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1. Introduction

Computer-based surface models are indispensable in several fields of science and engineering.
For example, the design and manufacturing of vehicles, such as cars and aircrafts, would not
be possible without sophisticated CAD and simulation tools predicting the behavior of the
product. On the other hand, designers often do not like working on virtual models, though
sophisticated tools, like immersive VR-environments are available. Hence, a designer may
produce a physical prototype made from materials of his choice that can be easily assembled
and shaped like clay models. Reverse engineering is the process of reconstructing digital
representations from physical models. The overall reverse-engineering framework mainly is
composed of four steps (see Figure 1): data acquisition, pre-processing, surface reconstruction,
and post-processing;

The point cloud acquisition generally is performed by stationary scanning devices, like
laser-range or computer-tomography scanners. In the case of a 3D laser scanner, the surface
is sampled by one or more laser beams. The distance to the surface is typically measured by
the time delay or by the reflection angle of the beam. After taking multiple scans from various
sides or by rotating the object, the sampled points are combined into a single point cloud, from
which the surface needs to be reconstructed.

Pre-processing of the data may be necessary, due to sampling errors, varying sampling
density, and registration errors. Regions covered by multiple scans, for example, may result in
noisy surfaces since tangential distances between nearest samples may be much smaller than
the sampling error orthogonal to the surface. In this case, it is necessary to remove redundant
points introduced by combining different points from multiple scans. In other regions, the
density may be lower due to cavities and highly non-orthogonal scanning. If additional
information, like a parametrization originating from each scan is available, interpolation can
be used to fill these gaps.

In the present chapter, a powerful algorithm for multi-resolution surface extraction and
-fairing, based on hybrid-meshes Guskov et al. (2002), from unorganized 3D point clouds
is proposed (cf. Keller et al. (2005) and Keller et al. (2007)). The method uses an octree-based
voxel hierarchy computed from the original points in an initial hierarchical space partitioning
(HSP) process. At each octree level, the hybrid mesh wrapping (HMW) extracts the outer
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(a) (b) (c) (d) (e)

Fig. 1. Principle steps of reverse engineering: (a) point cloud acquisition by 3D object
scanner, mostly laser range scan devices; (b) slices scanned from different views, (c)
combined point cloud, (d) reconstructed mesh, (e) result after post-processing.

boundary of the voxel complex, taking into account the shape on the next coarser level. The
resulting meshes both are linked into a structure with subdivision connectivity, where local
topological modifications guarantee the resulting meshes are two-manifold. Subsequently,
a vertex mapping (VM) procedure is proposed to project the mesh vertices onto locally
fitted tangent planes. A final post-processing step aims on improving the quality of the
generated mesh. This is achieved by applying a mesh relaxation step based on the constricted
repositioning of mesh vertices tangential to the approximated surface.

The remainder of the chapter is structured as followed. In Section 2 a short overview about
related reconstruction techniques is provided. Section 3 discusses the individual steps of
our approach in detail. Section 4 presents some results and discusses the advantages and
disadvantages of the proposed method in terms of performance, quality and robustness. In
addition section 5 presents some experimental results in the context of surface reconstruction
from environmental point clouds. The conclusion is part of section 6.

2. Related work

A possible approach to obtain surfaces from unorganized point clouds is to fit surfaces to
the input points Goshtasby & O’Neill (1993), such as fitting polynomial Lei et al. (1996) or
algebraic surfaces Pratt (1987). To be able to fit surfaces to a set of unorganized points it is
necessary to have information about the topology of the point cloud inherent surfaces or to
have some form of parametrization in advance. For example, Eck and Hoppe Eck & Hoppe
(1996) generate a first parametrization using their approach presented in Hoppe et al. (1992)
and fit a network of B-Spline patches to the initial surface. This allows to reconstruct surfaces
of arbitrary topology. A competing spline-based method is provided by Guo Guo (1997).
Another form of surface reconstruction algorithm applying high-level model recognition is
presented in Ramamoorthi & Arvo (1999).

Alexa et al. Alexa et al. (2001) introduced an approach for reconstructing point set surfaces
from point clouds based on Levin’s MLS projection operator. Further approaches following
the idea of locally fitting polynomial surface patches to confined point neighborhoods are
proposed in Alexa et al. (2003) Nealen (2004.) Fleishman et al. (2005) Dey & Sun (2005). In
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Surface Reconstruction from Unorganized 3D Point Clouds 3

Mederos et al. (2003) the authors introduce a MLS reconstruction scheme which takes into
account local curvature approximations to enhance the quality of the generated surfaces. One
of the main problems associated with the MLS-based techniques is that, in general, they have
to adapt to meet the underlying topological conditions. Depending on the type of input data
this can be rather challenging. Another drawback is, that the MLS-technique in general is not
capable of constructing surfaces having sharp features. One attempt for solving this problem
was proposed by Fleishman et al. Fleishman et al. (2005).

Whenever accuracy matters, adaptive methods are sought, capable of providing multiple
levels of resolution, subdivision surfaces, for example, can be used together with wavelets
Stollnitz et al. (1996) to represent highly detailed objects of arbitrary topology. In
addition, such level-of-detail representations are well suited for further applications,
like view-dependent rendering, multi-resolution editing, compression, and progressive
transmission. In addition to adaptive polyhedral representations, subdivision surfaces
provide smooth or piecewise smooth limit surfaces similar to spline surfaces. In Hoppe
et al. (1994) Hoppe et al. introduce a method for fitting subdivision surfaces to a set
of unorganized 3D points. Another class of reconstruction algorithms are computational
geometry approaches. These algorithms usually extract the surface from previously computed
Delaunay- or dual complexes. The reconstruction is based on mathematical guarantees but
relies on clean data e.g., noisy, and non-regularly sampled points perturb the reconstruction
process and may cause the algorithms to fail.

An early work concerning a Delaunay-based surface reconstruction scheme was provided
by Boissonnat (1984). Following this idea, methods like the crust algorithm introduced by
Amenta, Bern & Kamvysselis (1998) have been developed exploiting the structure of the
Voronoi diagrams of the input data. Other works Funke & Ramos (2002) Amenta et al. (2001)
Mederos et al. (2005) aimed at improving the original crust algorithm regarding efficiency
and accuracy. The cocone algorithm Amenta et al. (2000) evolved from the crust algorithm
provides further enhancements. Based on this work Dey et. al. Dey & Goswami. (2003)
introduced the tight cocone. Other Delaunay/Voronoi-based reconstruction algorithms are
presented by Kolluri et al. (2004), Dey & Goswami (2004).

One challenge concerns the separation of proximal sheets of a surface Amenta, Bernd &
Kolluri (1998). When considering local surface components, it may be helpful to construct a
surface parametrization, i.e. a one-to-one mapping from a proper domain onto the surface.
Having a surface of arbitrary topology split into a set of graph surfaces, for example by
recursive clustering Heckel et al. (1997), one can reduce the reconstruction problem to
scattered-data approximation in the plane Bertram et al. (2003). A very powerful meshless
parametrization method for reverse engineering is described by Floater and Reimers Floater
& Reimers (2001).

A completely different approach is the construction of α-shapes described by Edelsbrunner
and Mücke Edelsbrunner & Mücke (1994). Depending on a single radius α, their method
collects all simplices (e.g. points, lines, triangles, tetrahedra, etc.) fitting into an α-sphere.
The method efficiently provides a data structure valid for all choices of α, such that a user
may interactively adapt α to obtain a proper outer boundary of a point cloud. Out-of-core
methods like ball-pivoting Bernardini et al. (1999) employ the same principle, rolling a ball of
sufficiently large radius around the point cloud filling in all visited triangles. Other methods
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e.g., Azernikov et al. (2003) and Wang et al. (2005), exploit octree-based grid structures to
guide surface reconstruction.

3. Reconstruction approach

3.1 Overview

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a)-(f) principle steps of the proposed multi-resolution surface reconstruction
approach. (a) input point cloud of the Stanford bunny data set, consisting of 35,947 points,
(b) voxel grid after 4 subdivision steps, (c) and (d) extracted voxel hull before and after
application of the HMW operation, (e) surface mesh after vertex projection, (f) final surface
after mesh relaxation.

This work aims at finding an efficient way to extract a connected quadrilateral two-manifold
mesh out of a given 3D point cloud in a way that the underlying ”unknown“ surface is
approximated as accurately as possible. The resulting adaptive reconstruction method is
based upon the repetitive application of the following steps:

• Starting from an initial bounding voxel enclosing the original point cloud (see Figure
2(a)), the hierarchical space partitioning creates a voxel set by recursively subdividing each
individual voxel into eight subvoxels. Empty subvoxel are not subject to subdivision and
are deleted. Figure 2(b) presents an example of a generated voxel grid.

• The outer boundary of the generated voxel complex is extracted by the HMW operation.
This exploits the voxel-subvoxel connectivity between the current and the next coarser
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Surface Reconstruction from Unorganized 3D Point Clouds 5

voxel grid. The resulting mesh is obtained by subdividing the coarser mesh (cf. Figure
2(c)) and adapting its topology at locations where voxels have been removed (see Figure
2(d)).

• The final vertex mapping locally constrains the mesh toward the point cloud (cf. Figure
2(e)). All vertices are projected onto local tangent planes defined by the points of the
individual voxels. The resulting mesh is relaxed toward its final position by applying
additional post-processing (see Figure 2(f)).

3.2 Hierarchical spatial partitioning

The HSP presumes an already existing voxel set V j defining the voxel complex at level j. At
the coarsest level this set V0 consists of the bounding voxel enclosing the entire point cloud.
To obtain V j+1 the following steps are performed:

1 Subdivide every voxel v ∈ V j into 8 subvoxels.

2 Assign the points of v to the corresponding subvoxel and delete empty subvoxels.

The task of managing and maintaining the originated non-empty set V j+1 is accomplished
by the usage of an octree data structure. As required by the succeeding HM wrapping
operation we need certain connectivity information facilitating the localization of proximate
voxel neighborhoods. The algorithm applied uses an efficient octree-based navigation scheme
related to the approach of Bhattacharya Bhattacharya (2001).

3.3 Hybrid mesh wrapping

The most difficult part of this work concerns the extraction of a two-manifold mesh from the
generated voxel complex V j+1. For the following let Mj denote the set of faces representing
the existing mesh corresponding to the voxel complex V j, where the term face abstracts
the quadrilateral sidepart of a voxel. M0 defines the face patches of V0 forming the hull
of the bounding voxel. Starting from the existing mesh Mj, we obtain the next finer mesh
representation Mj+1 by performing regular and irregular refinement operations. This includes
the subdivision of Mj and the introduction of new faces at Mj+1 inducing local changes in the
mesh topology. These operations require Mj to meet the following conditions:

• Each face f ∈ Mj is associated with exactly one voxel v ∈ V j (no two voxel can be
associated with the same face). Thus the maximum number of faces associated with a
voxel is restricted to six.

• The mesh represented by Mj is a two-manifold mesh.

• A face is linked to each of its proximate neighbor face. n is called a neighbor of (or adjacent
to) the face f , if both share a common voxel edge. With limitation of one neighbor per edge
the number of possible neighbor faces of f is four.

3.4 Regular mesh refinement

To accomplish the acquisition of the boundary hull associated with V j+1 the first step concerns
the regular refinement of Mj. The refinement is achieved by subdividing each face f ∈ Mj

into four subfaces. To guarantee the resulting mesh fulfills the conditions outlined above,
we assign the subfaces of f to voxel of V j+1. For the following let v ∈ V j be the voxel
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(a) (b)

Fig. 3. (a) regular refinement: Principles of the subface projection operation; (b) irregular
mesh refinement: Principles of face creation and adoption;

assigned to f ∈ Mj and s be a subface of f . The assignment procedure projects s onto the
corresponding subvoxel of v as illustrated in Figure 3(a). f is restricted only to be projected
onto the immediate subvoxel of v. Since we only address the extraction of the outer hull of
V j, additional rules have to be defined preventing faces of Mj to capture parts of the interior
hull of the voxel complex e.g., in cases the surface is not closed. Thus, the subface s can
not be assigned to a subvoxel of v if this subvoxel already is associated with an face on the
opposite. Subfaces that can not be assigned because no corresponding subvoxel exist they
could be projected onto, are removed. The resulting refinement operator R defines the set
N j+1 := R(Mj), with N0 = M0 representing the collection of the created and projected
subfaces (cf. Figure 2(c)). So far N j+1, consisting of unconnected faces, represents the base
for the subsequent irregular mesh refinement, in which the final mesh connectivity is recovered.

3.5 Irregular mesh refinement

The irregular mesh refinement recovers the mesh connectivity i.g., it reconnects the faces of N j+1

and closes resulting breaks in the mesh structure induced by the regular mesh refinement.
This procedure is based on the propagation of faces or the adoption of existing proximate
neighbor faces (see Figure 3(b)). More precisely: Assume f to be a face of N j+1, the irregular
refinement detects existing neighbor faces in N j+1 sharing a common voxel edge or creates
new faces in case no neighbor is found. Considering the configuration of the principle voxel
neighborhoods there are three possible cases a neighbor face of f can be adapted/created.
Figure 4 depicts these cases. For the following considerations let n ∈ N j+1 specifying the
”missing” neighbor face of f , v ∈ V j+1 the voxel associated with f , and w ∈ V j+1 the voxel
associated with n. Exploiting the voxel neighborhood relations, the propagation/adoption of
n is performed according the summarized rules below:

1. In case that v and w are identical the creation/adoption of n is admitted if f does not
already share an edge with a face on the opposite of v (see Figure 4(a)).

2. The faces n and f share a common edge, the corresponding voxel w and v adjoin a common
face (see Figure 4(b)). The creation/adoption of n is allowed if no other face is associated
with w, vis-a-vis from n (additional cavity rule).
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(a) (b)

(c) (d)

Fig. 4. Graphical interpretation of the face-propagation rules concerning the possible cases.

3. The voxel v and w adjoin a common edge. In this case we have to differentiate between two
cases: a) an additional voxel adjoins v (see Figure 4(c)). In this case the creation/adoption
of n is permitted. b) only v and w adjoin a common edge (see Figure 4(d)). This case
requires to detect the underlying topological conditions. If the underlying surface passes
v and w, we adopt/create n0, otherwise, if the points within v and w represent a break of
the underlying surface we adopt/create n1. The right case is filtered out by comparing the
principal orientation of the points within v and w.

The irregular refinement procedure is performed as followed: Given two initial sets A0 =
N j+1 and B0 = ∅, once a new neighbor face n is created/adopted, it is added to Ai+1 =
Ai ∪ {n}. Simultaneously, every n ∈ Ai which is fully connected to all of its existing neighbor
faces is removed Ai+1 = Ai \ {n} and attached to Bj+1 = Bj ∪ {n}. This procedure is repeated
until Ai = ∅ or Aj+1 = Aj.

Applying the irregular mesh refinement operator I on N j+1 results in Mj+1 = I(N j+1),
where Mj+1 = Ai ∪ Bj represents the final mesh at level j + 1. Figure 3(b) illustrates the
propagation procedure, where one neighbor is created and another adopted.

To force Mj+1 to maintain the two-manifold condition each case at which the propagation
of a face leads to a non-manifold mesh structure e.g., more than two faces share an edge,
is identified and the mesh connectivity is resolved by applying vertex- and edge-splits.
Figure 5(a) and Figure 5(b) illustrate the principles according to these the non-manifold mesh
structures are resolved. In the depicted cases the connectivity of the vertices v and v1, v2 cause
the mesh to be non-manifold. We avoid this by simply splitting the corresponding vertices
and edges (see right part of Figure 5(a) and Figure 5(b)).
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(a) (b)

Fig. 5. (a) example in which a non-manifold mesh structure is resolved by a vertex-split, (b)
resolving non-manifold mesh structure by first applying an edge-split followed by two
vertex-splits.

3.6 Vertex-mapping

The next step concerns moving the mesh toward the “unknown“ surface by projecting the
mesh vertices onto the local tangent planes defined by the set of proximate sample points.
This is accomplished for each vertex v of the mesh M by first identifying the voxel set W
directly adjoining v and collecting the enclosed points Pv. Next, we fit a plane to the points Pv

by computing the centroid �c and the plane normal �n obtained from the covariance matrix C
of Pv. In order to improve the accuracy of the fitting the points of Pv can be filtered according
their distance to v yielding P′

v = {p ∈ Pv| 2‖p− v‖ < l}, with l representing the edge length of
the voxel complex W. The normal�n is defined by the eigenvector associated with the smallest
eigenvalue of C. Together with the former position of the vertex �v we are able to compute the
new coordinates of �vn by

�vn = �v − ((�v −�c) ·�n)�n . (1)

To be able to perform this projection the number of points of Pv has to be |Pv| ≥ 3. Otherwise,
points from adjacent voxels need to be added from surrounding voxels. By extending W to

Fig. 6. Vertex projected onto the tangent plane defined by the points Pv of the adjacent voxel
set W.
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(a) (b)

Fig. 7. (a) part of the reconstructed surface mesh from the dragon data set before smoothing
was applied, (b) corresponding mesh after few relaxation steps.

W ′ = W ∪ {v ∈ V \ W|v is directly adjacent 1 to at least one w ∈ W} the number of points in
Pv can be increased.

3.6.1 Post-processing

To improve the quality of the generated mesh we perform an additional mesh optimization
step. Based on the principles of Laplacian smoothing, the vertices of the mesh are repositioned
by first computing the centroid of the directly connected neighbor vertices. In a subsequent
step these centroids are again projected onto the tangent planes of the corresponding point
sets according to equation (1). Generally, mesh-optimization is a repetitive process, applied
several times to obtain the most possible gain in surface quality, see Figure 7(a) and Figure
7(b).

4. Results

4.1 Performance

To find the overall time complexity we have to look at every step of the algorithm separately.
We begin discussing the spatial decomposition analysis: In order to distribute the points
contained by a voxel set Vk−1 to their respective subvoxel we need to determine the subvoxel
affiliation of every point. This leads to an computational complexity of O(|P|) in every
refinement step. Considering the HM wrapping we have to differentiate between the regular
R and the irregular I operation but keep in mind that both are interdependent. Due to the
fact that R basically depends linearly on the number of faces of |Mk−1| and hence on |Vk−1|
we obtain a complexity of O(|Vk−1|). Since it is difficult to estimate the number of attempts
needed to find Mk we cannot reveal accurate statements concerning the computation time for
I . Based on empirical observations, an average time complexity of O(k · |Vk|) holds.

Assuming that |Vk| ≪ |P| with constant k (say 0 < k ≤ 10) the combined results of
the particular sub-processes leads to an overall complexity of O(|P|), concerning one single

1 Two distinct voxels are directly adjacent if they share a common vertex, edge or face.
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refinement step. The complexity to completely generate a mesh representing the unknown
surface at refinement level k averages O(k · |P|).

The following time tables confirm the above discussed propositions. Table 1 shows the
measured computation times for several data sets (Stanford Scan Repository (2009)) performed
on an Intel Pentium 4 system with 1.6 GHz and 256 MB main memory. Table 2 presents more
detailed results for the individual reconstruction steps for the Stanford dragon point data set.

Object points faces ref. time[sec] time[sec]

level reconstr. opt.

Rabbit 8171 25234 6 1.058 0.244

Dragon 437645 72955 7 5.345 0.714

Buddha 543652 56292 7 5.170 0.573

Table 1. Computation time table regarding several input models whereas the VM and the
mesh-optimization (4 passes) are performed after the last reconstruction step.

Ref.- Spatial- HM- HM- Vertex- Opt. Complete

Level Partitioning Extraction R Extraction I Mapping

[sec] [sec] [sec] [sec] [sec] [sec]

1 0.240 < 0.001 < 0.001 0.019 < 0.001 0.262

2 0.330 < 0.001 < 0.001 0.068 < 0.001 0.401

3 0.388 < 0.001 0.002 0.241 0.002 0.634

4 0.401 < 0.001 0.014 0.676 0.008 1.100

5 0.278 0.002 0.056 0.787 0.050 1.173

6 0.362 0.008 0.170 0.928 0.180 1.648

7 0.662 0.039 0.717 1.683 0.725 3.826

Table 2. Time values for each reconstruction step of the Stanford dragon.

4.2 Robustness and quality

As shown by the examples our reconstruction method delivers meshes of good quality, as
long as the resolution of the voxel complex does not exceed a point density induced threshold.
Topological features, such as holes and cavities were always detected correctly after a proper
number of refinements, see figure 8(a). The HM wrapping rules prevent the underlying
object from caving by simultaneously covering the real surface completely. Table 3 shows
the measured L2-errors obtained by processing point clouds of different models for several
refinement levels.

ref. level 1 2 3 4 5 6 7

L2-error Bunny 25,86 9.47 3.60 1.13 0.41 0.14 -
L2-error Buddha - 51.92 18.80 7.61 3.47 1.58 0.66

Table 3. L2-error values of the Bunny and Buddha reconstruction for each ref. level
(measured in lengths of diagonal of the Bounding Box).
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(a) (b)

Fig. 8. (a) correctly detected holes in the bunny model, (b) fragmentation of the mesh due to
lacking density of point cloud.

In case the voxel refinement level exceeds a specific bound imposed by sampling density, the
resulting mesh may be incomplete in some areas, due to empty voxels, see figure 8(b). If a
very fine mesh is desired, one can fix the topology at a coarser level and apply subdivision
and vertex mapping in consecutive steps.

5. Experimental reconstruction of environmental point data

The exploration of point data sets, like environmental LiDaR data, is a challenging problem
of current interest. In contrast to the point clouds obtained from stationary scanning
devices, data complexity is increased by e.g., noise, occlusion, alternating sample density
and overlapping samples. Despite of the high scanning resolution, additional undersampling
may occur at small and fractured artifacts like fences and leaves of trees. These are only some
problems immanent to the reconstruction of surfaces from unorganized environmental point
clouds.

We have applied our method to environmental point clouds in order to analyse the effects of
the aforementioned influence factors on our proposed reconstruction approach. In this context
we have performed some experiments on environmental input data generated by tripod
mounted LiDaR scanners. Figure 10(a) shows a point cloud of a water tower located at the UC
Davis, CA, USA. It consists of about 4.3 million points and features complex environmental
structures like buildings and trees. Figure 10(b) shows the corresponding reconstruction after
10 steps. The generated mesh exhibiting about 300 thousand faces took 23 seconds on an Intel
Core2 Duo system with 4GB RAM to finish. Another example is presented in figure 11. It
shows the final surface representation (215 thousand faces) of a slope with parts of a building
and some vegetation. The underlying point cloud has 3.8 million points. The reconstruction
finished at level 9 after 24 second. The reconstructed mesh features holes and cracks at those
areas at which the resolution lacks in density.

Environmental point clouds by nature are large (consisting of up to several million points) and
feature high complexity. The experiments showed that our reconstruction approach is capable
of producing reliable representations even in cases in which the point clouds are not optimally
conditioned. However, the reconstruction lacks at some regions in which the point density
does not exhibit the required/satisfied resolution. Despite of this fact the introduced method
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. (a)-(f) different reconstruction-levels, from level one to six, of the Stanford dragon
point data set (Stanford Scan Repository (2009)) consisting of 437,645 points.
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(a) (b)

Fig. 10. Water tower scan at the campus of UC Davis. (a) Raw point cloud having 4.3 mio.
points, (b) reconstruction having 300k faces (10 subdivision steps) (total reconstruction time
of about 23 seconds performed with an Intel Core2 Duo).

Fig. 11. Reconstruction of environmental point cloud (3.8 mio. points, 215k faces, 9 steps, 24
seconds).

is well suited for providing a fast preview of complex environmental scenes and serves as
basis for providing initial reconstructions with respect to further mesh processing.

6. Conclusion

We provided a novel multi-resolution approach to surface reconstruction from point clouds.
Our method automatically adapts to the underlying surface topology and provides a
fully-connected hybrid-mesh representation. In the context of reverse engineering it is able to
provide accurate reconstructions assumed that the input data shows a sufficient point density.
However, in case the point distribution is not continuous the generated reconstruction may
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exhibit cracks and holes. One possible direction for future work would be the improvement of
the stability of the approach regarding such unwanted effects. This could be achieved e.g., by
adapting the reconstruction in order to become more sensitive to irregular point distributions.
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