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1. Introduction  

Copper has been used for thousands of years and its mechanical properties are well known. 
Its utilisation in many branches of industry is intensive and has been steadily increasing in 
recent decades. The major applications are in wires, industrial machinery, copper-based 
solar power collectors, integrated circuits and generally in electronics. Copper can be also 
recycled very effectively. 

Detailed studies of a relation of mechanical properties and microstructure have been 
performed in the second half of the last century. The basic data can be found in review 
papers, (e.g. Murphy, 1981). Cu is a simple f.c.c. material. This is why it has been frequently 
used as a model material for basic studies of damage mechanisms in metals, particularly 
fatigue and creep. It belongs from this point of view to the most thoroughly investigated 
materials. The research was conducted both on polycrystals and single crystals. The great 
deal of the pool of basic knowledge on fatigue damage mechanisms, changes of dislocation 
structures, localisation of cyclic plasticity, initiation and propagation of fatigue cracks was 
acquired just on this model material.  

The effort to increase mechanical properties of engineering materials led in the last two 

decades to application of severe plastic deformation (SPD), resulting in fine-grained 

structures, exhibiting improved mechanical properties. Naturally, copper was again a 

suitable material for basic research and, simultaneously, an improvement of its tensile and 

fatigue strength is a permanent research challenge.  

This chapter briefly summarises basic fatigue properties of conventionally grained (CG) 

copper. However, the main concern is to present and discuss the mechanical behaviour of 

ultrafine-grained (UFG) Cu prepared by one of the SPD methods, namely by equal channel 

angular pressing (ECAP). This method enables the production of the UFG material in bulk. 

The emphasis is put on the fatigue properties and their relation to the UFG microstructure. 

Discussion of recent, - and, in some cases inconsistent - results on UFG Cu published in 

literature, is accentuated. This is an issue of the relation of the cyclic softening/hardening to 

the stability of UFG structure, the influence of mode of fatigue loading on the dynamic grain 

coarsening, related fatigue life, the mechanism of the cyclic slip localization and initiation of 

fatigue cracks.  
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2. Conventionally grained copper  

Murphy (1981) summarised in a comprehensive review the basic knowledge acquired until 
the eighties of the last century. The extensive set of experimental data indicates that the 
minimum fatigue strength, σc, of annealed Cu at 109 cycles to failure is 50 MPa. The majority 
of data published in literature falls into the interval of 50 to 60 MPa. This holds for load 
symmetrical cycling. The ultimate tensile strength, σUTS, of investigated coppers was in the 
range of 200 – 250 MPa, reflecting the wide range of annealing times, temperatures and the 
source material. The S-N curve of CG Cu of commercial purity 99.98 % with the grain size of 
70 μm (determined by mean intercept length) can be well described in the interval form 104 
to 107 cycles by the equation 

 1
b

a fk N  , (1) 

where σa is the stress amplitude, Nf number of cycles to failure, k1 = 388 MPa and b = 0.107 
(Lukáš & Kunz, 1987). The copper was annealed for 1 hr. in vacuum; its σUTS was 220 MPa 
and the yield stress, σ0.2, was 37 MPa.  

Tensile mean stress results in a decrease of fatigue life. At the beginning the expressive 
decrease of lifetime with increasing tensile mean stress is observed. It is more severe than 
that predicted by Gerber parabola; however, for higher mean stresses the effect is getting 
weak. The constant fatigue life curves in the representation σa vs. tensile mean stress, σmean, 
exhibit a plateau for medium values of σmean.  

The dependence of fatigue strength on the grain size was found to be quite weak. Thompson 
& Backofen (1971) observed that there is no effect of grain size ranging in the interval 3.4 to 
150 μm on the fatigue life in the high-cycle fatigue (HCF) region. This behaviour was 
attributed to easy cross-slip. Later on the grain size effect was not substantiated even though 
the grain size was varied from 50 μm to 0.5 mm. Further goal-directed study of the effect of 
grain size indicated a weak decrease of the fatigue limit expressed in terms of the 
dependence of Nf on the total plastic strain amplitude, εa,tot, with increasing grain size 
(Müllner et al., 1984). The effect increases with decreasing plastic strain amplitude and 
increasing lifetime. Generally, it can be summarised that the fatigue life curves expressed 
both as S-N curves or dependences of number of cycles to failure on the total strain 
amplitude depend on the grain size insignificantly. This holds especially for fatigue limits 
based on 107 cycles (Lukáš & Kunz, 1987). 

The Coffin-Manson plot, however, depends strongly on the grain size. It is shifted to lower 

values of plastic strain amplitude, εap, for a given number of cycles to failure with increasing 

grain size D. Experimental data on the number of cycles to failure for plastic strain 

amplitude of 1 x 10-4 taken form (Lukáš & Klesnil, 1973; Polák & Klesnil, 1984; Kuokkala & 

Kettunen, 1985) indicates a roughly linear increase of Nf with D-1/2. The plastic strain 

amplitude fatigue limit based on 107 cycles was found to be grain size dependent, being 4 x 

10-5 for fine-grained copper and 2.3 x 10-5 for coarse-grained Cu. The explanation is sought 

in the different conditions for non-propagation/propagation of short cracks, which 

physically determine the fatigue limit. 

Copper exhibits strong work hardening, which is typical for single-phase f.c.c. structures. The 
tensile strength of annealed material can be increased by 100 % due to 80 % cold working. 
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Cyclic loading of annealed Cu results in rapid cyclic hardening followed by a long period of 
cyclic softening. In the HCF region the period of rapid hardening takes only about 1 to 3 % of 
the total number of cycles to failure. This behaviour is characteristic for broad temperature 
interval (Lukáš & Kunz, 1988). Fatigue of hardened metals and alloys generally results in 
cyclic softening. The intensity of this effect depends on the stability of the hardened structure 
and on the cyclic conditions; i.e., the level of the stress or strain amplitude (Klesnil & Lukáš, 
1992). The hardness of Cu, both annealed and cold worked tends to reach during cycling the 
nearly same value, provided the fatigue life is of the order of 107 cycles. The fatigue strength, 
irrespective of the fatigue hardening followed by softening, has been shown to increase nearly 
linearly with the σUTS reached by cold working. This is fulfilled at least up to 40% of cold work. 
At higher strengths and more severe cold work Murphy (1981) signalises a number of 
anomalous results, without any detailed explanation. In some cases of high cold work the 
fatigue strength is even so low as in the case of annealed Cu. This is why for engineering 
applications it is generally recommended that the σUTS of unalloyed Cu is restricted to less than 
325 MPa, corresponding to ~ 30 % cold work. 

The cyclic stress-strain response of Cu can be well described by the cyclic stress-strain curve 

(CSSC) defined on the basis of the stress and strain amplitudes determined for 50 % of the 

total number of cycles to failure. For fine-grained copper with the grain size of 70 μm it 

holds 

 n
a 2 apσ = k ε , (2) 

where k2 = 562 MPa and n = 0.205. The CSSC of coarse-grained Cu is shifted to lower plastic 

strain amplitude values and curve for very large grains exhibits even deviation from the 

power law in the range of stress amplitudes from about 70 to 100 MPa (Lukáš & Kunz, 1987). 

This effect is related to the development and increase of volume fraction of persistent slip 

bands (PSB) in the matrix (Lukáš & Kunz, 1985; Wang & Laird, 1988). The CSSC of Cu single 

crystals exhibit a plateau (Mughrabi, 1978) which extends over about two decades of plastic 

shear strain amplitude and which is related to inhomogeneous deformation localised in PSBs. 

Decreasing temperature has been known to increase the fatigue strength of both annealed 

and cold worked Cu. S-N curves are shifted towards higher number of cycles with 

decreasing temperature. A reduction of temperature results in an increase of the saturation 

stress amplitude for the same plastic strain amplitude. On the other hand, the Coffin-

Manson curves were found to be independent of temperature (Lukáš & Kunz, 1988).  

The fatigue behaviour of CG Cu is determined by its dislocation structure, which develops 

during cyclic loading and which is a function of external loading parameters. The 

dislocation activity results in a cyclic slip localisation, which manifests itself by development 

of a surface relief. There is a clear relation between the surface relief and the underlying 

dislocation PSB structure in CG Cu. The regions of PSBs are characteristic with higher 

plastic strain amplitudes than the surrounding interior structure. The structural dimensions, 

i.e. the characteristic dimensions of vein structure, PSBs and cells are generally large 

compared with the characteristic structural dimensions of UFG Cu. This indicates that the 

basic knowledge on the cyclic strain localisation and on mechanisms of crack initiation 

obtained on CG Cu cannot be straightforwardly applied to the UFG structures. 

www.intechopen.com



 
Copper Alloys – Early Applications and Current Performance – Enhancing Processes 

 

96

3. Ultrafine-grained copper 

Severe plastic deformation of metallic materials has attracted intensive attention of 
researchers in material science within the last two decades. The main expectation both of 
research and industry is to improve the mechanical properties of metals and alloys by 
substantial grain refinement. It has been well known for a long time that a fine-grained 
material exhibits better strength and hardness than that one which is coarse-grained. 
Reduction of the grain size usually also improves fracture toughness. The physical reason of 
improved mechanical properties lies in the higher grain boundary volume in fine-grained 
structures, which makes the dislocation motion and resulting plastic deformation more 
difficult. For many materials the yield stress follows the Hall-Petch equation in a very broad 
range of grain size between 1 μm and 1 mm (Saada, 2005). Deviations from this law are 
observed only for very coarse grained and for nano-grained structures.  

3.1 Equal channel angular pressing  

Equal channel angular pressing is the most popular SPD technique. There are number of 
papers describing the fundamentals of this process and material flow during pressing, e.g. 
(Segal, 1995; Valiev & Langdon, 2006). The principle of the method is very simple. It consists 
of pressing of a rod-shaped billet through a die with an angular channel having an angle Φ, 
often equal to 90°, Fig. 1. A shear strain is introduced when the billet pressed by a plunger 
passes through the knee of the channel. Since the cross-sectional dimensions of the billet 
remain constant after passing the channel, the procedure can be repeated. The result is a 
very high plastic strain of the processed material. The majority of laboratory ECAP dies has 
a channel with a quadratic cross-section. The billets of corresponding dimensions can be 
rotated by increments of 90 degree between particular passes. Indeed, the rotating 
procedure is feasible also for dies and samples with circular cross-section. Four different 
ECAP routes are distinguished. Route A means repetition of pressing without any billet 
rotation. Route BA represents rotation of the billet by 90° in alternating directions, route Bc 
means rotation by 90° in the same direction after each consecutive pressing and the route C 
represents the rotation by an angle of 180° after each pass. 

 

Fig. 1. Principle of ECAP procedure 
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The equivalent strain, ε, reached by pressing through a die characterised by outer arc Ψ of 

curvature of the cannels inclined mutually at an angle Φ, is given by the relationship (Valiev 

& Langdon, 2006) 

            / 3 2 cot / 2 / 2 cosec / 2 / 2N            . (3) 

Processing by SPD methods and the investigation of the resulting UFG structures and their 

properties is a mater of rapidly increasing number of research papers. The current results 

are regularly presented at the NanoSPD conference series; the last was held in 2011 (Wang, 

et al., Eds, 2011). A plenty of improvements of ECAP procedure has been proposed in the 

past, e.g. a rotary-die putting away the reinserting of the billet into the die, dies with parallel 

channels or the application of back pressure. Though the requirements of process 

improvements and economically feasible production of UFG materials in sufficient volumes 

activates development of plenty of SPD methods like accumulative roll bonding, multiaxial 

forging or twist extrusions, the majority of basic knowledge on UFG materials is based just 

on research on materials processed by simple ECAP. This holds also for Cu, which was as 

the simple f.c.c. model material used for pioneering studies on fatigue behaviour of UFG 

structures prepared by SPD (Vinogradov et al., 1997; Agnew et al., 1999). 

3.2 Microstructure 

The grain size of UFG materials is typically in the range of 102 to 103 nm. This is a transition 

region between the CG materials and nanostructured metals, where the grain boundaries 

play a decisive role during plastic deformation. Quantitative determination of grain or cell 

size of materials processed by ECAP is often complicated by the fact that the size is varying 

broadly between hundreds of nanometres and some micrometers and by not well-defined 

boundaries in TEM images (e.g. Vinogradov & Hashimoto, 2001). Experimental study of 

evolution of microstructure in Cu by Mishra et al. (2005) shows that the first few ECAP 

passes result in an effective grain refinement taking place in successive stages: 

homogeneous dislocation distribution, formation of elongated sub-cells, formation of 

elongated subgrains and their following break-up into equiaxed units, while the 

microstructure tends to be more equiaxed as the number of passes increases. Later on, the 

sharpening of grain boundaries and final equiaxed ultrafine grain structure develops. 

The microstructure of Cu prepared by ECAP can vary in many parameters. This is an 

essential difference to CG Cu. UFG Cu can differ in the grain size distribution, shape and 

orientation, dislocation structure and dislocation arrangement in grain boundaries, in 

texture and misorientation between adjacent grains, which reflects the details and 

conditions of the ECAP procedure (Valiev et al., 2000; Zhu & Langdon, 2004). The mutual 

orientation of structural units cannot be satisfactorily described as high-angle random 

orientation. There are regions where low angle boundaries are present, and also regions 

which can be described as regions of near-by oriented grains. That is why instead of the 

term “grain size” a term “dislocation cell size” is sometimes used.  

An example of a UFG structure of Cu of purity 99.9 % is shown in Fig. 2. Cylindrical billets 
of 20 mm in diameter and 120 mm in length were produced by eight ECAP passes by the 
route Bc. After the last pass through the die the samples of 16 mm in diameter and 100 mm 
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in length were machined from the billets. The severe plastic deformation was conducted at 
room temperature. The microstructure as observed by transmission electron microscopy 
(TEM) in the middle of a longitudinal section of the cylindrical sample is shown in Fig. 2a. 
The structure in transversal direction is shown in Fig. 2b. The average grain size, 
determined on at least 10 electron micrographs, is 300 nm. This is in full correspondence 
with the results by Mingler et al. (2001). They report that ECAP of pure Cu leads to the most 
frequent grain size of 300 nm irrespective to the number of passes applied. The size 
distribution, however, is getting narrower with increasing number of passes and both total 
and grain-to-grain misorientation tends to reach high angle type. Similarly, the grain size of 
~ 200 nm was reported by Agnew et al. (1999), or grain size in the range from 100 to 300 nm 
by Besterci et al. (2006); however, here in dependence on the details of the ECAP procedure. 
Vinogradov & Hashimoto (2001) distinguish between the structures with different 
morphological features: the equiaxial structure, referred to as “A”, and elongated grain 
structure called “B”. They note that in the course of the ECAP procedure, it is highly 
possible to obtain a mixture of the type A and B structures. The microstructure in Fig. 2a 
resembles the type B and the structure in Fig. 2b the equiaxial type A. 

 

Fig. 2a. Microstructure of Cu after ECAP as observed in TEM, longitudinal section 

  
Fig. 2b. Microstructure of Cu after ECAP as observed in TEM, transversal section 

For characterisation of microstructure, electron back scattering diffraction (EBSD) has been 
recently used beyond the TEM (Wilkinson & Hirch, 1997). EBSD analysis is predominantly 
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focused on the experimental determination of misorientation of a crystallographic lattice 
between adjacent analysed points. This technique, in contrast to TEM of thin foils, enables 
one to investigate the changes of microstructure in the course of fatigue loading, provided 
the same area of the specimen gauge length is examined. An example of a microstructure as 
observed by EBSD and the analysis of EBSD data is shown in Fig. 3. A grain map is shown 
in Fig. 3a. Grains, defined as areas having the mutual misorientation higher than 5 degrees 
(threshold angle, which can be adjusted), are marked by particular colours. Fig. 3b brings 
the grain size distribution. Indeed, the direct comparison with the structure displayed by 
TEM is not possible, because the evaluation procedure of back scattered electron diffraction 
images is primarily dependent on the adjusted threshold angle. However, for the constant 
threshold angle the method enables detection of changes of microstructure and grain 
orientation due to fatigue loading or temperature exposition. 

 

 

Fig. 3a. Grain map of UFG Cu as displayed by EBSD 
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Fig. 3b. Analysis of the grain size and grain size distribution 
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The inhomogeneity of severe plastic deformation by ECAP is documented on UFG Cu of 
very high purity of 99.9998 % in Fig. 4. The overetched surface of material exhibits traces of 
non-uniform deformation during SPD. The simple sketches in Fig. 4a, based on the 
appearance of the surface markings, highlight the mutual shift of the layers 1 and 2 on both 
sides of the band in between. The material in both layers appears not to be sheared during 
the last ECAP paths so intensively as the material in the bands. This observation implies 
inhomogeneity of shearing during ECAP by the route C. Similar surface observation after 
processing by the route BC is shown in Fig. 4b. The structure exhibits traces of shearing on 
two slip systems corresponding to the billet rotation.  

 

Fig. 4a. Severely etched surface of UFG Cu prepared by ECAP, route C 

 

 

Fig. 4b. Severely etched surface of UFG Cu prepared by ECAP, route Bc 

The UFG structure produced by ECAP is sensitive to the technological details of the process, 

lubrication, deformation rate, dimensions of the die etc. No doubt these factors influence the 

microstructure and finally the properties of UFG material. So, the diversity in behaviour of 

“nominally” identical UFG structures produced in different laboratories makes the 

comparison of results published in literature troublesome. A variety of possible structures 

give rise to significant scattering of experimental data on fatigue behaviour published to 

date (Vinogradov & Hashimoto, 2001). 
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3.3 Tensile properties 

The stress-strain diagrams of UFG Cu prepared by eight passes by route Bc and specified in 

the preceding paragraph are shown in Fig. 5. The diameter of the gauge length of specimens 

was 5 mm. Results for three values of the loading rate, 1, 10 and 100 mms-1 are presented. 

Obviously, there is no strain rate influence in the range of rates applied. All three curves are 

located in a narrow interval. The differences between them are smaller than the difference 

between two specimens tested at the same strain rate 1 mms-1. The shape of the curves is 

identical with that observed for UFG Cu prepared by 10 passes by the route C (Besterci et 

al., 2006). The curves exhibit a long elastic part at the beginning. The basic tensile properties 

determined as an average of four measurements are given in Tab.1.  

 

ultimate tensile 
strength σUTS 

yield stress σ0.1 yield stress σ0.2 modulus of elasticity E 

[MPa] [MPa] [MPa] [GPa] 

387 ± 5 349 ± 4 375 ± 4 115 ± 11 

Table 1. Tensile properties of UFG Cu prepared by ECAP, route Bc, 8 passes 

The ultimate tensile strength after 8 passes, σUTS, is 387 MPa. The yield strength σ0.2 = 375 

MPa is very close to the σUTS and makes 97 % of it. The scatter of the data determined on 

particular specimens is quite small.  
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Fig. 5. Tensile diagrams of UFG Cu prepared by ECAP, route Bc 

The basic tensile data reported in literature for Cu processed by ECAP in different 

laboratories differs considerably. For instance, Besterci et al. (2006) report σUTS values 

ranging from 410 to 470 MPa for number of passes between 3 and 10, and Goto et al. (2009) 

443 MPa for 12 passes by the processing route Bc. Vinogradov et al. (2001) report the value 

~520 MPa for Cu processed by 12 Bc passes. Generally, during the first passes a rapid 

increase of strength is observed. However, later on, the strength saturates or even decreases.  
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From the comparison of tensile diagrams of CG and UFG Cu, Fig. 6, it can be seen that there 

is a substantial difference in the initial part of the diagram, indicating very high yield 

strength of UFG Cu and very low one for CG material. 
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Fig. 6. Comparison of tensile diagrams of UFG and CG Cu 

3.4 Fatigue strength 

The improvement of fatigue performance of Cu by ECAP processing was experimentally 

documented in, for example, (Agnew et al., 1999; Vinogradov, & Hashimoto, 2001; Höppel, 

& Valiev, 2002; Kunz et al., 2006 and Höppel et al., 2009). The S-N curve of Cu prepared by 

eight ECAP passes by the route Bc, having the tensile properties given in Tab.1 and the 

structure shown in Figs. 2 and 3 is shown in Fig. 7. The fatigue loading was performed in 

load symmetrical cycle in tension-compression. The number of cycles to failure increases 

continuously with decreasing stress amplitude in very broad interval ranging from low-

cycle fatigue (LCF) region up to the gigacycle region. Arrows indicate the run-out 

specimens. The experimental points in the interval of numbers of cycles to failure spreading 

over 7 orders of magnitude cannot be well approximated by a straight line in log-log 

representation. The description by power law is, however, possible in the first 

approximation in the shorter interval, namely from 104 to 108 cycles by the equation (1) with 

constants k1 = 584 MPa and b = -0.078. The fatigue life of UFG Cu is substantially higher than 

that of annealed CG Cu and also than that of cold worked copper reported by Murphy 

(1981). The S-N curve for UFG material is shifted by a factor of 1.7 towards higher stress 

amplitudes for a given number of cycles to failure when compared to the cold worked 

material. 

The UFG data in Fig. 7 shows the results of experiments on identical material but performed 

on different fatigue machines: servohydraulic, resonant and ultrasonic; and on different 

types of specimens. The frequency of loading with a sine wave was in the interval of 1 Hz to 

20 kHz. Similarly to the CG Cu there is no apparent influence of loading frequency on the  

S-N curve. All experimental data fall into one scatter band. 

www.intechopen.com



 
Mechanical Properties of Copper Processed by Severe Plastic Deformation 

 

103 

10
3

10
5

10
7

10
9

10
11

Nf

80

120

160

200

240

280

320

S
tr

e
s
s
 a

m
p

lit
u

d
e
  

[M
P

a
]

UFG, 1 Hz

UFG, 5 Hz

UFG, 10 Hz

UFG, 124 Hz

UFG, 213 Hz

UFG, 20 kHz

  

 

cold worked
2.1,   32.3 Hz
Murphy (1981)

 

Fig. 7. Comparison of S-N data for UFG and cold worked Cu 

From Fig. 7 it follows that the fatigue limit of UFG Cu based on 108 cycles is 150 MPa. The 

σUTS of this copper is 387 MPa, see Tab.1. Fig. 8, which is redrawn from (Murphy, 1981), 

shows the relation between the fatigue limit (on the basis of 108 cycles) and σUTS for oxygen 

free cold worked Cu of purity higher than 99.99 %. Increasing tensile strength by cold work 

increases the fatigue limit. This reasonably holds for σUTS up to ~350 MPa. At higher tensile 

strength, related to cold reduction above ~40 %, a large scatter of data exists. In some cases 

even a decrease of fatigue limit down to the annealed Cu was observed. The experimental 

point corresponding to severely deformed UFG Cu, which is shown in Fig. 8 by the full 

symbol, is situated on the right-hand side of the scatter-band of data. The result qualitatively 

fits into the general trend of increasing fatigue limit with ultimate tensile strength. 
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Fig. 8. Relation of tensile and fatigue strength for fatigue limit based on 108 cycles for cold 
worked Cu (Murphy, 1981) and UFG Cu 
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From the recent overview of the cyclic deformation and fatigue properties of UFG materials 
by Mughrabi & Höppel (2010) it arises that the fatigue behaviour depends strongly on 
parameters of the ECAP procedure, purity of material and type of fatigue loading. The 
discussion, interpretation and, in particular, the comparison of results published in 
literature, requires all the details of the UFG structures produced in different laboratories 
and also the external loading parameters and conditions to be taken into account. 

In the early studies it has been experimentally shown that the equiaxial grain structure of 
the lamellar-like type B lasts longer under the same stress amplitude than the equiaxial type 
A (Vinogradov & Hashimoto, 2001). Similar observations were made also on other materials 
like Ti alloys; however, the available knowledge is not enough to declare that the lamellar-
like structures of UFG Cu are generally better than equiaxial ones. 

The experimental data presented in Fig. 7 gives evidence that the UFG structure of Cu can 
exhibit substantially better fatigue strength expressed in terms of S-N curves than the CG 
Cu. However, there is also data in literature that indicates quite poor or no improvement of 
fatigue strength in the high-cycle fatigue HCF region. Han et al. (2007; 2009) and Goto et al. 
(2008) observed the strong enhancement of fatigue life in LCF range but very weak effect in 
long-life regime. The fatigue strength of 99.99 wt% Cu processed by four passes by route Bc 
coincided with that of fully annealed copper for 3 x 107 cycles. This fatigue strength was 
only slightly enhanced by an increase in the number of ECAP passes and by a decrease in 
purity. The σUTS of coppers investigated in these studies was high. The corresponding points 
[σUTS, fatigue strength for 108 cycles] would lie on the opposite side of the scatter band in the 
Fig. 8 than the full point characterising the properties of Cu having the S-N curve shown in 
Fig. 7. It indicates that the large scatter of data reported by Murphy (1981) for cold worked 
Cu is relevant also to the severely plastically deformed Cu. 

Fig. 9 compiles the available majority published experimental results up to now on of 
fatigue life of UFG Cu prepared by ECAP cycled under constant stress amplitudes. S-N data 
was obtained in different laboratories. It is remarkable that the field of the S-N points splits 
up into two distinct bands. The inspection of the legend in the figure shows that the material 
purity could be a parameter influencing the HCF strength. The band A covers S-N points for 
low purity UFG coppers (purity in the range from 99.5 and 99.9 %), while the band B covers 
S-N points for high purity UFG coppers (purity in the range from 99.96 to 99.9998 %). The 
details of the ECAP process, particularly the type of paths (Bc or C), seem to have only 
minor effect on fatigue performance. The bands merge into one in the LCF region and 
obviously diverge in the HCF region. The average stress amplitude corresponding to the 107 
cycles to failure is around 160 MPa for band A and around 90 MPa for band B. The trend of 
the bands indicates that the most pronounced effect of purity can be expected in the very 
high-cycle fatigue (VHCF) region. 

The S-N curves of two coppers of substantially different purity tested in a goal-directed 
research are shown in Fig. 10. Cu was processed by two ECAP routes, namely Bc and C. The 
fatigue tests were carried out in one laboratory under the same testing conditions. Thus the 
effect of variances in testing procedures (except of the different specimen shape) is 
eliminated. It can be seen that the fatigue strength of high purity copper is lower than that of 
low purity copper. The figure also shows that the ECAP route affects the fatigue strength of 
pure material. Both the effects, i.e. purity and route are more pronounced for low stress 
amplitudes. At high stress amplitudes corresponding to lifetimes below 104 cycles the effects 
are practically wiped off. 
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Fig. 9. S-N data of UFG Cu of different purity and processed by different routes and number 
of ECAP passes 
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Fig. 10. Influence of purity on S-N curves of UFG Cu 

The explanation of the large differences in the fatigue resistance of UFG Cu in the HCF 

region shown in Fig. 9 can be sought either in the stability of the microstructure during 

fatigue loading or in the mechanism of the strain localisation and in the fatigue crack 

initiation. The stability of UFG structure and crack initiation will be discussed later in 

paragraphs 3.6 and 3.7. 

Decreasing temperature results in higher fatigue resistance of UFG Cu. Fig. 11 compares the 

fatigue lifetime at RT and at temperature of 173 K. The low temperature S-N curve is clearly 

shifted towards higher stress amplitudes. The shift in the interval from 104 to 107 cycles to 

failure is of about 40 MPa. 
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Fig. 11. Influence of temperature on S-N curve of UFG Cu 

The influence of mean stress on fatigue life is shown in Fig. 12. The tensile mean stress of 

200 MPa decreases the life by a factor of one and half of the magnitude. This holds from the 

HCF region up to the fatigue live of 105 cycles, which corresponds to the stress amplitude of 

180 MPa. The maximum stress in cycle with the stress amplitude 180 MPa is 380 MPa, which 

is very close to the σUTS = 387 MPa. It is interesting that under these conditions, when the 

maximum stress in a cycle nearly touches the tensile strength of the material, the fatigue life 

is still very high. The next small increase of the stress amplitude means that the tensile 

strength is exceeded and the fatigue life is getting very short. The scatter of lives at the stress 

amplitude 190 MPa (horizontal dashed line in Fig. 12) is related to the inherent scatter of 

tensile strength of particular specimens. Fig. 12 demonstrates that in UFG Cu, which is 

cycled under stress-controlled conditions, the low-cycle fatigue region is missing. 
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Fig. 12. Influence of mean stress on fatigue life 
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The transition from the full curve to the horizontal dashed line for the mean stress in Fig. 12 
is related to the change of mechanism of failure from fatigue to ductile. The cyclic creep 
curve, i.e. the development of unidirectional creep deformation during cycling, is shown in 
Fig. 13 for the specimen with the shortest fatigue life of 528 cycles, Fig. 12. The cyclic creep 
curve exhibits the typical three stages. The first stage with rapidly decreasing cyclic creep 
rate is related to the cyclic hardening. The second stage, characterising the decisive part of 
the fatigue life, is characteristic by a nearly constant cyclic creep rate. The third stage is 
related to the development of a neck on the specimen, decrease of the specimen cross-
section, increase of true stress and final ductile fracture. The fracture surface of the 
specimen, which failed after 528 cycles at the stress amplitude of 190 MPa, can be seen in 
Fig. 14. The fracture surface is of a ductile cone and cup type. The fracture surface of a 
specimen cycled with the stress amplitude 180 MPa, which failed after 1.34 x 106 cycles, is 
shown in Fig. 15. The fatigue crack initiated at the specimen surface. The fracture surface 
produced by propagating fatigue crack makes only a small part of the final fracture. The 
majority of the fracture surface is of a ductile type. 
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Fig. 13. Cyclic creep curve of UFG Cu, stress amplitude 190 MPa, mean stress 200 MPa 

 

Fig. 14. Fracture surface of a specimen cycled at mean stress of 200 MPa and stress 
amplitude of 190 MPa 
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Fig. 15. Fracture surface of a specimen cycled at mean stress of 200 MPa and stress 
amplitude of 180 MPa 

The fatigue lives of UFG Cu are generally higher than those of CG Cu when the comparison is 

made on the basis of S-N plots, (e.g. Mughrabi, 2004). Just the opposite, however, arises from 

the comparison on the basis of plastic strain amplitudes. Results of strain-controlled fatigue 

tests expressed as Coffin-Manson plots show shorter lifetime of UFG than CG Cu (Agnew, 

1998, 1999; Vinogradov & Hashimoto, 2001; Höppel, 2006; Mughrabi, 2006). The effect is more 

pronounced at higher plastic strain amplitudes. This result seems to be obvious, because the 

UFG Cu is harder but less ductile than CG Cu. Based on these facts, Mughrabi and Höppel 

(2010) explain it schematically on the total strain life diagrams of UFG and CG materials. 

Comparison of Coffin-Manson curves for CG and UFG Cu is shown in Fig. 16. The values of 
the plastic strain amplitude were obtained from the total plastic strain amplitude controlled 
tests of CG Cu (Lukáš & Kunz, 1987) and from the stress-controlled tests of UFG Cu (Lukáš 
et al., 2009). The plastic strain amplitude was determined for a number of cycles equal to ½ 
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Fig. 16. Comparison of Coffin-Manson curves for CG an UFG Cu 
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of the total number of cycles to failure. The grain size of CG Cu was 70 μm, and the grain 
size of UFG Cu was 300 nm. The data for UFG Cu corresponds to different purities, ECAP 
routes and number of passes. All experimental points are located in one scatter band. This 
fact means that the plastic strain amplitude could be taken as a unifying parameter for 
lifetime prediction of UFG Cu. 

The experimental fact that the fatigue resistance of UFG Cu is lower than that of CG Cu 
when loaded at the same plastic strain amplitude is in broad agreement with the 
expectations according to the total strain fatigue life diagram (Mughrabi & Höppel, 2001). 

3.5 Cyclic stress-strain response 

3.5.1 Hardening/softening 

Cyclic stress-strain response of UFG Cu is presented in Fig. 17. The examples for four stress 
amplitudes were selected from the set of data obtained by the determination of the S-N points 
shown in Fig. 7. The relative number of cycles to failure, N/Nf, is plotted in dependence on the 
plastic strain amplitude, εap. The tests were performed at constant stress amplitude and were 
run up to the final failure. It can be clearly seen that the specimens cycled at higher stress 
amplitudes soften. At the very beginning of the tests, at higher stress amplitudes a quick 
hardening was observed. This is more easily visible in Fig. 18, which displays the 
hardening/softening curves in log-log coordinates. For medium stress amplitudes resulting in 
the lifetime of the order of 105 cycles stable stress-strain behaviour can be observed. For small 
stress amplitudes in HCF region continuous cyclic hardening is a characteristic feature. 

Cyclic softening was already observed in the early studies. Agnew & Weertman (1998) 
reported cyclic softening under controlled total strain amplitude loading in the range of  
1 x 10-2 to 5 x 10-4. The softening was explained by a general decrease of defect density and due 
to changes of grain boundary misorientation. The effect of softening decreases with decreasing 
plastic strain amplitude. No softening was observed at εap  < 10-3. Some light hardening was 
noticed on the early stage of straining in (Vinogradov et al., 1997; Vinogradov & Hashimoto, 
2002), which is in agreement with results presented in Figs. 17 and 18.  
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Fig. 17. Dependence of plastic strain amplitude on relative number of cycles to failure N/Nf 
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The softening process in UFG Cu depends both on the loading and microstructural 
parameters. The microstructure composed of nearly equiaxed grains with a mean size 200 - 
250 μm, type A, exhibits nearly stable cyclic behaviour when cycled at εap = 10-3, whereas the 
elongated structure B exhibits softening under the cycling with the same εap (Agnew, 1999; 
Hashimoto et al., 1999).  
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Fig. 18. Cyclic softening/hardening curves of UFG Cu cycled under stress control 

More or less severe cyclic softening has been reported to occur at strain-controlled tests. 
Two curves corresponding to tests of UFG Cu with plastic strain amplitudes of 0.1 % and 
0.05 % are shown in Fig. 19. The copper was identical with that used for the determination 
of cyclic hardening/softening curves under stress control, Figs. 17 and 18. Continuous 
softening is observed since the beginning of the test. The rapid decrease of both curves for 
the stress amplitude below ~ 250 MPa is related to the propagation of a magistral fatigue 
crack through the specimen cross-section. 
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Fig. 19. Cyclic softening curves of UFG Cu cycled under plastic strain control 

www.intechopen.com



 
Mechanical Properties of Copper Processed by Severe Plastic Deformation 

 

111 

The softening (and lower fatigue resistance under strain-controlled testing) is often 
discussed in relation to the low stability of structure produced by SPD. The phenomenon of 
softening is basically not unexpected, because the UFG microstructure is severely deformed 
and there is a high stored energy. The mechanism of dynamic grain coarsening in Cu is 
currently discussed in literature and there is no integrated opinion on this effect. 

The cyclic hardening/softening effect in UFG Cu is observed also at low temperatures. An 
example of the dependence of plastic strain amplitude on number of cycles for stress-
controlled fatigue loading at 173 K is presented in Fig. 20. The copper is the same as that one 
used for determination of S-N curve in Fig. 7 and the hardening/softening curves, Figs. 17 - 
19. From the comparison of Figs. 18 and 20 it follows that the characteristic behaviour; i.e., 
pronounced softening at high stress amplitudes and hardening in HCF region, is 
qualitatively not influenced by the decrease of temperature.  
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Fig. 20. Cyclic softening/hardening curves of UFG Cu loaded at temperature 173 K 
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Fig. 21. Influence of purity and ECAP details on cyclic stress-strain curve 
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Fig. 22. Influence of temperature and way of determination on cyclic stress-strain curve 

3.5.2 Cyclic stress-strain curve 

The hardening/softening curves do not generally exhibit saturation behaviour. Pronounced 

cyclic softening is characteristic in the LCF region whereas weak cyclic hardening is typical 

for the HCF region. Hence, the CSSC cannot be constructed on the basis of saturated values 

of stress and strain amplitudes, which characterise the cyclic stress-strain response for the 

decisive part of fatigue life of cyclically stable materials. For the determination of the CSSC, 

some convention has to be adopted. One of the often used procedures is to define the CSSC 

on the stress and strain values corresponding to one half of the fatigue life. The experimental 

data for UFG Cu of different purity and processed by different ECAP routes by different 

numbers of passes through the die are shown in Fig. 21. The data points can be separated 

into two groups according to the copper purity. The curve corresponding to low purity is 

above the CSSC of high purity. The difference is largest for smallest amplitudes and wanes 

towards LCF region. No measurable influence of the ECAP processing route and number of 

passes follows from the presented data. 

The influence of temperature and the way of the determination of CSSC of low purity UFG 

Cu is shown in Fig. 22. The fatigue tests were conducted under controlled stress amplitude. 

For experiments the same Cu on which was determined the S-N curve shown in Fig. 7 was 

used. It can be seen that the CSSC is not measurably influenced when the temperature 

decreases from RT down to 173 K. Furthermore, the experimental points of the CSSC fall 

into one scatter band when the plastic strain amplitude is conventionally determined for ½ 

or for 10 % of the fatigue life.  

It has been mentioned previously that the fatigue behaviour of UFG Cu depends on details 

of microstructure and cyclic loading. This fact makes the comparison of data obtained in 

different laboratories difficult. Fig. 23 presents the comparison of CSSC characterising the 

behaviour of UFG Cu (which S-N curve is shown in Fig. 7 and structure in Fig.2) and copper 

investigated in (Höppel et al., 2009; Mugrhabi & Höppel, 2001). It can be seen that there is 

large discrepancy between both curves. It is interesting to note that in both cases the 
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material under investigation was UFG Cu of low purity, namely 99.9 % processed in a 

nominally identical way. Detailed comparison of results shows also that the S-N curves of 

both coppers differ. One of them belongs to the band A in Fig. 9 and the other, published in 

(Höppel et al., 2009; Mugrhabi & Höppel, 2001) to the band B. For comparison, Fig. 23 also 

shows the CSSC of CG Cu described by eq. (2) with constants k2 = 562 MPa and n = 0.205. 

This curve is well below both the curves characterising the UFG Cu. 
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Fig. 23. Comparison of CSSC of two UFG coppers and CG Cu 

 

Fig. 24. Microstructure of UFG Cu after stress-controlled fatigue, stress amplitude 255 MPa 

3.6 Stability of UFG structure 

Stability of a severely deformed structure is of utmost importance from the point of view of 
its fatigue properties (Kwan & Wang, 2011). The critical issue of successful application of 
UFG materials is the long-term stability of microstructure in service where cyclic loads, 
often with mean stress, are frequent. Also loading at elevated temperatures can be expected 
in engineering practice. Despite this, knowledge of the stability of UFG structure under 

www.intechopen.com



 
Copper Alloys – Early Applications and Current Performance – Enhancing Processes 

 

114 

dynamic and temperature loading is quite scarce. There are open questions concerning the 
mechanisms of the grain coarsening both under cyclic loading and temperature exposition. 

 

Fig. 25. Microstructure after 1010 cycles 

 

Fig. 26. Microstructure after fatigue loading exhibiting “shaken down” features 

ECAP results in structures, which are in metastable sate. There is a natural tendency for 

recovery and recrystallisation powered by a decrease of high stored energy. Hence, 

substantial changes of microstructure can be expected in course of fatigue. Really, the total 

strain-controlled tests of UFG Cu showed a marked heterogeneity of dislocation structure 

after fatigue loading, which resulted in failure of specimens after 104 cycles (Agnew & 

Weertman, 1998). Three types of structures were described: a) subgrain/cell structure, 

which resembles the well-known structure from LCF tests of CG Cu; b) a fine-grained 

lamellar structure as observed in Cu after ECAP; c) areas with large grains with primary 

dipolar dislocation walls. The first two types of structure were found to make up the 

majority. Höppel et al. (2002) observed that the intensity of grain coarsening decreases with 

decreasing plastic strain amplitude and increasing strain rate in a plastic strain controlled 

test. Pronounced local coarsening of microstructure when compared to the initial state was 

found after cycling with εap = 1 x 10-4. Observation by TEM revealed very pronounced 
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fatigue-induced grain coarsening that occurred in some areas by dynamic recrystallisation. 

This process takes place at a low homologous temperature of about 0.2 of the melting 

temperature (Mughrabi & Höppel, 2010). The structure is described as “bimodal”. 

Dislocation patterns, characteristic for fatigue deformation of CG Cu, had developed in the 

coarser recrystallised grains. It is believed by Mughrabi & Höppel (2001) that this grain 

coarsening is closely related to the strain localisation. On the other hand, it is interesting that 

after fatigue at the plastic strain amplitude of 10-3 the grain coarsening was not observed. 

Examination of the microstructure of failed specimens, which were used for the 
determination of the S-N curve of UFG Cu in Fig. 7, brought no evidence of structural 
changes, even for the highest stress amplitudes in LCF region. Fig. 24 is an example of a 
structure after stress symmetrical cycling at the stress amplitude of 255 MPa. The average 
grain size is 300 nm with the scatter usual for determination of the grain size in as ECAPed 
material. The corresponding cyclic plastic response during the test is shown in Figs. 17 and 
18. Cyclic softening is a characteristic feature for the whole lifetime. This means that the 
cyclic softening is not directly related to the grain coarsening. This finding is in agreement 
with the observation by Agnew (1998) that the decrease in hardness of UFG Cu after fatigue 
does not scale with the cell size dcell according to a well-known relationship between the 
saturation stress, σa,sat, and dcell of the type σa,sat ~ (dcell)-1/2. This suggests that the mechanism 
of softening is related to the decrease of defect density and changes of boundary 
misorientation and structure rather than to the gain size. 

 

Fig. 27a. Microstructure as observed by EBSD, before fatigue 

 

Fig. 27b. Microstructure as observed by EBSD, after fatigue 
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Fig. 27c. Colour code for inverse pole map   

The highest number of cycles applied by the determination of the S-N curve, Fig. 7, was of 
the order of 1010 and was reached by ultrasonic loading at 20 kHz. Fig. 25 shows the TEM 
image of a structure of a specimen, which failed after 1.34 x 1010 cycles. Comparison with 
Fig. 2 implies no grain size changes after stress-controlled loading in gigacycle region. The 
characteristic cyclic stress-strain response in a very high-cycle region is continuous cyclic 
hardening; i.e., qualitatively different from that under cycling with high stress 
amplitudes.  

Detailed analysis of many TEM micrographs tempts to believe that the fatigue loading 
with constant stress amplitude in the interval form 320 to 120 MPa, Fig. 7, does not result 
in the grain growth. The only observed structural change is a weak tendency to develop 
more “shaken down” dislocation structures (Kunz et al., 2006). An example is presented 
in Fig. 26.  

The stability of the UFG structure of Cu on which was determined the S-N curve for 
symmetrical stress-controlled cycling, Fig. 7, and the S-N curve for tensile mean stress, Fig. 
12, was examined by EBSD before loading and at failed specimens, far away from the 
fatigue crack. Similarly to TEM, this technique did not reveal any grain coarsening, even in 
the case of loading with the mean stress. EBSD, contrary to TEM on thin foils, enables 
observation of the development of microstructure on the same place. Fig. 27a shows the 
microstructure before fatigue loading. The microstructure is displayed in terms of a 
combination of an inverse pole figure map and a grain boundary network. Fig. 27b shows 
the same area on the failed specimen after fatigue loading with the stress amplitude 170 
MPa and mean stress of 200 MPa. The colour key for identification of the grain orientation is 
given in Fig. 27c. From the comparison of Figs. 27a and b it is evident that the fatigue 
loading did not result in any grain coarsening, although pronounced cyclic softening was 
observed during fatigue. More likely the microstructure seems to be even finer after fatigue. 
Some larger grains decompose into more parts by development of new low angle 
boundaries. The detailed analysis of the area fraction occupied by grains of particular 
dimension before and after fatigue bears witness to this fact (Kunz et al., 2010).  

In the case of UFG Cu significant differences in stability of structure were observed in 
dependence on the mode of fatigue testing. Generally, low stability of UFG structure was 
reported for plastic strain-controlled tests. The characteristic effect is formation of bimodal 
structure and shear banding (Höppel et al., 2009). Due to the obvious high sensitivity of 
fatigue behaviour of UFG Cu to internal and external parameters it is difficult to draw 
reliable conclusions from the comparison of literature data, which covers differently 
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produced materials, different purity and different testing conditions. This is why on UFG 
Cu, on which the S-N curve in Fig. 7 was determined, the plastic strain controlled tests 
were conducted. The cyclic stress-strain responses corresponding to loading with  
εap = 0.1 % and 0.05 % are shown in Fig. 19. An example of dislocation structures of 
material from the failed specimen loaded with εap = 0.1 % is shown in Fig. 28. A well 
developed bi-modal microstructure consisting of areas with original fine-grained 
structure and large recrystallised grains with dislocation structure in their interior can be 
seen. This observation is in full agreement with results published by Mughrabi & Höppel 
(2001; 2010). The characteristic dislocation structure of a specimen loaded with the 
constant stress amplitude of 340 MPa is shown in Fig. 29. This structure does not exhibit 
any traces of bimodal structure, though the stress amplitude used is equal to the 
maximum value of the stress amplitude in the plastic strain amplitude-controlled test 
with εap = 1 x 10-3, Fig. 19. This means that the absolute value of the stress amplitude 
cannot be the reason for the substantially different stability of UFG structure under both 
types of tests. Also, the details of ECAP procedure are excluded. The tests were run on the 
same material. Also the frequency of loading in both tests was similar. The differences in 
the cumulative plastic strain amplitude in both tests were also not substantially different. 
The only difference between the two test modes, which can cause the different 
microstructure, seems to be the stress-strain response at the very beginning of the tests. 
There is relatively low plastic strain amplitude at the beginning of the stress-controlled 
test when compared to the strain-controlled test. It can be supposed that just the cycling 
with low strain amplitude at the beginning of the stress-controlled test can prevent the 
substantial changes of microstructure due to subsequent loading with increasing εap. 
However, this idea is based on a small number of tests; further experimental study is 
necessary to support this opinion. 

 
 
 

 
 
 

Fig. 28. Bi-modal dislocation structure after constant plastic strain amplitude loading 
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Fig. 29. Dislocation structure after constant stress amplitude loading, σa =  340 MPa 

The research on stability of UFG Cu at higher temperatures has been aimed either at the 

investigation of the influence of elevated temperature during ECAP on the resulting 

microstructure or on the mechanical properties of UFG structure after post ECAP annealing. 

The best compromise between the tensile strength and ductility was achieved for Cu of 

99.99 % purity prepared by route Bc after annealing at the temperature of 250 °C for 30 min. 

(Rabkin, 2005). Short annealing in the temperature range of 250 - 350 °C results in 

development of bi-modal structure consisting of large recrystallised grains embedded in 

fine-grained matrix. The thermal stability of UFG Cu after ECAP was found to be very low 

when compared to the cold rolled copper with the same total strain (Molodova, 2007). From 

the point of view of fatigue properties, the expectation that the bimodal grain size 

distribution should provide optimum fatigue performance is not justified (Mughrabi et al., 

2006).  

The up to now knowledge on the stability of UFG structure of Cu under cyclic loading is not 

sufficient to draw definite conclusions. On the other hand, it seems to be proven that the 

enhanced ductility and stabile microstructure are major facts that enhance the fatigue 

properties (Mughrabi et al., 2006). If the structural stability is low (due to internal material 

parameters or type of loading), the fatigue properties of UFG Cu are substantially reduced. 

3.7 Fatigue crack initiation 

Cyclic strain localisation resulting in fatigue crack initiation is an important stage of the 

fatigue process. It represents a substantial part of the fatigue life. Cyclic slip localisation 

results in a development of surface relief. Agnew & Weertman (1995) observed formation of 

slip bands on surface of fatigued specimens. Population of parallel cracks associated with 

extrusions develops during cycling. Their appearance resembles the surface relief well 

known from fatigue of CG Cu. Because the dimension of slip bands is substantially larger 

than the grain size of UFG structure and because they are oriented approximately 45°from 
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the tension-compression axis, Agnew et al. (1999) denote them shear bands (SB). Since the 

early studies of the surface relief development, there are open questions concerning the 

nature and the mechanism of this phenomenon. The original belief that PSBs with the ladder 

like dislocation structure might be active in UFG Cu is dubious since the width of PSBs 

known from CG Cu is larger than the grain size of UFG structure. On the other hand, grain 

coarsening and development of bimodal structure was observed, particularly under plastic 

strain-controlled fatigue loading (Mughrabi & Höppel, 2010). Moreover, the dislocation 

patterns typical for fatigued CG Cu had developed in coarser grains. The relation of 

formation of SB and grain coarsening is not fully clarified up to now. There is an open 

question as to whether the process of shear banding is initiated by the local grain 

coarsening, which leads to the strain localisation, which destroys the original UFG structure, 

or the shear localisation takes place abruptly at first and the coarse structure is formed 

subsequently (Mughrabi & Höppel, 2001). Investigation of acoustic emission during cyclic 

deformation indicates that large-scale shear banding might be an important period of 

fatigue damage (Vinogradov et al., 2002). 

The development of surface relief is a very common fatigue feature. An example of surface 

relief on fatigued UFG Cu is shown in Fig. 30. The observation was conducted on a 

specimen loaded in the HCF region. The material under investigation was the same as the 

material on which the S-N curve, Fig. 7, was determined; i.e., material which did not exhibit 

any grain coarsening under stress-controlled loading. Hence, the local coarsening of UFG 

structure is not the necessary prerequisite for formation of cyclic slip bands. Their length, 

see Fig. 30, substantially exceeds the grain size. Deep intrusions along the slip bands are 

visible. The extrusions rise high above the surface. The magistral fatigue crack develops by 

connection of suitably located intrusions. Observations of surface relief developed on 

specimens having fatigue life of the order of 1010 cycles show that the cyclic slip bands on 

the surface are very rare. An example of such bands is in Fig. 31. The cyclic slip bands 

produced by very high number of cycles are broad and make an impression of highly 

deformed local areas incorporating some neighbouring grains. The related intrusions are 

very short.  

Investigations by Wu et al. (2003; 2004) on the relation of cyclic slip bands and the related 

microstructure beneath them did not reveal any grain coarsening. Fig. 32 shows an example 

of a focussed ion beam (FIB) micrograph of a cut perpendicular to the slip bands produced 

on the same copper on which the S-N curve in Fig. 7 Cu was determined. The surface relief 

(covered by protective Pt layer) and the underlying structure of material can be seen. No 

grain coarsening connected with the formation of fatigue slip bands can be stated. The 

appearance and size of the grains beneath the surface relief do not differ from those in other 

places. Numerous crack nuclei can be seen in this FIB micrograph. Some of them are directly 

connected with the surface roughness. In the material interior isolated cavities produced by 

cycling can be seen. 

The rows of cavities below the surface slip bands seen in Fig. 32 can be considered to be 

nuclei of stage I cracks. Similar stage I cracks were observed by Weidner et al. (2010) in  

CG copper (grain size 60 microns) subjected to ultrasonic cycling not only in the surface 

grains, but also in the bulk grains. Similarity of both observations indicates that the 
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mechanism of crack initiation in CG and UFG Cu in gigacycle region might be very similar. 

Substantial role in crack initiation will play point defects produced by dislocation 

interactions. They migrate along the grain boundaries and form row of cavities, which 

represent the crack nuclei. 

The cyclic slip bands as observed in SEM by ion channelling contrast, Fig. 33, enable to 

correlate places of the cyclic strain localisation with the grain structure. This type of imaging 

visualises both the surface phenomena and the grain orientation. It can be seen that the 

cyclic slip bands lie in the zone where the grey contrast of neighbouring grains is low, which 

indicates that the disorientation between the grains is small. This zone can be called “zone of 

near-by oriented grains” (Kunz et al., 2011). The grains outside this zone obviously have a 

high mutual disorientation.  

 

 
 

Fig. 30. Cyclic slip bands on the surface of UFG Cu loaded in HCF region 

 

 
 

Fig. 31. Cyclic slip bands on the surface of UFG Cu loaded in gigacycle region 
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Fig. 32. FIB micrograph showing cut through a cyclic slip bands and grain structure  

 

Fig. 33. SEM micrograph of surface slip bands using ion-induced secondary electron image 

Based on the present-day state of knowledge the local grain coarsening is not a necessary 
condition for formation of cyclic slip bands and initiation of fatigue cracks. The slip bands, 
their shape and main features resemble the slip bands formed in CG Cu. Simultaneously, 
the grain coarsening is definitely an important effect taking place in UFG Cu under 
particular conditions. The role of the coarsened structure in the crack initiation process and 
the specific mechanism of initiation are not sufficiently understood. Contrary to the CG Cu, 
where the specific dislocation structures associated with cyclic slip bands are described 
thoroughly, there are no similar and conclusive observations on UFG Cu.  

4. Conclusion  

Severe plastic deformation can substantially improve the fatigue performance of Cu when 

cycled under stress-controlled conditions. The fatigue strength at 108 cycles can reach up to 

150 MPa and 120 MPa for 1010 cycles, provided that the UFG microstructure remains stable. 

This depends both on material; i.e., the details of microstructure produced by SPD and also 
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on the type of the cyclic loading. Under plastic strain-controlled tests, the UFG structure is 

more prone to grain coarsening and the fatigue life for the same plastic strain amplitude is 

substantially shorter than that of CG material. The plastic strain amplitude seems to be a 

unifying parameter for lifetime prediction. The fatigue cracks initiate at cyclic slip bands, 

which are observed under all types of loading and from the LCF to gigacycle region. With 

decreasing severity of cyclic loading their density decreases and their appearance slightly 

changes. 
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