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1. Introduction 

Molecular interactions play a fundamental role in the behavior of the chemical and physical 

properties of any physico-chemical system. In gas chromatography (GC) the 

chromatographic retention is a very complex process. It involves the interaction of 

molecules through multiple intermolecular forces, such as dispersion (or London forces), 

orientation (dipole–dipole or Keesom forces), induction (dipole–induced dipole or Debye 

forces), and electron donor–acceptor forces including hydrogen–bonding, leading to the 

partition of the solute between the gas and liquid phases (Kaliszan, 1987; Peng, 2000; Yao et 

al., 2002). Other factors, such as steric hindrance of substituent groups within the solute 

molecule, can also affect the chromatographic behavior (Fritz et al., 1979; Peng et al., 1988). It 

is clear that correlations between gas chromatographic retention indices (RIs) and molecular 

parameters provide significant information on the molecular structure, retention time and 

the possible mechanism of absorption and elution (Körtvélyesi et al., 2001). Several 

topological, geometric, electronic, and quantum chemical descriptors have been used in 

research on quantitative structure–property and structure–activity relationships 

(QSPR/QSAR) (Karelson et al., 1996; Katritzky & Gordeeva, 1993; Kier & Hall, 1990). The 

topological descriptors have shown their efficacy in the prediction of diverse 

physicochemical and biological properties of various types of compounds (Amboni et al., 

2000; Arruda et al., 1993; Estrada, 2001a, 2001b; Heinzen & Yunes, 1993, 1996; Heinzen et al., 

1999a; Kier & Hall, 1986; Randic, 1993, 2001; Ren, 2002a, 2002b, 2002c; Sabljic & Trinajstic, 

1981). In general, these indices are numbers containing relevant information regarding the 

structure of molecules. Most of the measured physicochemical properties are steric 

properties, and therefore they may be reasonably well described by topological indices. 

However, in some cases, these indices also contain structural information related to the 
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electronic and/or polar features of molecules (Galvez et al., 1994; Hall et al., 1991). The 

molecular size, shape, polarity, and ability to participate in hydrogen bonding are among 

the different factors that can contribute to the physicochemical properties or biological 

activities of a molecule. It is well known that these factors are related to intermolecular 

interactions such as van der Waals forces. 

The use of graph–theoretical topological indices in QSPR/QSAR studies has sparked great 
interest in recent years. The topological indices have become a powerful tool for predicting 
numerous physicochemical properties and/or biological activities of compounds, as well as 
for molecular design. One of the most important properties that have been extensively 
studied is the chromatographic retention (Estrada & Gutierrez, 1999; Ivanciuc, O. et al., 2000; 
Ivanciuc T. & Ivanciuc, O., 2002; Katritzky et al., 1994; Katritzky et al., 2000; Pompe & Novic, 
1999; Ren, 1999, 2002a). Quantitative structure–chromatographic retention relationship 
(QSRR) studies have been widely investigated by gas chromatography (GC) and high–
performance liquid chromatography (HPLC) (Markuszenwski &. Kaliszan, 2002). 
Topological indices (TI) are obtained via mathematical operations from the corresponding 
molecular graphs of compounds (Ivanciuc, O. et al., 2002; Kier & Hall, 1976; Liu, S.-S. et al. 
2002; Marino et al., 2002; Rios–Santamarina et al., 2002; Toropov & Toropova, 2002) in 
contrast to the physicochemical characterization used by traditional QSAR (García–
Domenech et al., 2002). One of the main advantages of TI is that they can be easily and 
rapidly computed for any constitutional formula yielding good correlation abilities. 
However, important disadvantages should be noted including the difficulties encountered 
in encoding stereo–chemical information, for example, to distinguish between cis– and 
trans–isomers, and their lack of physical meaning. Many topological indices have been 
proposed since the pioneering studies by Wiener (Wiener, 1947) and by Kier on the use of 
QSAR (Kier & Hall, 1976). The TI developed for QSAR/QSRR studies can be illustrated by 
Estrada’s approach to edge weights using quantum chemical parameters (Estrada, 2002) and 
by Ren’s atom–type AI topological indices derived from the topological distance sums and 
vertex degree (Ren, 2002d). 

Based on a chromatographic behavior hypothesis, our group developed a topological index 

called the semi–empirical topological index (IET). This index was initially developed to 

predict the chromatographic retention of linear and branched alkanes and linear alkenes, 

with the objective of differentiating their cis– and trans– isomers and obtaining QSRR 

models (Heinzen et al., 1999b). The excellent results achieved stimulated our group to 

extend the new topological descriptor to other classes of compounds (Amboni et al., 2002a, 

2002b; Arruda et al., 2008; Junkes et al., 2002a, 2002b, 2003a, 2003b, 2004; Junkes et al., 2005; 

Porto et al., 2008). The equation obtained to calculate the IET was generated from the 

molecular graph and the values of the carbon atoms, and the functional groups were 

attributed observing the experimental chromatographic behavior and supported by 

theoretical considerations. This was carried out due to the difficulty in obtaining a complete 

theoretical description of the interaction between the stationary phase and the solute. Based 

only on theoretical equations or hypotheses it is not possible, for example, to estimate how 

the molecular conformation of the solute affects the intermolecular forces. In view of this, it 

seems reasonable to assume that from the experimental behavior we can obtain insights 

regarding these factors in order to apply them to other processes involved in QSPR studies. 

Thus, it can be noted that the semi–empirical topological index has a clear physical meaning. 
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The semi–empirical topological index (IET) allowed the creation of a new descriptor, the 
electrotopological index, ISET, which was recently developed by our group and applied to 

QSPR studies to predict the chromatographic retention index for a large number of organic 
compounds, including aliphatic hydrocarbons, alkanes and alkenes, aldehydes, ketones, 

esters and alcohols (Souza et al., 2008, 2009a, 2009b, 2010). The new descriptor for the above 
series of molecules can be quickly calculated from the semi-empirical, quantum-chemical, 

AM1 method and correlated with the approximate numerical values attributed by the semi-
empirical topological index to the primary, secondary, tertiary and quaternary carbon 

atoms. Thus, unifying the quantum-chemical with the topological method provided a three-
dimensional picture of the atoms in the molecule. It is important to note that the AM1 

method portrays more reliable semi-empirical charges, dipoles and bond lengths than those 
obtained from time-consuming, low-quality, ab initio methods, that is, when employing a 

minimal basis set in ab initio calculations. Despite the fact that the calculated partial atomic 
charges may be less reliable than other molecular properties, and that different semi-

empirical methods give values for the net charges with poor numerical agreement, it is 
important to recognize that their calculation is easy and that the values at least indicate the 

trends of the charge density distributions in the molecules. Since many chemical reactions or 
physico-chemical properties are strongly dependent on local electron densities, net atomic 

charges and other charge-based descriptors are currently used as chemical reactivity indices.  

For alkanes and alkenes, this correlation allowed the creation of a new semi-empirical 
electrotopological index (ISET) for QSRR models based on the fact that the interactions 
between the solute and the stationary phase are due to electrostatic and dispersive forces. 
This new index, ISET, is able to distinguish between the cis- and trans-isomers directly from 
the values for the net atomic charges of the carbon atoms that are obtained from quantum-
chemical calculations (Souza et al., 2008). For polar molecules like aldehydes, ketones, esters 
and alcohols, the presence of heteroatoms like oxygen changes considerably the charge 
distribution of the corresponding hydrocarbons, leading to a small increase in the 
interactions between the solute and the stationary phase (Souza et al., 2009a, 2009b, 2010). 
An appropriate way to calculate the ISET was developed, taking into account the dipole 
moment exhibited by these molecules and the atomic charges of the heteroatoms and the 
carbon atoms attached to them. By considering the stationary phase as non-polar material 
the interaction between these molecules and the stationary phase becomes electrostatic with 
the contribution of dispersive forces. These interactions were slowly increased relative to the 
corresponding hydrocarbons. Hence, the interactions between the molecules and the 
stationary phase were slowly increased as a result of the charge redistribution that occurred 
in presence of the heteroatom. This charge redistribution accounted for the dipole moment 
of the molecules. Clearly the main outcomes in terms of the charge distribution due the 
presence of the (oxygen) heteroatoms occur in the neighborhood, and the excess charge of 
these atoms leads to electrostatic interactions that are stronger relative to the weak 
dispersive dipolar interactions. 

2. Semi-empirical topological index (IET)  

Three important factors led us to develop the semi-empiric topological index: (i) no 
topological index alone was able to differentiate between the cis- and trans- isomeric 
structures of alkenes; (ii) if all the carbon atoms have a value of 100 as indicated by Kovàts, 
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from the experimental results it is not possible to determine a constant value for each of the 
different carbon atoms (secondary, tertiary and quaternary) of alkanes; (iii) when the Kovàts 
indices of retention for very branched hydrocarbons (alkanes) are correlated with the 
number of carbon atoms an unacceptable linearization is observed. It is known that the 
chromatographic process of separation results from the forces that operate between solute 
molecules and the molecules of the stationary phase. The retention of alkanes and alkenes is 
due to the number of carbon atoms and the interaction of each specific carbon atom with the 
stationary phase. The interaction of the stationary phase with the carbon atoms is 
determined by its electrical properties and by the steric hindrance to this interaction by 
other carbon atoms attached to it. The values attributed to the carbon atoms were based on 
the results of the experimental chromatographic behavior of the molecules that measure the 
real electrical and steric characteristics of the carbons. For this reason the index is 
denominated semi-empirical. The representation of the molecules was based on the 
molecular graph theory, where the carbon atoms are considered as the vertexes of the graph 
and the hydrogens are suppressed (Hansen & Jurs, 1988). Thus, it is called a topological 
index. 

2.1 Calculation of IET for alkanes and alkenes  

Values were attributed to the carbon atoms (vertex of the molecular graphs) according to the 
following considerations. (i) According to the Kovàts convention, the correlation between 
the retention index and number of carbon atoms is linear for the alkanes (Kovàts, 1968). 
However, branched alkanes do not present this linear relationship with the Kovàts index, 
since the retention of the tertiary and quaternary carbon atoms is decreased by the steric 
effects of their neighboring groups. It is evident that secondary, tertiary and quaternary 
carbon atoms have values of less than 100 u.i., as previously attributed by Kovàts. (ii) 
Observing the experimental chromatographic behavior, approximate numerical values were 
attributed: 100 u.i. for the carbon atom in the methyl group in agreement with Kovàts, 90 u.i. 
for the secondary carbon atoms, 80 u.i. for the tertiary and 70 u.i. for the quaternary. All 
values were divided by 100 to make them consistent with the common topological values. 
(iii) The contribution of these carbon atoms to the chromatographic retention is also 
dependent on the neighboring substituent groups due to steric effects. In order to estimate 
the steric effects, it was observed that the values for the experimental RI decreased as the 
branch increased, showing a log trend. Therefore, it was necessary to add the value of the 
logarithm of each adjacent carbon atom. Thus, the new semi-empirical topological index 
(IET) is expressed as: 

 ET i i
i

I (C )     (1)  

i jj~i
logC    

where Ci is the value attributed to each carbon atom in the molecule and i is the sum of the 
logarithm of the value for each adjacent carbon atom (C1, C2, C3 and C4) and ~ means ‘adjacent 
to’. (iv) For alkenes, the main interaction force between the solute and stationary phase is the 
dispersive force, which is reduced by neighboring steric effects, however, the electrostatic force 
is also involved. The influence of conformational effects on the intermolecular forces makes it 
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very difficult to predict these effects based only on theoretical considerations. For this reason, 
the values attributed to the carbon atom of the double bond for alkenes were calculated by 
numerical approximation based on the experimental retention indices, as described in our 
previous publication (Heinzen et al., 1999b; Junkes et al., 2002a). 

2.2 Calculation of IET for compounds with oxygen-containing functional groups  

The values attributed to the carbon atoms and functional groups (vertex of the molecular 
graphs) were based on the following considerations: (i) For this group of compounds, the 
main intermolecular forces that contribute to their chromatographic behavior on low 
polarity stationary phases are dispersive and inductive forces. The values attributed to 
functional groups are also based on the experimental retention index. (ii) The –COO- (ester), 
C=O (ketone or aldehyde) and C-OH (alcohol) groups were considered as a single vertex of 
the molecular graph of the compounds studied. This was carried out due to the difficulty 
and the inconsistency associated with calculating the individual values of the carbon atoms 
and the oxygen atoms of these groups. Thus, better numerical approximations were 
obtained, capable of reflecting the experimental chromatographic behavior of these 
compounds, when these groups were treated as a single vertex. (iii) The same considerations 
that were taken into account during the development of the semi-empirical topological 
method for the prediction of retention indices of alkanes and alkenes (Heinzen et al., 1999b; 
Junkes et al., 2002a) were employed to develop the IET for oxo-compounds. (iv) The 
contribution of the carbon atoms and functional groups to the chromatographic retention 
was represented by a single symbol, Ci, as indicated in Equation 1. The semi-empirical 
topological index can be expressed by a general Equation, for the entire set of compounds 
included in this work, where: Ci = value attributed to the –COO- (ester), C=O (ketone or 

aldehyde), C–OH (alcohol) groups and/or to each carbon atom, i, in the molecule. i = the 
sum of the logarithm of the values of each adjacent carbon atom (C1, C2, C3, and C4 ) and/or 
the logarithm of the value of the –COO- (ester), C=O (ketone or aldehyde), C-OH (alcohol) 
groups, and ~ means ‘adjacent to’. In a first step, an approximate IET (IEta) was calculated for 
each compound. This was achieved using the equation previously obtained for linear 
alkanes containing from 3 to 10 carbon atoms and Kovàts experimental retention indices of 
compounds (Heinzen et al., 1999b). (v) Subsequently, the values of Ci for primary and 
secondary carbon atoms, previously attributed to alkanes (Heinzen et al., 1999b), and the 
approximate IET, calculated above, were used in Equation 1 in order to calculate the values 
of –COO-, C=O and C-OH groups of linear compounds. Thus, values were attributed to 
each class of functional group according to the position of the group in the carbon chain. (vi) 
One of the fundamental factors taken into consideration for the development of this 
topological index was the importance of the steric and other mutual intramolecular 
interactions between the functional group and nearby atoms. Therefore, for branched 

molecules, different values were attributed to carbon atoms in the , , and  position with 
respect to the functional groups compared to those previously attributed to alkanes 
(Heinzen et al., 1999b) as described in the literature (Amboni et al., 2002a, 2002b; Junkes et 
al., 2003b, 2004).  

The values of Ci for the carbon atoms and the values attributed to the functional groups of 

esters, aldehydes, ketones and alcohols are listed in Table 1 of Junkes et al. (Junkes et al., 

2004,).  
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2.3 Calculation of IET for alkylbenzene compounds  

The same considerations employed in the generation of the semi-empirical topological 
index, IET, for linear and branched alkanes and alkenes (Heinzen et al., 1999b; Junkes et al., 
2002a) were applied to this group of compounds (alkylbenzenes). Firstly, the molecules 
were represented by hydrogen-suppressed molecular graphs based on chemical graph 
theory (Hansen & Jurs, 1988) where the carbon atoms were considered as vertexes of the 
molecular graph of these compounds. The contribution of each carbon atom to the 
chromatographic retention is represented by a single symbol, Ci, as can be observed from 
Eq. (1) where Ci is the value attributed to (=C<) fragments and/or each carbon atom i in the 
molecule; and δi is the sum of the logarithm of the values for each adjacent carbon atom (C1, 
C2, C3 and C4). The values of Ci for the carbon atoms of linear, branched, ortho, meta and para 
substituted, tri-substituted and tetra-substituted alkyl benzenes can be seen in Porto et al. 
(Porto et al., 2008).  

2.4 Calculation of IET for halogenated aliphatic compounds  

The present approach is based on the representation of molecules by hydrogen-suppressed 
molecular graphs which, in turn, are based on chemical graph theory, where the carbon 
atoms (Ci) are the graph vertexes. As with the carbon atoms the C–X and X–C–X fragments 
(where X = chlorine, bromine, or iodine atom) are considered a vertex of the molecular 
graph of these compounds, as previously considered for the functional groups (Heinzen et 
al., 1999b). The IET is expressed as equation (1) where Ci is the value attributed to each 
carbon atom i and/or to C–X or X–C–X fragments in the molecule; and δi is the sum of the 
logarithm of the values for each adjacent carbon atom (C1, C2, C3, and C4) and/or the 
logarithm of the values of the adjacent C–X and X–C–X fragment. The values to be 
attributed to the carbon atoms, and to the functional group (Ci) for halogenated 
hydrocarbons, are calculated by numerical approximation based on the experimental 
retention index (RIExp) values and supported by theoretical considerations. The values of Ci 
for the carbon atoms of linear and branched halogenated aliphatic compounds can be 
obtained in Arruda et al. (Arruda et al., 2008).  

2.5 Development of QSRR models using the IET  

As the starting point, the IET was developed for alkanes on a low polarity stationary phase. 
These are the simplest compounds and their properties are almost completely dependent on 
topological features. Subsequently, this novel topological descriptor was extended to 
different classes of organic compounds with more complex structural features. A summary 
of the best simple linear regression models (RI = b + a IET) and the statistical data for each 
data set of compounds, obtained in previous QSRR studies, is given in Table 1. 

3. The semi-empirical electrotopological index, ISET 

The semi–empirical topological index (IET) discussed in the previous section allows the 
creation of a new descriptor, the electrotopological index, ISET, which was developed and 
applied to QSPR studies to predict the retention index, boiling points and octanol/water 
partition coefficient (Log P), for a large amount of organic compounds, including aliphatic 
hydrocarbons alkanes and alkenes, aldehydes, ketones, esters and alcohols (Souza et al.,  
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No Data Set a b N r SD Ref. 

01 Alkanes 116.8 -19.05 157 0.9901 26.20 Heinzen et al., 
1999b 

02 Cis-/trans- 
linear alkenes 

122.8446 -41.7054 79 0.99996 2.35 Heinzen et al., 
1999b 

03 Branched 
alkenes 

120.4671 -29.0457 59 0.9985 5.76 Junkes et al., 
2002a 

04 Methyl-
branched 
alkanes 

123.1610 -39.5251 178 0.99998 4.31 Junkes et al., 
2002b 

05 Esters 123.79 -48.14 81 0.9995 5.79 Amboni et al., 
2002a 

06 Aldehydes and 
ketones 

123.4951 -45.6553 54 0.9999 5.01 Junkes et al.,  
2004 

07 Alcohols 124.1239 -51.3739 44 0.9991 5.70 Junkes et al., 
2003b 

08 Alkylbenzene 123.0824 -39.7381 122 0.9998 5.5 Porto et al., 2008 

09 Halogenated 
compounds 

124.7788 -56.8944 141 0.9997 8.0 Arruda et al., 
2008 

Table 1. Summary of the best simple linear regressions (RICalc = a + b IET) found for different 
data set on low polarity stationary phases. 

2008, 2009a, 2009b, 2010). This new descriptor for this series of molecules can be quickly 

calculated from atomic charges obtained through the semi-empirical quantum-chemical, 

AM1 method (Bredow & Jug, 2005; Smith, 1996), since it was found that atomic charges 

correlated with the approximate numerical values attributed by the semi-empirical 

topological index to the primary, secondary, tertiary and quaternary carbons atoms.  

3.1 Calculation of ISET for alkanes and alkenes  

For alkanes and alkenes, the above-mentioned correlation allowed the creation of a new 

semi-empirical electrotopological index (ISET) for QSRR models based on the fact that the 

interactions between the solute and the stationary phase are due to electrostatic and 

dispersive forces (Souza et al., 2008). This new index, ISET, is able to distinguish between the 

cis- and trans-isomers directly from the values of the net atomic charges of the carbon atoms 

that are obtained from quantum-chemical calculations. More precisely, this new semi-

empirical electrotopological index, ISET, was developed based on the refinement of the 

previous semi-empirical topological index, IET. The values for the Ci fragments that were 

firstly attributed from the experimental chromatographic retention and theoretical 

deductions have an excellent relationship with the net atomic charge of the carbon atoms. 

Thus, the values attributed to the vertices in the hydrogen-suppressed graph of carbon 

atoms (Ci) are calculated from the correlation between the net atomic charge in each carbon 

atom, which is obtained from quantum chemical semi-empirical calculations, and the Ci 

fragments for primary, secondary, tertiary and quaternary carbon atoms (1.0, 0.9, 0.8 and 

0.7, respectively) obtained from the experimental values. This shows that it is possible to 

www.intechopen.com



 
Molecular Interactions 

 

32

calculate a new index, ISET (the semi-empirical electrotopological index) through the net 

atomic charge values obtained from a Mulliken population analysis using the semi-

empirical AM1 method and their correlation with the values attributed to the different types 

of carbon atoms. This demonstrates that the ISET encodes information on the charge 

distribution of the solute which drives the dispersive and electrostatic interactions between 

the solute (alkanes and alkenes) and the stationary phase (Souza et al., 2008).  

Since the interactions between the solute and the stationary phase are dispersive for alkanes 
and electrostatic for alkenes, the chromatographic retention is strongly dependent on the 
electronic charge distribution of each carbon atom of these molecules. A simple linear 
regression equation was obtained between the values of the carbon atoms, SETi values, 
based on experimental gas chromatography retention (for primary (1.0), secondary (0.9), 
tertiary (0.8) and quaternary (0.7) carbon atoms) and the net atomic charges (δi) of these 
atoms, as given in Equation (2).  

  SET = -1.77125δ + 0.62417i i  (2) 

This indicates that the physical reality encoded by the semi-empirical topological index 
(IET) developed in our laboratory is completely related to net atomic charges which, as is 
well known, are important forces in intermolecular interactions. It is clear that the 
interactions between the non-polar stationary phases and the different compounds were 
determined predominantly through the electronic charge distribution of the molecular 
structures of the compounds analyzed by gas chromatography. From Equation (1) it is 
clear that knowledge of the net atomic charges is sufficient to calculate the SETi value for 
all kinds of carbon atoms and not only the values given by the carbon models (that is 1.0, 
0.9, 0.8 and 0.7) or in specific tables. Hence, the above method of calculating the SETi 
values of the carbon atoms allows a new index to be created, denominated the semi-
empirical electrotopological index, ISET. Considering the steric effects of the neighboring 
carbon atoms, as was observed in the calculation of IET , this new index can be calculated 
according to Equation (3). 

 I = (SET + logSET )i jSET
i,j
  (3) 

In the above expression the i sum is over all the atoms of the molecule (excluding the H 
atoms) and the j is an inner sum of atoms attached to the i atom. The cis-2-pentene and trans-
2-pentene molecules represented in the graph below are taken as an example of the ISET 
calculation.  

 

   cis-2-pentene                                 trans-2-pentene 

The net atomic charges and SETi values for the above molecules are given in Table 2 below.  
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Carbon atom cis-penten-2-eno trans-penten-2-eno 

δj SETj δj SETj 

C1 -0.187 0.9555 -0.185 0.9520 

C2 -0.173 0.9307 -0.170 0.9254 

C3 -0.165 0.9165 -0.167 0.9200 

C4 -0.133 0.8598 -0.132 0.8580 

C5 -0.209 0.9945 -0.207 0.9910 

Table 2. The net atomic charge (i) and the SETi values for each carbon atom of cis-2-pentene 
and trans-2-pentene molecules. 

The ISET calculation now follows: 

ISETC1 = 0.9555 + log 0.9307   ISETC1 = 0.9520 + log 0.9254 

ISETC2 = 0.9307 + log 0.9555 + log 0.9165  ISETC2 = 0.9254 + log 0.9520 + log 0.9200  

ISETC3 = 0.9165 + log 0.9307 + log 0.8598  ISETC3 = 0.9200 + log 0.9254 + log 0.8580 

ISETC4 = 0.8598 + log 0.9165 + log 0.9945  ISETC4 = 0.8580 + log 0.9200 + log 0.9910 

ISETC5 = 0.9945 + log 0.8598   ISETC5 = 0.9910 + log 0.8580 

ISET =4.3653    ISET = 4.3481 

As expected on physical-chemical grounds, the AM1 calculation reveals that the optimized 

structures of the cis- and trans- isomers have slightly different charge distributions. As can 

be seen from the above results, the Mulliken population analysis gives the net atomic 

charges of the carbon atoms for each isomer, which implies that the difference in the values 

for the SETi fragments is sufficient to give different ISET values. 

3.2 Calculation of ISET for compounds with oxygen-containing functional groups 

3.2.1 Ketones and aldehydes 

For polar molecules like aldehydes, ketones, esters and alcohols, the presence of 

heteroatoms like oxygen changes considerably the charge distribution of the corresponding 

hydrocarbons giving a small increase in the interactions between the solute and the 

stationary phase. An appropriate way to calculate the ISET was developed that takes into 

account the dipole moment exhibited by these molecules and the atomic charges of the 

heteroatoms and the carbon atoms attached to them (Souza et al., 2009a). By considering the 

stationary phase as non-polar material, the interactions are slowly increased relative to the 

corresponding hydrocarbons due to the charge redistribution that occurs in presence of the 

heteroatom. This charge redistribution accounts for the dipole moment of the molecules. 

Thus, the dipolar charge distribution in such molecules leads to a small increase in the 

interactions of the solute with the stationary phase relative to hydrocarbons where the 

dipole moment is zero, or almost zero. Clearly the major effects on the charge distribution 

due the presence of the (oxygen) heteroatoms occur in the neighborhood and the excess 

charge of these atoms leads to electrostatic interactions that are stronger relative to the weak 

dispersive dipolar interactions (Christian, 1990). 
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In relation to the chromatographic retention it can be observed, for instance, that the 
molecules 2-hexanone, 3-hexanone and hexanal have experimental retention indices of 767, 
764 and 776, respectively, and for the corresponding hydrocarbon molecule in the absence of 
the heteroatom, that is, the heptane, the retention index is 700. Due to the presence of the 
heteroatom (oxygen) there is an increase in the retention index of around 10%. Hence, the 
interactions between the molecules and the stationary phase are slowly increased and 
clearly this is due to the charge redistribution that occurs in the presence of the heteroatom. 
This charge redistribution accounts for the dipole moment of molecules like aldehydes and 
ketones. The dispersive force between these kinds of molecules and the stationary phase 
includes the charge-dipole interactions and dipole–induced dipole interactions which are 
weak relative to the electrostatic interactions. Thus, the dipolar charge distribution in such 
molecules leads to a small increase in the interactions of the solute with the stationary phase 
relative to hydrocarbons where the dipole moment is zero. Initially, it appears that the 
above-mentioned factors mean that the retention index can be calculated as in equation 3, 
and the same applies to the heteroatoms, but including subtle alterations that incorporate 
the effects of the dispersive dipolar interactions.  

All of these factors can be included in the calculation of the retention index through a small 
increase in the SETi values for the heteroatoms and the carbon atoms attached to them. This 

was carried out by multiplying the SETi values of these atoms by a function Aµ which is 
dependent on the dipole moment of the molecule and the net charge at the oxygen and 

carbon atoms (to include both the electrostatic and dispersive interactions). Since we must 

have Aµ = 1, when the dipole moment is zero or almost zero (as in the case of alkanes and 
alkenes) in a first attempt to achieve this function a linear dependence on the molecular 

dipole moment µ is considered, that is, Aµ = 1 + (µ /µF), where µF is a local function (in the 
units of the dipole moment) in the sense that it is dependent on the net charge of oxygen 

and carbon atoms. On the one hand this definition of Aµ works only if µ/µF > 1, since Aµ 
must reflect the small increase in the interactions due to dipolar dispersive forces. On the 

other hand good choices for the definition of µF for ketones and aldehydes (as we shall see 
below) means that the ratio µ/µF can be much greater than unity showing clearly that it is 

not possible to apply the above definition to Aµ. Considering that µ/µF > 1 then Aµ can not 
be a polynomial function of µ/µF. Thus, Aµ must have a weaker dependence on the dipole 

moment than the linear one and this weak dependence can be achieved through a 
logarithmic function since it is clear that the function f(x) = x increases much faster than the 

function f(x) = log (1+x). Taking these factors into account it is possible to achieve a 
definition of Aµ that differs slightly from unity and is logarithmically dependent on the 

dipole moment of the molecule, as seen in equation 4  

 
μ

A = 1 + log(1 + )μ μF
,   (4) 

where µ is the calculated molecular dipole moment and µF is a local function which is 
dependent on the charges of the atoms belonging to the C=O bond. Clearly, µF must be 
directly related to the net charge of the oxygen atoms since it must reflect some contribution 
to the electrostatic interaction between these molecules and the stationary phase. In this 
regard, µF may also be related to the atomic charge of the carbon atom of the functional 
group C=O or related to the difference between the atomic charges of these atoms. Hence, µF 
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can be defined in different ways and some definitions of µF can be used in preliminary 
calculations. As expected, after some preliminary calculations, the best choice was for 
ketones µF = d|QC - QO| where d is the calculated C=O bond length and |QC - QO| is the 
absolute value of the difference between the atomic charges at the carbon and oxygen atoms. 
This definition of µF is an attempt to take into account the contribution of the atomic charge 
of the oxygen atoms and the respective bonded carbon atom to the electrostatic interactions. 
For aldehydes the terminal carbon atom of the C=O bond is attached to a hydrogen and thus 
it is necessary to consider the net positive charge in this polar region of the molecule as the 
sum of the atomic charges of the carbon and hydrogen atoms. This means that for aldehydes 
the best choice for µF was µF = d|QC + QH - QO|. Therefore, equation 4 indicates that there is 
an increase in the interaction between the molecules and the stationary phase due to the 
presence of the dipole moment and that this contribution may be screened by the charge 
located on the heteroatoms (oxygen atoms) if µ/µF < 1, or may be increased if µ/µF > 1. In 
the case of ketones and aldehydes the local function µF is less than the dipole moment 
showing that Aµ receives an appreciable contribution from the atomic charges of these 
atoms. This reveals the contribution of oxygen to the electrostatic interaction between the 
solute and the stationary phase. Therefore, to include the dispersive dipolar interactions in 
the calculation of the retention index we multiply the SETi values for the heteroatoms 
(oxygen) and the carbon atoms attached to them by the dipolar function Aµ given in 
equation 4. That is, in this model the ISET is calculated as in equation 5 

 I = (A SET +logA SET )μ i μ jSET
i,j
 ,  (5) 

where the SETi values are obtained using equation 2. As in equation 3, in the above 

expression the i sum is over the all the atoms of the molecule (excluding the H atoms) and 

the j is an inner sum of the atoms attached to the i atom. In the above expression, for the ISET 

the dipolar function Aµ is taken as unity for the remaining carbon atoms of the molecules. 

Equation 4 reduces to equation 2 when the dipole moment of the molecule is zero or almost 

zero, as is the case for alkanes and alkenes since Aµ = 1 for µ = 0. 

The 3-hexanone and hexanal molecules represented in the graph below are taken as an 

example of the ISET calculation.  

 

3-hexanone                                       hexanal   QH = +0.086 

µF = d|QC - QO|       µF = d|QC + QH - QO|  

µF = 1.2342 [0.224- [-0.288]] = 0.6319     µF = 1.2314[+0.183+0.086-[-0.289]] = 0.6871 

Aµ = 1 + log (1 + µ /µF)  

Aµ = 1 + log (1+( 2.6790/0.63191)) = 1.7193    Aµ = 1 + log (1+( 2.7640/0.68712)) = 1.7009 
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The net atomic charges and SETi values are given in Table 3 below.  

Atoms 3-hexanone hexanal 

i SETi AuSETi i SETi AuSETi 

O1 -0.288 1.1346 1.9507 -0.289 1.1363 1.9328 

C1 -0.206 0.9892 - +0.183 0.2995 0.5094 

C2 -0.212 0.9998 - -0.233 1.0371 - 

C3 -0.224 0.2268 0.3899 -0.155 0.8988 - 

C4 -0.212 0.9998 - -0.158 0.9041 - 

C5 -0.155 0.8988 - -0.159 0.9059 - 

C6 -0.212 0.9998 - -0.211 0.9980 - 

Table 3. The net atomic charge (i) and the SETi values for each carbon and oxygen atom of 
3-hexanone and hexanal molecules. 

The ISET calculation now follows: 

I = (A SET +logA SET )μ i μ jSET
i,j
  

3-hexanone                                                    

SETO1 = 1.9507 + log 0.3899 = 1.5416                    

SETC1 = 0.9892 + log 0.9998 = 0.9891         

SETC2 = 0.9998 + log 0.9892 + log 0.3899 = 0.5860                   

SETC3 = 0.3899 + log 0.9998 + log 1.9507 + log 0.9998 = 0.6799        

SETC4 = 0.9998 + log 0.3899+ log 0.8988= 0.5444                    

SETC5 = 0.8988 + log 0.9998 + log 0.9998 = 0.8986                   

SETC6 = 0.9998+ log 0.8988 = 0.9535                    

ISET = 6.1931                                                 

hexanal 

SETO1 = 1.9328 + log 0.5094 = 1.6398 

SETC1 = 0.5094 + log 1.9328 + log 1.0371 = 0.8114 

SETC2 = 1.0371+ log 0.5094 + log 0.8988 = 0.6978 

SETC3 = 0.8988 + log 1.0371 + log 0.9041 = 0.8708 

SETC4 = 0.9041 + log 0.8988 + log 0.9059 = 0.8148 

SETC5 = 0.9059 + log 0.9041 + log 0.9980 = 0.8612 

SETC6 = 0.9980 + log 0.9059 = 0.9550 

ISET = 6.6508       
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3.2.2 Esters 

For esters the major effects related to the charge distribution are due to the presence of the 
two oxygen atoms and they occur on these atoms and in their neighborhood (their 
adjacent carbon atoms). The excess charge of these atoms leads to electrostatic interactions 
that are stronger than the weak dispersive dipolar interactions. For esters, all these factors 
were included in the calculation of the retention index through a small increase in the 
SETi values for heteroatoms and the carbon atoms attached to them (Souza et al., 2009b). 
As in the case of ketones and aldehydes, it was verified that the introduction of the dipole 
moment of the molecule is not sufficient to explain the chromatographic behavior of these 
molecules. Thus, it was necessary to introduce an equivalent local dipole moment of the (-
COOC-) group that contributes to the increase in the retention value. This was carried out 
by multiplying the SETi values of the atoms belonging to the O=C-O-C group by the 
function Aµ which is dependent on the dipole moment of the molecule and the net charge 
of the oxygen and carbon atoms (to include both the electrostatic and dispersive 
interactions). The same approach used for ketones and aldehydes was applied to esters, 
that is, considering that Aµ has a weaker dependence on the dipole moment than the 
linear one, as given in equation 4. For esters µF is an equivalent local dipole moment (in 
the units of dipole moment) which is dependent on the charges of the atoms belonging to 
the O=C-O-C group. Clearly µF must be directly related to the net charge of the oxygen 
atoms since it must reflect some contribution to the electrostatic interaction between these 
atoms and the stationary phase. In this regard, µF may also be related to the atomic charge 
of the carbon atom of the functional group C=O or related to the difference between the 
atomic charges of these atoms. Hence, µF can be defined in different ways and some 
definitions of µF can be used in preliminary calculations.  

Esters have two oxygen atoms and thus it is possible to define two local functions, one being 
dependent on the charges and bond length of the C=O1 bond and another on the charges 
and bond length of the C-O2 bond. Therefore, it was necessary to perform some calculations 
with different definitions for the equivalent local dipole moment. After the preliminary 
calculations it was found that for esters the charge difference, QO - QC, does not give 
reasonable results because the charges of the oxygen atoms mask the charge of the carbonyl 
carbon. As expected, our best choice was for the esters µF1 = d1|QO1| and µF2 = d2|QO2|, 
where d1 and d2 are the calculated C1=O1 and C1-O2 bond lengths and |QO1| and |QO2| are 
the absolute values of the atomic charges of the oxygen atoms (O1 and O2). The equivalent 
local dipole moment is then calculated as the magnitude of the vectorial sum of two dipole 
moments, that is, µF1 = (µ2

F1 + µ2
F2 + 2 µF1 µF2 cosθ)1/2

 , where θ is the angle between the C=O1 
and C-O2 bonds. For formates, a specific charge distribution occurs in the polar region of the 
molecules and the best mathematical model for the local moment was that which takes into 
account the contribution to the electrostatic interactions that originate from the atomic 
charges of the oxygen atoms, the carbon atoms and the H atom belonging to the C1O1O2CAl 
group of the formate molecules (CAl represents the carbon on the alcoholic side). Thus, the 
equivalent dipoles were built from the net charges of the HC1O1, HC1O2 and O2CAl groups 
of atoms. The equivalent dipoles associated with these net charges are:  

µF1 = d1|QH + QC1 - QO1|, µF2 = d2|QH + QC2 - QO2|and µF3 = d3|QCA1 - QO2| where d1 
and d2 are the calculated C1=O1 and C1-O2 bond lengths and d3 is the calculated CAl-O2 

bond length. In a first approach, the local moments µF2 and µF3 are considered to be 
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collinear and another equivalent dipole is obtained from the difference between µF2 and 
µF3, that is, µF4 = µF2 - µF3 and the final equivalent local moment is calculated as above, that 
is, µF = (µ2

F1 + µ2
F4 + 2 µF1 µF4 cosθ)1/2 where θ is the angle between the C=O1 and C-O2 

bonds. Hence, for formates the charge of the hydrogen atom attached to the carbon atom 
of the COO functional group is also considered, as in the case of aldehydes, because the 
charge of the H atom contributes explicitly to the positive charge of the local polar region 
of the molecule. The above-mentioned best definitions for µF imply that the present 
approach to calculating the retention index considers important polar features of the 
organic functions, such as ketones, aldehydes and esters, through the information carried 
by the local moment µF. In other words, according to Equation (4) there is an increase in 
the interaction between the molecules and the stationary phase due to the presence of a 
dipole moment and this contribution may be screened by the charge located on the 
heteroatoms and the carbon atom of the C=O group if , µF > µ or may be increased if µF < 
µ. In the case of esters, the local function µF is less than the dipole moment showing that 
Aµ has an appreciable contribution from the atomic charges of those atoms. This verifies, 
for esters, the contribution of the oxygen atom to the electrostatic interaction between the 
solute and the stationary phase.  

Therefore, in the case of esters the ISET value is here calculated as in Equation (5), where the 

SETi values are obtained using Equation (2) through AM1 calculations of the net atomic 

charges. As mentioned above, Equation (5) is calculated by multiplying the SETi values of 

the atoms belonging to the C1O1O2CAl group by the dipolar function Aµ which is taken as 

unity for the remaining carbon atoms of the molecules. Hence, Equation (5) is a general 

definition for the electrotopological index that can be applied to different organic functions, 

which are specified through appropriate definitions of the equivalent local moment µF. The 

preliminary applications of ISET as given by Equation (5) showed that this expression 

overestimates the calculated retention index for branched esters and underestimates the 

results for methyl esters. This finding reveals the need to consider other definitions for the 

local moment µF for branched esters and methyl esters. However, another easy choice is to 

take into account the steric effects for the branched esters and methyl esters. The simplest 

way to do this is to consider the steric hindrance of the CAl carbon atom of the C1O1O2CAl 

group and the carbon atom attached to the acid side of the COO functional group (here 

named the CAc carbon). As seen in Equation (2), the log SETj factor gives, precisely, the steric 

effect of atom j. Thus, to include a steric correction (sc) in Equation (5) for branched esters 

the term sc = n logSET(CAC) + n logSET(CA1) was added, where n is the number of 

branches of the ester. On the other hand, for methyl esters the CAl carbon is bound to three 

H atoms and it is necessary to remove the overestimated steric effects of the logAµSETj 

terms in Equation (5). For methyl esters this is easily achieved by including a second steric 

correction (ssc) by adding the term ssc = -log SET(CA1) to equation (5). Very good results 

were obtained using this approach, which reveals that in this model the complex steric 

effects in branched esters can be included simply by considering the steric hindrance using 

the net charge (through the SETi values) of the two carbon atoms bound to the alcoholic and 

acid sides of the COO functional group. The calculation of ISET for a large amount of 

molecules is easily carried out by means of a FORTRAN code developed in our lab that 

calculates ISET by reading the output data (calculated net charges, dipole moment and 

atomic positions) from AM1 semi-empirical calculations.  
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3.2.3 Alcohols 

As observed for the preceding compounds, for alcohols the major effects on the charge 
distribution are due the presence of the oxygen atom and they occur at the site of and close 
to their neighbors (adjacent carbon atoms). The excess charge at these atoms leads to 
electrostatic interactions that are stronger than the weak dispersive dipolar interactions. 
Thus, it is clear that it is necessary to introduce an equivalent local dipole moment for each 
of the organic functions that participate in increasing the retention value. For alcohols, as in 
the case of ketones, aldehydes and esters, this was achieved by multiplying the SETi values 
of the atoms belonging to the C-OH group by a function Aµ as defined by equation 4, with 
µF being the equivalent local dipole moment which is dependent on the charges of the atoms 
belonging to the C-OH group (Souza et al., 2010). Clearly, µF is directly related to the net 
atomic charge of the oxygen atoms since it must reflect some contribution to the electrostatic 
interaction between these atoms and the stationary phase. Thus, µF may also be related to 
the atomic charge of the carbon atom of the functional group C-OH or to the difference 
between the atomic charges of these atoms. Hence, as with the other organic functions, µF 
can be defined in different ways and some of these definitions can be used in the 
preliminary calculations. For primary alcohols the terminal carbon atom of the C-O bond is 
attached to two hydrogen atoms and thus it is necessary to consider the net positive charge 
in this polar region of the molecule as the sum of the atomic charges of the carbon and 
hydrogen atoms. Thus, for primary alcohols we found that the best definition of the local 
moment is related to the charges of all atoms at the polar head of the molecules, that is, µF = 
d|QC +(QH1 +QH2)/2 - QO -QHO| where d is the calculated C-O bond length and |QC +(QH1 

+QH2)/2 - QO -QHO| is the absolute value of the difference between the net atomic charge at 
the carbon (QC) plus the average charge of the hydrogen atoms attached to it  (QH1 + QH2)/2 
and the charges of the oxygen atom (QO) and the hydrogen attached to it (QHo). For 
secondary, tertiary and quaternary alcohols the best choice for the local moment is related to 
the net atomic charge of the C and O atoms only, that is, µF = d|QC - QO|, where d is the 
length of the C-O bond and |QC - QO| is the absolute value of the difference between the 
charge of the carbon atom and oxygen atom attached to it. These definitions of µF attempt to 
take into account the contribution to the electrostatic interactions originating from the polar 
region of the molecules. Therefore, this shows again that Equation 4 represents a dipolar 
contribution to the interactions between the molecules and the stationary phase (which 
originates from the presence of a molecular dipole moment) and this contribution is 
decreased by the charge of the heteroatoms (oxygen atoms) when µF > µ, or increased when 
µF < µ. This reveals the contribution of oxygen to the electrostatic interaction between the 
solute and stationary phases.  

For alcohols, the ISET values are calculated as in Equation (5), where the SETi values are 
obtained using Equation (2) through AM1 calculations of the net atomic charges. 

3.3 Development of QSPR models using the ISET 

The molecular descriptor ISET was developed first for alkanes and alkenes on a low polarity 
stationary phase and then extended to oxo-compounds through the inclusion of the 
molecular dipole moment and a local dipole moment in its definition. The models for the 
best simple linear regression between the retention index and the molecular descriptor (RI = 
b + a ISET) and the statistical data for each class of compounds, obtained in previous QSRR 
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studies, are given in Table 4. For esters and alcohols good correlations between the retention 
index and the ISET were obtained also for stationary phases with different polarities (not 
included in Table 4). The good statistical results achieved (Table 4) employing ISET are better 
or equivalent to those obtained using multiple linear regression employing many molecular 
descriptors. 

 Compounds Phase N a b r2 r2CV SD Ref. 

01 Alkanes and 
Alkenes 

SQ 179 120.8 -36.8 0.9980 0.9980 10.7 Souza et 
al., 2008 

02 Aldehydes 
and ketones 

HP-1 42 123.9 -13.2 0.9993 0.9993 11.7 Souza et 
al., 2009a 

03 Esters SE-30 100 115.0 -74.7 0.9981 0.9980 7.6 Souza et 
al., 2009b 

04 Alcohols SE-30 31 126.0 -186.6 0.9990 0.9977 9.3 Souza et 
al., 2010 

Table 4. Summary of the best simple linear regressions (RICalc = b + a ISET) found for different 
classes of compounds on low-polarity stationary phases. 

As can be seen from Table 4, the QSRR models for 179 representative linear and branched 

alkanes and alkenes, obtained with the ISET using the net atomic charge to calculate more 

precisely the Ci fragment values of IET, were of good quality for the statistical parameters 

obtained. This new descriptor ISET contains information on the 3D features of molecules, and 

discriminates between geometrical isomers, such as cis- and trans-alkenes, and between 

conformers, and the elution sequence is correct for the majority of the compounds.  

The results obtained for aldehydes and ketones are similar to those reported by Ren (Ren, 

2003) in multiple linear regression models for 33 aldehydes and ketones using Xu and AI 

topological indices and by Héberger and co-workers using quantum-chemical descriptors 

(SW and µ) (Héberger et al., 2001) and physico-chemical properties (TBp, MW, log P) 

(Héberger et al., 2000) for 31 and 35 compounds, respectively. For esters the results obtained 

by single linear regression using the ISET are better than those reported by Lu et al. (Lu et al., 

2006). For SE-30 and OV-7 stationary phases the results are also better than those found by 

Liu et al. (Liu et al., 2007) and for more polar stationary phases the statistical parameters 

differ only slightly. Both of these studies use multiple linear regression (MLR) between RI 

and the topological indices for 90 saturated esters on stationary phases with different 

polarities.  

Several authors have developed QSRR models, based on MLRs, to predict the RI values for 
saturated alcohols. For example, Guo et al. (Guo et al., 2000), using the MLR analysis and 
artificial neural networks technique, obtained the statistical parameters r2=0.9982, SD=8.21, 
N=19 for an SE-30 stationary phase. In a previous study, the best statistical parameters of the 
MLR models obtained by Farkas and Héberger (Farkas & Héberger, 2005), employing four 
molecular descriptors, were r=0.9804, SD=14.22, r2CV=0.9801 and N=44 for an OV-1 
stationary phase. Therefore, our prediction results, on low polarity stationary phases, using 
the ISET as a single descriptor, showed statistical quality comparable to similar studies 
reported by the above authors. Furthermore, the statistical parameters of the present 
approach have a good agreement with those obtained for alkanes and alkenes, aldehydes 
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and ketones, for saturated esters and for alcohols using the semi-empirical topological 
index, IET, previously developed. These results show clearly that ISET is a molecular 
descriptor that embodies in an appropriated manner the net atomic charges and charge 
distribution of molecules since the retention index embodies the intermolecular interactions 
between the stationary phase and the molecules.  

The fact that properties that are determined by intermolecular forces can be adequately 
modeled by the ISET descriptor can be easily seen in its relationship with the boiling point 
(BP). For alcohols a good correlation was obtained through a simple linear model (BP = b + a 
ISET), as can be seen in Table 5. The QSPR model obtained for the experimental BP of 134 
compounds showed high values for the coefficient of determination and cross validation 
coefficient showing the good predictive capacity of the model. 

 Alcohols N a b r2 r2CV SD Ref. 

01 Boiling 
Point 

134 22.0 -32.9 0.9818 0.9811 5.4 Souza et al., 2010 

Table 5. The coefficients and statistical parameters for linear regression between 
experimental boiling point and ISET. 

This model can explain 98.20% of the variances in the experimental values and most of these 

compounds (N=101) are not included in the initial model used to build the ISET, showing the 

external stability of the model. These results are similar to those obtained using IET for 146 

aliphatic alcohols and can be compared with those obtained by Ren (Ren, 2002b), but using 

MLR models, for 138 compounds with five descriptors.  

The octanol-water partition coefficient (log P) of compounds, which is a measure of 
hydrophobicity, is widely used in numerous Quantitative Structure-Activity Relationship 
(QSAR) models for predicting the pharmaceutical properties of molecules. The partition 
coefficient is a property that is determined by intermolecular forces and thus it is expected 
that it can be described by a molecular descriptor such as ISET. The results obtained in the 
statistical analysis of the single linear regression between experimental log P values and ISET 

are shown in Table 6 for each class of compounds.  

Compound N a b r2 r2CV SD 

Hydrocarbon 23 3.90 x 10-3 0.9997 0.9971 0.9964 0.104 

Alcohols 60 3,24 0,6394 0.9876 0.9870 0.183 

Aldehydes 9 1.60 x 10-3 1.0014 0.9972 0.9961 0.058 

Ketones 19 -2.7182 0.6693 0.9864 0.9831 0.158 

Esters 14 -3.1575 0.6587 0.9903 0.9838 0.118 

Table 6. The coefficients and statistical parameters for linear regression between 
experimental log P values and ISET. 

The results in Table 6 indicate that the theoretical partition coefficients calculated using the 

ISET method give good agreement with the experimental partition coefficients. The QSPR 

models obtained with ISET showed high values for the correlation coefficient (r > 0.99), and 

the leave-one-out cross-validation demonstrates that the final models are statistically 

significant and reliable (r2cv > 0.98). As can be observed, this model explains more than 99% 
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of the variance in the experimental values for this set of compounds. Among the various 

classes of compounds the best results obtained with the ISET method are for hydrocarbons 

(Table 6), which is related to the fact that the present model was developed initially for this 

class of organic compounds. As can be seen in Table 6, the lowest standard deviation was 

obtained for the correlation of aldehydes and for alcohols the correlation was stronger. The 

range of standard deviations obtained verifies the applicability of the present approach to 

different classes of organic compounds. For alcohols, the earlier approach of Duchowicz et 

al. (Duchowicz et al., 2004), based on the concept of flexible topological descriptors and on 

the optimization of correlation weights of local graphic invariants, is applied to model the 

octanol/water partition coefficient of a representative set of 62 alcohols, resulting in a 

satisfactory prediction with a standard deviation of 0.22. Recently, Liu et al. (Liu et al. 2009) 

carried out a QSPR study to predict the log P for 58 aliphatic alcohols using novel molecular 

indices based on graph theory, by dividing the molecular structure into substructures 

obtaining models with good stability and robustness, and values predicted using the 

multiple linear regression method are close to the experimental values (r = 0.9959 and SD = 

0.15). The above results show the reliability of the present model calculation based on the 

semi-empirical calculation of atomic charges and local dipole moments using only one 

descriptor, ISET. This new approach to polar molecules, with the introduction of the 

remodeled ISET index including the contribution of the dipole moment of the molecule and 

an effective local dipole moment associated with the net charges of the atoms of the 

carbonyl group, opens new possibilities for studies on the chromatographic and other 

properties of different organic functions. 

4. Conclusions  

It is known that the chromatographic process of separation results from the forces that 
operate between solute molecules and the molecules of the stationary phase. These forces 
are called van-der-Waals forces since van der Waals recognized them as the reason for the 
non-ideal behavior of the real gases. Intermolecular forces are usually classified according to 
two distinct categories: i) the first category corresponds to the directional, induction and 
dispersion forces which are non-specific; and ii) the second group corresponds to hydrogen 
bonding forces and the forces of charge transfer or electron-pair donor-acceptor forces 
which are specific. 

In the development of the semi-empirical topological index (IET) it was considered that the 
retention of alkanes is due to the number and interaction of each specific carbon atom with 
the stationary phase, considered as non-polar, which is determined by its electrical 
characteristic and by the steric hindrance by other carbon atoms attached to it. In this case 
only dispersion forces due to the continuous electronic movement, at any instant, result in a 
small dipole moment which can fluctuate and polarize the electron system of the 
neighboring atoms or molecules. For the alkenes, some carbon atoms with greater 
electronegativity give the molecules a dipole moment and for this reason besides the 
dispersion forces, electrostatics forces play an important role. However, in this method the 
behavior of this kind of carbon atom is determined from the experimental data and 
indicated in specific tables. As the values were obtained from the experimental data they 
encode the real physical interaction force. In the case of oxo-compounds, the presence of 
atoms with different carbon atom electronegativity introduces a dipole moment in the 
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functional group and a change in the dipole moment of the whole molecule. These factors 
were considered in order to obtain the different values for the functional groups and they 
were able to encode the physical force involved in the chromatographic separation.  

The new semi-empirical electrotopologiocal index (ISET) demonstrated that the values for the 
carbon atoms that are not tetrahedral and functional groups (considering the new local 
dipole created by the heteroatom) can be calculated from the net atomic charges that are 
obtained from quantum-chemical calculations. In the case of esters, the major effects are due 
to the presence of the two oxygen atoms and their adjacent carbon atoms. As in the case of 
aldehydes and ketones it was verified that the introduction of the dipole moment of the 
molecules is not sufficient to explain the chromatographic behavior. Thus, it was necessary 
to introduce an equivalent local dipole moment of the ester group that contributes to the 
increase in the retention value. In the case of esters two local functions must be considered 
according to the charges and the bond lengths of the C=O and C-O bonds. Thus, the semi-
empirical electrotopological index was developed based on the refinement of the previously 
developed semi-empirical topological index, unifying the quantum-quantum chemical with 
the topological method to provide a three-dimensional picture of the atoms in the molecule. 

The IET and ISET were generated to predict the chromatographic retention indices and other 
physical-chemical properties and to obtain the quantitative structure-retention relationship 
(QSRR/QSPR). The efficiency and the applicability of these descriptors were demonstrated 
through the good statistical quality and high internal stability obtained for the different 
classes of compounds studied.  
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