many more addicsin homodimers than addicsin–Arl6ip1 heterodimers, EAAC1-mediated 
glutamate uptake is reduced. Furthermore, activation of the PKC isozyme that 
phosphorylates addicsin at S18 or S138 may further potentiate this negative regulation. On 
the other hand, if addicsin expression is low enough or Arl6ip1 expression high enough that 
formation of heterodimers predominates, fewer addicsin homodimers are available to 
suppress EAAC1 activity. The resulting decrease in addicsin–EAAC1 binding will enhance 
the catalytic efficacy of EAAC1, in a PKC-activity dependent manner. In sum, Arl6ip1 acts 
as a positive regulator of EAAC1-mediated glutamate uptake (Fig. 3) and may therefore 
possess significant neuroprotective efficacy against neurodegenerative diseases linked to 
excitotoxicity and oxidative stress.  

2.2 Modulation of ER protein trafficking by addicsin 

Addicsin is a member of the PRAF protein family with homology to PRA1 and PRAF2 (JM4) 
(Schweneker et al., 2005). PRA1 is associated with the Golgi membrane and interacts with 
Rab, a member of the Ras superfamily of small GTP-binding proteins, which regulates 
intracellular protein trafficking (Bucci et al., 1999; Liang & Li, 2000; Martincic et al., 1997). 
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Immunocytochemical studies reveal that mature addicsin is present in both the plasma 
membrane and the intracellular compartment, including the ER (Ikemoto et al., 2002; 
Watabe et al., 2007, 2008). Thus, addicsin may also be involved in intracellular protein 
trafficking. To investigate this possibility, we examined EAAC1 oligosaccharide residues 
under conditions of varying addicsin expression. The oligosaccharide residues on EAAC1 
are an excellent indicator of the extent of ER-to-Golgi trafficking and plasma membrane 
localization because the newly synthesized EAAC1 is N-glycosylated with high mannose 
oligosaccharide chains that are subsequently processed into more complex sugar chains by 
resident Golgi enzymes (Yang & Kilberg, 2002). In HEK293T cells coexpressing addicsin, 
EAAC1 is predominantly modified by high mannose oligosaccharides, suggesting that 
EAAC1 proteins are largely confined to the ER. Furthermore, addicsin delays 
oligosaccharide maturation of EAAC1 but does not induce EAAC1 degradation (Ruggiero et 
al., 2008). These data suggest that addicsin delays ER-to-Golgi trafficking of EAAC1. 
Moreover, addicsin inhibits ER-to-Golgi trafficking of dopamine transporter, GABA 
transporter 1, and several G-protein-coupled receptors, including ǃ2-adrenergic receptor, ǂ1-
ǃ receptor, and D2 receptor (Ruggiero et al., 2008). Furthermore, addicsin inhibits the 
function of RTN2B, a member of the reticulon protein family localized in the ER, which 
enhances ER-to-Golgi trafficking of EAAC1 (Liu et al., 2008). As addicsin, RTN2B, and 
EAAC1 are coexpressed in neurons, they may interact in one complex. Indeed, addicsin and 
EAAC1 can interact with RTN2B by binding to different regions of the protein. In addition, 
coexpression of RTN2B and EAAC1 in HEK293 cells increases EAAC1 cell surface 
expression, while increasing addicsin expression blocks this effect. Thus, EAAC1 trafficking 
is inhibited by addicsin and facilitated by RTN2B (Liu et al., 2008). Based on these data, Liu 
et al. proposed a model in which the regulation of ER trafficking governs the activity and 
density of EAAC1 at the plasma membrane. Under normal conditions, RTN2B facilitates 
EAAC1 trafficking from the ER because basal expression of addicsin is too low to have an 
inhibitory effect. Under stressful conditions, such as oxidative and chemical stress, addicsin 
expression is upregulated and the inhibitory effect on EAAC1 trafficking predominates over 
the facilitating effect of RTN2B (Liu et al., 2008). Addicsin can delay ER-to-Golgi trafficking 
of structurally and functionally distinct proteins in addition to EAAC1. Thus, addicsin is a 
stress-induced multifunctional protein that participates in various physiological and 
pathological functions by regulating ER trafficking of many membrane effector proteins, 
including receptors and transporters. 

3. Addicsin & neurological disorders 

Recent studies have also linked addicsin to the pathophysiology of several neurological 
diseases, including drug addiction, schizophrenia, and epilepsy. In this section, we focus on 
these diseases and review the putative pathophysiological functions of addicsin in the 
mammalian CNS.  

3.1 Drug abuse 

Several studies demonstrate that addicsin is involved in drug abuse, the development of 
morphine dependence (Ikemoto et al., 2002; Wu et al., 2011), and ethanol tolerance (C. Li 
et al., 2008). In an effort to clarify the molecular mechanism of opiate addiction, we 
performed subtractive hybridization of mRNA expressed in the amygdala of mice treated 

www.intechopen.com



 
Modulation of EAAC1-Mediated Glutamate Uptake by Addicsin 

 

353 

with repeated doses of morphine and identified addicsin mRNA as a factor selectively 
upregulated relative to drug-naïve mice (Ikemoto et al., 2000, 2002). Upregulation of 
addicsin mRNA was specifically induced by chronic, but not acute, morphine 
administration and was completely inhibited by coadministration of naloxone, an opiate 
receptor antagonist (Ikemoto et al., 2002). In that study, we used a morphine 
administration protocol that had been previously shown to induce morphine dependence 
and tolerance (Kaneto et al., 1973). Thus, our data strongly suggested that addicsin was 
involved in the development of morphine dependence in this animal model. Later reports 
have confirmed our findings by directly demonstrating that addicsin is directly involved 
in the development of morphine dependence (Wu et al., 2011). Chronic morphine 
treatment upregulated addicsin in prefrontal cortex, nucleus accumbens, and amygdala, 
which are regions known to be critical for the development of morphine dependence and 
other addictive behaviors. Furthermore, addicsin knockdown by infusion of addicsin 
antisense nucleotides into the cerebral ventricles significantly decreased withdrawal 
behaviors following chronic morphine treatment in rats (Wu et al., 2011). Addicsin 
knockdown suppressed the upregulation of ǅ opioid receptors, the activation of the 
dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), and MAPK 
activation normally induced by chronic morphine treatment. Furthermore, addicsin 
knockdown enhanced the degradation of ǅ opioid receptors through the ubiquitin–
proteasome pathway (Wu et al., 2011). These data suggest that addicsin directly 
contributes to the regulation of ǅ opioid receptor stability and the development of 
morphine dependence by suppressing ǅ opioid receptor expression and the activation of 
DARPP-32 and MAPK. The ǅ opioid receptor knockout mice do not develop analgesic 
tolerance to morphine without affecting the development of physical dependence (Kieffer 
& Gaveriaux-Ruff, 2002; Nitsche et al., 2002; Y. Zhu et al., 1999). Thus, further 
investigations are needed to clarify whether addicsin is involved in analgesic tolerance. 

Ethanol-induced cellular responses are analogous to those elicited by heat shock stresses 

(Piper, 1995; Wilke et al., 1994). Similarly, addicsin expression is enhanced in response to 

various environmental stressors, such as oxidative stress and heat shock stress (R. Chen et 

al., 2007). Furthermore, our study demonstrated that addicsin plays an important role in the 

development of morphine dependence and tolerance (Ikemoto et al., 2002). In the light of 

these observations, addicsin is considered to be essential for the development of ethanol 

tolerance. To address this issue, addicsin knockdown flies were generated. To estimate 

ethanol tolerance objectively, the inebriation test was performed (Bellen, 1998). Flies were 

exposed to ethanol vapor, and the mean elution time (MET) was measured three times after 

inebriation. The addicsin knockdown flies showed no difference between the first MET and 

third MET, while wild-type flies exhibited a significant higher third MET (C. Li, et al., 2008), 

indicating that addicsin knockdown flies failed to acquire ethanol tolerance.  

3.2 Schizophrenia 

Glutamatergic neurotransmission and plasticity are disrupted in patients with 
schizophrenia (Javitt, 2010; Kantrowitz & Javitt, 2010; Paz et al., 2008). This has led some 
researchers to speculate that EAATs and EAAT-interacting proteins that regulate glutamate 
transport efficacy or transporter expression may be abnormal in patients with schizophrenia 
(Bauer et al., 2008; Huerta et al., 2006). Indeed, addicsin/JWA transcripts were 
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overexpressed in the thalamus (Huerta et al., 2006) and the anterior cingulate cortex of 
schizophrenics as shown by in situ hybridization (Bauer et al., 2008). In these studies, the 
protein expression levels of addicsin/JWA were not determined. In addition, expression of 
EAAT3, the human homolog of EAAC1, was also upregulated in the anterior cingulate 
cortex of schizophrenic patients (Bauer et al., 2008). Furthermore, a microarray study of 
multiple human brain regions demonstrates that the anterior cingulate cortex is more 
vulnerable to these aberrant gene expression patterns (Katsel et al., 2005), and 
hypofrontality is a key feature of schizophrenia. Addicsin is thus a promising target for 
further research focusing on the role of glutamate transporters in schizophrenia. Moreover, 
addicsin regulates trafficking of a plethora of other membrane proteins, including dopamine 
receptors, suggesting another pathway through which addicsin participates in the 
pathogenesis of schizophrenia. 

3.3 Epilepsy 

Anatomical analysis of EAAT expression reveals that EAAC1 is enriched in neurons and 
particularly localized to inhibitory GABAergic neurons (Conti et al., 1998; He et al., 2000; 
Rothstein et al., 1994). Cerebroventricular injection of EAAC1 antisense oligonucleotides 
caused no elevation of extracellular glutamate in the rat striatum but did produce mild 
neurotoxicity and epileptiform activity (Rothstein et al., 1996). Furthermore, epilepsy in 
EAAC1 knockdown rats is caused by decreased GABA synthesis (Sepkuty et al., 2002). 
Glutamate is a precursor for GABA synthesis, so molecules that alter the intracellular 
availability of glutamate in GABAergic interneurons, including addicsin/GTRAP3-18, may 
have an important role in epileptogenesis or ictogenesis. In a recent study of the 
antiepileptic drug levetiracetam (LEV), changes in the expression of addicsin/GTRAP3-18, 
glutamate transporters, and GABA transporters were examined in a rat post-traumatic 
epilepsy model induced by FeCl3 injection into the amygdala. Administration of LEV 
increased expression of EAAC1 and GABA transporter 3 (GAT-3) but decreased expression 
of addicsin/GTRAP3-18 in the rat hippocampal formation (Ueda et al., 2007). These results 
suggest that both the suppression of glutamatergic excitation and the enhancement of 
GABAergic inhibition induced by chronic LEV administration are due to the upregulation of 
EAAC1 and GAT-3 subsequent to downregulation of addicsin/GTRAP3-18. A long-lasting 
suppression of addicsin/GTRAP3-18 expression was observed in the rat pentylenetetrazole 
(PTZ)-induced kindling model of epilepsy (Ueda et al., 2006). Similarly, antisense-mediated 
knockdown of addicsin/GTRAP3-18 decreases seizure threshold and promotes PTZ 
kindling. In addition, addicsin/GTRAP3-18 knockdown increases basal release of glutamate 
and GABA in the rat hippocampal formation, indicating that knockdown of 
addicsin/GTRAP3-18 promotes GABA synthesis (Ueda et al., 2006). These studies, 
demonstrating that addicsin can increase GABA synthesis by increasing the substrate (i.e., 
glutamate) supply, define addicsin as a novel therapeutic target in epilepsy. 

3.4 Other neurological disorders 

Addicsin directly modulates glutamate and cysteine uptake by EAAC1, suggesting that 

addicsin participates in the pathogenesis of neurological disorders associated with 

excitotoxicity and oxidative stress. Here we briefly discuss some representative EAAC1 

functions relevant to CNS pathology. A recent study demonstrated that EAAC1-deficient 
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mice developed age-dependent brain atrophy and behavioral abnormalities in the cognitive 

and motivational domains. In addition, EAAC1 knockout mice displayed impaired GSH 

homeostasis and age-dependent neurodegeneration, and these pathologies were rescued by 

treatment with the membrane permeable cysteine precursor N-acetylcysteine (Aoyama et 

al., 2006). These EAAC1 knockout mice also display dicarboxylic aminoaciduria and 

significant motor impairments (Peghini et al., 1997). These results indicate that EAAC1 

functions as a cysteine transporter in neurons and sustains intracellular GSH to ameliorate 

oxidative stress in vivo. Furthermore, neuronal glutamate uptake can also regulate memory 

formation (Levenson et al., 2000; Maleszka et al., 2000). The increase of EAAC1-mediated 

neuronal glutamate uptake is associated with the induction and expression of early phase 

long-term potentiation (LTP) in the CA1 area of the hippocampal formation and with 

contextual fear conditioning, a form of hippocampus-dependent memory thought to depend 

on induction of LTP (Levenson et al., 2002). These results suggest that regulation of 

glutamate uptake by EAAC1 is a physiologically important mechanism for the modulation 

of synaptic strength during long-term changes in synaptic efficacy (plasticity). Thus, 

dysfunction of EAAC1 induced by aberrant addicsin expression may lead to 

neurodegeneration and cognitive decline. Of particular interest is the role of addicsin in the 

pathogenesis of neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. 

These questions warrant further research. 

 

 
 

Fig. 1. A schematic presentation of addicsin and Arl6ip1 
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4. Future research perspective 

Despite these advances, our understanding of the regulatory mechanisms of addicsin 

expression and the range of addicsin functions is far from complete. The elucidation of the 

regulatory mechanism of addicsin expression under basal and pathological conditions is 

essential for understanding the physiological and pathological roles of addicsin. For 

instance, while addicsin has consensus PKC phosphorylation sequences, it is unclear 

whether PKC actually phosphorylates addicsin and controls addicsin functions in vivo. It 

is also unknown whether or how PKC phosphorylation affects the interaction between 

addicsin and Arl6ip1. To overcome these challenges, it is crucial to clarify whether PKC 

phosphorylation sites of addicsin are physiologically controlled by PKC signaling and by 

which PKC isoforms. Furthermore, it remains controversial whether addicsin is an 

integral membrane protein. Our results strongly support the notion that addicsin is a 

membrane-associating protein with a soluble and membrane-localized form. Thus, it is 

important to clarify the different molecular features and functions of the soluble and 

membrane-localized forms of addicsin. 

 

Fig. 2. A scheme of the proposed physiological functions of addicsin 

Second, in vivo functional studies are still needed to clarify the physiological and 
pathological functions of addicsin. Accumulating evidence suggests that addicsin 
participates in various physiological and pathological processes in vivo, but the molecular 
mechanisms controlling the selective interaction of addicsin with multiple targets, including 
receptors and transporters, are unknown. Furthermore, many reports demonstrate that the 
physiological and pathological roles of addicsin are observed when expression of addicsin is 
increased by various stresses, including oxidative and chemical stress. Thus, the production 
of animal models that overexpressed addicsin in a tissue- or region-specific manner may be 
useful to analyze addicsin functions in various tissues, including the brain. At present, no 
studies have been undertaken in tissues outside the brain, although addicsin is ubiquitously 
expressed in kidney, heart, and liver (Butchbach et al., 2002; Ikemoto et al., 2002). 
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We believe that studies using transgenic or conditional knockin/knockout animal models will 
lead to novel insights into addicsin function. Of particular interest is whether dysfunctional 
addicsin expression or function can lead to neurodegenerative diseases through dysregulation 
of EAAC1 or other proteins. Finally, we hope that studies on addicsin will continue to advance 
our understanding of the role of addicsin in the pathogenesis of diseases, such as drug abuse, 
and lead to the development of curative therapies.  

5. Conclusion 

In this chapter, we argued that Arl6ip1 is a novel addicsin-interacting protein that indirectly 

promotes PKC-dependent, EAAC1-mediated glutamate uptake by inhibiting the interaction 

of addicsin with EAAC1 at the plasma membrane. Based on these findings, we proposed the 

regulatory model of EAAC1-mediated glutamate uptake illustrated in Fig. 3. In this model, 

EAAC1-mediated glutamate uptake activity can be negatively and positively regulated by 

PKC activity depending on dynamic modulation by addicsin complexes. Thus, the cellular 

dynamics of addicsin is a key element regulating EAAC1-mediated glutamate uptake. The 

study of addicsin is still in its infancy, but future findings on the physiological and 

pathophysiological functions of addicsin could greatly clarify the role of EAAC1 (and other 

proteins regulated by addicsin) in health and disease. 

 

 

 
 

Fig. 3. A regulatory model of EAAC1-mediated glutamate uptake in C6BU-1 cells 
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