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1. Introduction

Dimensionality reduction methods have proved to be important tools in exploratory analysis
as well as confirmatory analysis for data mining in various fields of science and technology.
Where ever applications involve reducing to fewer dimensions, feature selection, pattern
recognition, clustering, dimensionality reduction methods have been used to overcome the
curse of dimensionality. In particular, Principal Component Analysis (PCA) is widely used
and accepted linear dimensionality reduction method which has achieved successful results
in various biological and industrial applications, while demanding less computational power.
On the other hand, several nonlinear dimensionality reduction methods such as kernel PCA
(kPCA), Isomap and local linear embedding (LLE) have been developed. It has been observed
that nonlinear methods proved to be effective only for specific datasets and failed to generalize
over real world data, even at the cost of heavy computational burden to accommodate
nonlinearity.

We have systematically investigated the use of linear dimensionality reduction methods in
extracting movement primitives or synergies in hand movements in Vinjamuri et al. (2010a;b;
2011). In this chapter, we applied linear (PCA and Multidimensional Scaling (MDS)) and
nonlinear (kPCA, Isomap, LLE) dimensionality reduction methods in extracting kinematic
synergies in grasping tasks of the human hand. At first, we used PCA and MDS on joint
angular velocities of the human hand, to derive synergies. The results obtained indicated
ease and effectiveness of using PCA. Then we used nonlinear dimensionality reduction
methods for deriving synergies. The synergies extracted from both linear and nonlinear
methods were used to reconstruct the joint angular velocities of natural movements and ASL
postural movements by using an l1-minimization algorithm. The results suggest that PCA
outperformed all three nonlinear methods in reconstructing the movements.

2. Synergies

The concept of synergies (in Greek synergos means working together) was first represented
numerically by Bernstein Bernstein (1967). Although synergies were originally defined by
Bernstein as high-level control of kinematic parameters, different definitions of synergies exist

6

www.intechopen.com



2 Will-be-set-by-IN-TECH

and the term has been generalized to indicate the shared patterns observed in the behaviors
of muscles, joints, forces, actions, etc. Synergies in hand movements especially present a
complex optimization problem as to how the central nervous system (CNS) controls the hand
with over 25 degrees of freedom(DoF) ( Mackenzie & Iberall (1994)). Yet, the CNS handles all
the movements effortlessly and at the same time dexterously. Endeavoring to solve the DoF
problem, many researchers have proposed several concepts of synergies such as the following:

(i) Postural synergies: In Jerde et al. (2003); Mason et al. (2001); Santello et al. (1998; 2002);
Thakur et al. (2008); Todorov & Ghahramani (2004), researchers found that the entire act of
grasp can be described by a small number of dominant postures, which were defined as
postural synergies.

(ii) Kinematic synergies: Studies in Grinyagin et al. (2005); Vinjamuri et al. (2007) expressed
the angular velocities of finger joints as linear combinations of a small number of kinematic
synergies, which were also angular velocities of finger joints but were extracted from a large
set of natural movements. Kinematic synergies are not limited to hand movements. In
( d’Avella et al. (2006)), d’Avella et al. reported that kinematic synergies were found in tracking
7 DoF arm movements.

(iii) Dynamic synergies: Dynamic synergies were defined as stable correlations between joint
torques that were found during precision grip movements in Grinyagin et al. (2005).

The above classification was already presented in Vinjamuri et al. (2010b). In addition to
synergies proposed in postures, and kinematics which are of relevance to the current study,
synergies were also proposed in muscle activities d’Avella et al. (2006).

2.1 What are temporal postural synergies?

The synergies presented in this chapter are purely kinematic synergies. These are the
synergies derived from angular velocities of the finger joints of the human hand collected

during grasping tasks. For example, in the Fig. 1 two synergies (s1, s
2) combine using a

weighted linear combination (w1s
1 + w2s

2) to achieve a grasping hand movement. w1 and
w2 represent weights of control signals. Each row of a synergy corresponds to the angular
velocity profile of a finger joint; For example, the first synergy represents the synchronous
large movement of first joint and medium movement of the second joint followed by a small

movement of the third joint. In this example, s
1 (blue) and s

2 (brown) form a weighted
(w1 = w2 = 0.5) combination to result in the aggregate movement(black) on the right hand
side. For illustration purposes, only 3 of 10 joints of the hand are shown in the synergies
and the reconstructed movement. Also shown in the figure are the hand postures of the
reconstructed movement across time. As these synergies preserve both the temporal structure
and the postural information these are termed as temporalposturalsynergies ( Vinjamuri et al.
(2010a;b)).

2.2 Applications of synergies

In our attempt to apply linear and nonlinear dimensionality reduction methods to solve the
problem of extraction of synergies, let us first know how these synergies are being used in the
real world applications in the areas of prosthesis and rehabilitation.

(i) Prosthetics: Apart from neuro-physiological significance, synergies are viewed to be crucial
design elements in future generation prosthetic hands. Biologically inspired synergies have
already taken prime place in artificial hands ( Popovic & Popovic (2001)). Synergies based
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Fig. 1. Two distinct synergies (s1, s
2) use a weighted linear combination (w1s

1 + w2s
2) to

achieve a grasping hand movement. w1 and w2 represent weights of control signals. Each
row of a synergy corresponds to the angular velocity profile of a finger joint; For example,
the first synergy represents the synchronous large movement of first joint and medium
movement of the second joint followed by a small movement of the third joint. In this
example, s

1 (blue) and s
2 (brown) form a weighted (w1 = w2 = 0.5) combination to result in

the aggregate movement(black) on the right hand side. For illustration purposes, only 3 of 10
joints of the hand are shown in the synergies and the reconstructed movement. Also shown
in the figure are the hand postures of the reconstructed movement across time. Adapted
from Vinjamuri et al. (2011)

on the principles of data reduction and dimensionality reduction, are soon to find place in
tele-surgery and tele-robotics ( Vinjamuri et al. (2007)). Synergies are projected to be miniature
windows to provide immense help in next generation rehabilitation. Recently our group has
demonstrated a synergy based brain machine interface where two control signals calculated
from the spectral powers of the brain signals controlled two synergies, that commanded a 10
DoF virtual hand ( Vinjamuri et al. (2011)). This showed promising results for controlling a
synergy-based neural prosthesis.

(ii) Diagnostics: Applying similar concepts of synergies on the hand movements of the
individuals with movement disorders, the sources that contain the tremor were isolated.
Using blind source separation and dimensionality reduction methods, the possible neural
sources that contained tremor were extracted from the hand movements of individuals with
Essential Tremor ( Vinjamuri et al. (2009)). This led to an efficient quantification of tremor.

(iii) Robotics: Biologically inspired synergies are being used in balance control of humanoid
robots ( Hauser et al. (2007)). Based on the principle that biological organisms recruit
kinematic synergies that manage several joints, a control strategy for balance of humanoid
robots was developed. This control strategy reduced computational complexity following a
biological framework that central nervous system reduces the computational complexity of
managing numerous degrees of freedom by effectively utilizing the synergies. Biologically
inspired neural network controller models ( Bernabucci et al. (2007)) that can manage ballistic
arm movements have been developed. The models simulated the kinematic aspects, with
bell-shaped wrist velocity profiles, and generated movement specific muscular synergies for
the execution of movements.

(iv) Rehabilitation: Bimanual coordination is damaged in brain lesions and brain
disorders Vinjamuri et al. (2008). Using a small set of modifiable and adjustable synergies
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tremendously simplifies the task of learning new skills or adapting to new environments.
Constructing internal neural representations from a linear combination of a reduced set of
basis functions might be crucial for generalizing to novel tasks and new environmental
conditions ( Flash & Hochner (2005); Poggio & Bizzi (2004)).

2.3 Extraction of synergies

Synergies or movement primitives are viewed as small building blocks of movement that are
present inherently within the movements and are shared across several movements. In other
words, for example, in a set of hundred grasping movements, there might be a five or six
synergies that are shared and common across all the movements. So it is to say that these
hundred hand movements are composed of synergies. How do we decompose these hundred
hand movements to a few building blocks of movement? This is the problem we are trying to
solve.

In order to extract these primitives, several methods have been used. Several researchers
view this as a problem of extracting basis functions. In fact, PCA can be viewed
as extracting basis functions that are orthogonal to each other. Radial basis functions
were also used as synergy approximations. Gradient descend method and non-negative
matrix factorization methods ( d’Avella et al. (2003)), multivariate statistical techniques
( Santello et al. (2002)) were used in extracting the synergies. Different from the above
interpretations of synergies, Todorov & Ghahramani (2004) suggested that synergistic control
may not mean dimensionality reduction or simplification, but might imply task optimization
using optimal feedback control.

In the coming sections we will use linear and nonlinear dimensionality reduction methods in
extracting the synergies.

2.4 Dimensionality reduction methods for extracting synergies

In the previous section, we listed different methods used to extract the synergies. In this
section these methods were limited to dimensionality reduction methods as these are of
relevance to this chapter.

Based on the principal component analysis, Jerde et al. ( Jerde et al. (2003)) found support for
the existence of postural synergies of angular configuration. The shape of human hand can be
predicted using a reduced set of variables and postural synergies. Similarly, Santello et al.
(1998) showed that a small number of postural synergies were sufficient to describe how
human subjects grasped a large set of different objects. Moreover, Mason et al. (2001) used
singular value decomposition (SVD) to demonstrate that a large number of hand postures
during reach-to-grasp can be constructed by a small number of principal components or eigen
postures.

With PCA, Braido & Zhang (2004) examined the temporal co-variation between finger-joint
angles. Their results supported the view that the multi-joint acts of the hand are subject
to stereotypical motion patterns controlled via simple kinematic synergies. In the above
mentioned study of eigen postures, Mason et al. (2001) also investigated the temporal
evolutions of the eigen postures and observed similar kinematic synergies across subjects
and grasps. In addition, kinematic synergies have been observed in the spatiotemporal
coordination between thumb and index finger movements and co-ordination of tip-to-tip
finger movements ( Cole & Abbs (1986)).

110 Principal Component Analysis
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Another concept of synergies was proposed by d’Avella et al. (2003). Although their work
was not directly related to the hand movements, they investigated the muscle synergies of
frogs during a variety of motor behaviors such as kicking. Using a gradient descent method,
they decomposed the muscle activities into linear combinations of three task-independent
time-varying synergies. They also observed that these synergies were very much related to
movement kinematics and that similarities existed between synergies in different tasks.

3. Preparing the hand kinematics for dimensionality reduction

In this section, we first recorded the joint angles when ten subjects participated in an
experiment of reaching and grasping tasks while wearing a dataglove. Then we transformed
the recorded joint angles into joint angular velocities and further preprocessed it to prepare
datasets to be used as inputs to the dimensionality reduction methods.
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Fig. 2. (a) Objects grasped by the subjects. (b) An example of a rapid grasp of a wooden toy
nut. (c) Sensors of the CyberGlove used for analysis (dark circles.) (d) A sample of rapid
movement profile (finger-joint-angular-velocity profile). Onset and end of movements are
marked in the figure. Abbreviations: T, thumb; I, index finger; M, middle finger; R, ring
finger; P, pinky finger; CMC, carpometacarpal joint; MCP, metacarpophalangeal joint; IP,
interphalangeal joint; PIP, proximal interphalangeal joint; DIP, distal interphalangeal joint.
The dotted lines showed the onset and end of movement.

3.1 Experiment

The experimental setup consisted of a right-handed CyberGlove (CyberGlove Systems LLC,
San Jose, CA, USA) equipped with 22 sensors which can measure angles at all the finger joints.
For the purpose of reducing computational burden, in this study we only considered 10 of the
sensors which correspond to the metacarpophalangeal (MCP) and interphalangeal (IP) joints
of the thumb and the MCP and proximal interphalangeal (PIP) joints of the other four fingers
as shown in Fig. 2(c). These ten joints can capture most characteristics of the hand in grasping
tasks.
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Fig. 3. Angular-velocity matrix. (a) Cascading angular-velocity profiles of 10 joints to form a
row of the angular-velocity matrix. (b) Each row of the angular-velocity matrix represents a
grasping task. In each row the angular-velocity profiles of 10 joints are separated by dotted
red lines. Hundred such tasks put together is an angular-velocity matrix.

A typical task consisted of grasping the objects of various shapes and sizes as shown in
Fig. 2(a). Objects (wooden and plastic) of different shapes (spheres, circular discs, rectangles,
pentagons, nuts, and bolts) and different dimensions were used in the grasping tasks and were
selected based on two strategies. One was gradually increasing sizes of similar shaped objects,
and the other was using different shapes. Start and stop times of each task were signaled by
computer-generated beeps. In each task, the subject was in a seated position, resting his/her
right hand at a corner of a table and upon hearing the beep, grasped the object placed on the
table. At the time of the start beep hand was in rest posture, and then the subject grasped
the object and held it until the stop beep. Between the grasps, there was enough time for the
subjects to avoid the affects due to fatigue on succeeding tasks. The experiment was split into
two phases, training phase and testing phase, the difference in these two being the velocity of
grasps and types of grasps.

3.2 Training

In the training phase, subjects were instructed to rapidly grasp 50 objects, one at a time. This
was repeated for the same 50 objects, and thus the whole training phase obtained 100 rapid
grasps. Only these 100 rapid grasps were used in extracting synergies.
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3.3 Testing

In the testing phase, subjects were instructed to grasp the above 50 objects naturally (slower
than the rapid grasps) then repeat the same again. So far the tasks involved only grasping
action. To widen the scope of applicability of the synergies, subjects were also asked to pose
36 American Sign Language (ASL) postures. Here subjects started from an initial posture and
stopped at one ASL posture. These postures consisted of 10 numbers (0-9) and 26 alphabets
(A-Z). Note that these movements are different from grasping tasks. This is the testing phase
which consisted of 100 natural grasps and 36 ASL postural movements. The synergies were
derived from the hand movements collected in the training phase using linear and nonlinear
dimensionality reduction methods. Then they were used in the reconstruction of movements
collected during the testing phase.

3.4 Preprocessing

After obtaining the joint angles at various times from the rapid grasps, angular velocities were
calculated. These angular velocities were filtered from noise. Only the relevant projectile
movement (about 0.45 second or 39 samples at a sampling rate of 86 Hz) of the entire
angular-velocity profile was preserved and the rest was truncated (Fig. 2(d)).

Next an angular-velocity matrix, denoted V, was constructed for each subject.
Angular-velocity profiles of the 10 joints corresponding to one rapid grasp were cascaded
such that each row of the angular-velocity matrix represented one movement in time. The
matrix consisted of 100 rows and 39 × 10 = 390 columns:

V =



















v1
1(1) · · · v1

1(39) · · · v1
10(1) · · · v1

10(39)
...

...
...

...
...

...
...

v
g
1(1) · · · v

g
1(39) · · · v

g
10(1) · · · v

g
10(39)

...
...

...
...

...
...

...
v100

1 (1) · · · v100
1 (39) · · · v100

10 (1) · · · v100
10 (39)



















(1)

where v
g
i (t) represents the angular velocity of joint i (i = 1, ..., 10) at time t (t = 1, ..., 39) in the

g-th rapid-grasping task (g = 1, ..., 100). An illustration of this transformation was shown in
the Fig. 3.

4. Linear dimensionality reduction methods

In this section we derived synergies using two unique linear dimensionality reduction
methods, namely, PCA and MDS. The angular-velocity matrix computed in preprocessing
was used as input to these methods. Linear methods are easy to use and demand less
computational power when compared to nonlinear methods, hence this first exercise.

4.1 Principal component analysis

The winning advantage of PCA is less time for computation and equally effective results
when compared to gradient descent methods( Vinjamuri et al. (2007)). PCs are essentially
the most commonly used patterns across the data. In this case, PCs are the synergies
which are most commonly used across different movements. Moreover these PCs when
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graphically visualized revealed anatomical implications of physiological properties of human
hand prehension( Vinjamuri et al. (2010a;b)).

There are several ways to implement PCA. Two most widely used methods were shown
below. First method has three steps: (1) Subtract mean from the data (2) Calculate
covariance matrix (3) Compute eigen values and eigen vectors of covariance matrix. Principal
components are eigen vectors. Second method uses singular value decomposition (SVD).
Third method is a function readily available in Statistics Tool Box of MATLAB which
essentially implements first method.

load hald; %Load sample dataset in MATLAB

Data = ingredients’;

%Fetch dimensions of the data (M Dimensions x N observations)

[M,N] = size(Data);

MeanofData = mean(Data,2); %Calculate Mean of the Data

Data = Data - repmat(MeanofData,1,N); %Subtract Mean from the Data

Covariance = 1 / (N-1) * Data * Data’; %Calculate the covariance of the Data

[pc, latent] = eig(Covariance); %Find the eigenvectors and eigenvalues

latent = diag(latent); %Take only diagonal elements that are eigen values

[rd, rindices] = sort(-1*latent); %Sort them in decreasing order

latent = latent(rindices); %Extract eigen values corresponding to indices

pc = pc(:,rindices); %Extract principal components corresponding to indices

score = (pc’ * Data)’; %Project the Data into PC space

load hald; %Load sample dataset in MATLAB

Data = ingredients’;

%Fetch dimensions of the data (M Dimensions x N observations)

[M,N] = size(Data);

MeanofData = mean(Data,2); %Calculate Mean of the Data

Data = Data - repmat(MeanofData,1,N); %Subtract Mean from the Data

Y = Data’ / sqrt(N-1); %Normalized Data

[u,S,pc] = svd(Y); %Peform SVD

S = diag(S); %Extract diagonal elements corresponding to eigen values

latent = S .* S; %Calculate the eigen values

score = (pc’ * Data)’; %Project the Data into PC space

load hald; %Load sample dataset in MATLAB

[pc,score,latent,tsquare] = princomp(ingredients); %Peform PCA

Here PCA using SVD Jolliffe (2002) was performed on the angular-velocity matrix V of each
subject:

V = UΣS (2)

where U is a 100-by-100 matrix, which has orthonormal columns so that U′U = I100×100
(100-by-100 identity matrix); S is a 100-by-390 matrix, which has orthonormal rows so that
SS′ = I100×100; and Σ is a 100-by-100 diagonal matrix: diag{λ1, λ2, ..., λ100} with λ1 ≥ λ2 ≥
· · · ≥ λ100 ≥ 0. Matrix V can be approximated by another matrix Ṽ with reduced rank m
by replacing Σ with Σm, which contains only the m largest singular values, i.e., λ1, ..., λm (the
other singular values are replaced by zeros). The approximation matrix Ṽ can be written in a
more compact form:

Ṽ = Um diag{λ1, ..., λm} Sm (3)
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where Um is a 100-by-m matrix containing the first m columns of U and Sm is a m-by-390
matrix containing the first m rows of S. Denoting W = Um diag{λ1, ..., λm}, we have

V ≈ Ṽ = WSm. (4)

Then each row of Sm is called a principal component (PC), and W is called the weight matrix.

For easy comparison, let us name the elements of Sm in a way similar to (1):

Sm ≡






s1
1(1) · · · s1

1(39) · · · s1
10(1) · · · s1

10(39)
...

...
...

...
...

...
...

sm
1 (1) · · · sm

1 (39) · · · sm
10(1) · · · sm

10(39)






(5)

and name the elements of W in the following way:

W =



















w1
1 · · · w1

m
...

...
...

w
g
1 · · · w

g
m

...
...

...
w100

1 · · · w100
m



















. (6)

According to (4), each row of V can be approximated by a linear combination of m PCs, and
according to (4), (1), (5), and (6), we have

v
g
i (t) ≈

m

∑
j=1

w
g
j s

j
i(t) (7)

for i = 1, ..., 10, g = 1, ..., 100, and t = 1, ..., 39.

Thus the above SVD procedure has found a solution to the synergy-extraction problem: The
angular-velocity profiles (obtained by rearranging all joints row-wise for the PCs)













s
j
1(1) · · · s

j
1(39)

s
j
2(1) · · · s

j
2(39)

...
...

...

s
j
10(1) · · · s

j
10(39)













, j = 1, ..., m

can be viewed as synergies. According to (4) or (7), these synergies can serve as “building
blocks” to reconstruct joint-angular-velocity profiles of hand movements.

To decide m, the number of PCs or synergies that we want to use in reconstruction of
the testing movements, we consider the accuracy of approximation in (4) or (7). The
approximation accuracy can be measured by an index defined as

λ
2
1 + λ

2
2 + · · ·+ λ

2
m

λ2
1 + λ2

2 + · · ·+ λ2
100

.
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Fig. 4. Six kinematic synergies obtained for subject 1 using PCA. Each synergy is about 0.45 s
in duration (39 samples at 86 Hz). Abbreviations: T, thumb; I, index finger; M, middle finger;
R, ring finger; P, pinky finger; MCP, metacarpophalangeal joint; IP, interphalangeal joint; PIP,
proximal IP joint.
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The larger this index is, the closer the approximation is. This index also provides indication of
the fraction of total variance of the data matrix accounted by the PCs. To ensure satisfactory
approximation, the index should be greater than some threshold. In this study, we used 95%
as the threshold (a commonly used threshold Jolliffe (2002)) to determine the number of PCs
or synergies (i.e. m). With this threshold we found the six synergies can account for 95% of
variance in the postures. Fig. 4 shows six kinematic synergies obtained for subject 1 using
PCA.

4.2 Multidimensional scaling

Classical Multidimensional Scaling (MDS) can still be grouped under linear methods. This
was introduced here to the reader to give a different perspective of dimensionality reduction
in a slightly different analytical approach when compared to PCA discussed previously.
The two methods PCA and MDS are unique as they perform dimensionality reduction in
different ways. PCA operates on covariance matrix where as MDS operates on distance
matrix. In MDS, a Euclidean distance matrix is calculated from the original matrix. This
is nothing but a pairwise distance matrix between the variables in the input matrix. This
method tries to preserve these pairwise distances in a low dimensional space, thus allowing
for dimensionality reduction and preserving the inherent structure of the data simultaneously.
PCA and MDS were compared using a simple example in MATLAB below.

load hald; %Load sample dataset in MATLAB

[pc,score,latent,tsquare] = princomp(ingredients); %Peform PCA

D = pdist(ingredients); %Calculate pairwise distances between ingredients

[Y, e] = cmdscale(D); %Perform Classical MDS

score in PCA represented the data that was projected in the PC space. Compare this to Y
calculated in MDS. These are same. Similarly in place of sample dataset when the posture
matrix V was used as input to MDS, it yielded the same synergies as PCA. This was introduced
here because we build upon this method for the nonlinear methods coming up in the next
section.

5. Nonlinear dimensionality reduction methods

So far, we have investigated the use of linear dimensionality reduction methods (PCA
and MDS) in extracting synergies. In this section we used nonlinear dimensionality
reduction methods for the same purpose. The motivation to explore nonlinear methods
was that physiologists who studied motor control have propounded that there were inherent
nonlinearities in the human motor system. By using nonlinear methods we could probably
achieve improved precision in reconstruction of natural movements. The nonlinear methods
applied in this chapter are Isomap, local linear embedding (LLE), and kernel PCA (kPCA). The
first two methods Isomap and LLE, are built on the framework of classical multidimensional
scaling discussed in the previous section. kPCA is built on the framework of PCA.

5.1 Isomap

Isomap is similar to PCA and MDS. Although Isomap does linear estimations in the data point
neighborhoods, the synergies extracted are nonlinear because these small neighborhoods are
stitched together without trying to maintain linearity.
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The following were the steps involved in estimating nonlinear synergies using Isomap:

1. Define neighbors for each data point

2. Find D, a matrix of inter-point distances

3. Find eigenvectors of τ(D), where τ(D) = −HSH/2, Sij = (Dij)
2 and Hij = dij − 1/N, where

N is number of data points and d is Kronecker delta function.

In PCA we estimated the eigen values and eigen vectors of covariance of the data. Similarly,
here, we took a nonlinear approach to preserve inter-point distances on the manifold. The
matrix D is similar to covariance matrix in PCA. D can actually be thought of as the covariance
matrix in higher dimensions. Since in an N-dimensional space, the dimensions are the data
points, the covariance for a particular pair of dimensions is the distance between the data
points that define those dimensions.

Although this method looks linear like PCA, the source of nonlinearity is the method in
which inter-point distances are calculated. For Isomap, we do not use the Euclidean distances
between the points. If we use, it becomes classical MDS discussed in previous section. Rather,
we use those distances only for points considered neighbors. The rest of inter-point distances
are calculated by finding the shortest path through the graph on the manifold using Floyd’s
algorithm ( Tenenbaum et al. (2000)). The goal of the Isomap is to preserve the geodesic
distances rather than the euclidian distances. Geodesic distances are calculated by moving
along the approximate nonlinear manifold with given data point and interpolation between
them.

We used drtoolbox in MATLAB by van der Maaten et al. (2009) to perform Isomap on the
angular-velocity matrix to extract synergies. Fig. 5showed the top six synergies extracted
using this method. Similar to PCA, all the nonlinear methods also yield the nonlinear
synergies in descending order of their significance. The synergies extracted using this method
had more submovements when compared to those in PCA.

5.2 Local Linear Embedding

Locally Linear Embedding (LLE) as the name suggests, tries to find a nonlinear manifold by
stitching together small linear neighborhoods ( Roweis & Saul (2000)). This is very similar to
Isomap. The difference between the two algorithms is in how they do the stitching. Isomap
does this by doing a graph traversal by preserving geodesic distances while LLE does it by
finding a set of weights that perform local linear interpolations that closely approximate the
data.

The following were the steps involved in estimating nonlinear synergies using LLE:

1. Define neighbors for each data point

2. Find weights that allow neighbors to interpolate original data accurately

3. Given those weights, find new data points that minimize interpolation error in lower
dimensional space

We used drtoolbox in MATLAB by van der Maaten et al. (2009) to perform LLE on the
angular-velocity matrix to extract synergies. Fig. 6showed the top six synergies extracted
using this method. Similar to Isomap, in this method also we found more submovements in
synergies than those from PCA.
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Fig. 5. Six kinematic synergies obtained for subject 1 using Isomap. Each synergy is about
0.45 s in duration (39 samples at 86 Hz). Abbreviations: T, thumb; I, index finger; M, middle
finger; R, ring finger; P, pinky finger; MCP, metacarpophalangeal joint; IP, interphalangeal
joint; PIP, proximal IP joint.
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Fig. 6. Six kinematic synergies obtained for subject 1 using LLE. Each synergy is about 0.45 s
in duration (39 samples at 86 Hz). Abbreviations: T, thumb; I, index finger; M, middle finger;
R, ring finger; P, pinky finger; MCP, metacarpophalangeal joint; IP, interphalangeal joint; PIP,
proximal IP joint.
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5.3 Kernel PCA

Kernel PCA (kPCA) is an extension of PCA in a high-dimensional space ( Scholkopf et al.
(1998)). A high-dimensional space is first constructed by using a kernel function. Instead of
directly doing a PCA on the data, the kernel based high dimensional feature space is used
as input. In this chapter, we have used a gaussian kernel function. Kernel PCA computes
the principal eigenvectors of the kernel matrix, rather than those of the covariance matrix. A
kernel matrix is similar to the inner product of the data points in the high dimensional space
that is constructed using the kernel function. The application of PCA in the kernel space
provides Kernel PCA the property of constructing nonlinear mappings. We used drtoolbox
in MATLAB by van der Maaten et al. (2009) to perform kPCA on the angular-velocity matrix
to extract synergies. Fig. 7showed the top six synergies extracted using this method. These
synergies were similar to those obtained from PCA.

6. Reconstruction of natural and ASL movements

The synergies extracted from linear and nonlinear dimensionality reduction methods were
used in reconstruction of natural movements. l1-norm minimization was used to reconstruct
natural and ASL movements from the extracted synergies. This method with illustrations
was already presented in Vinjamuri et al. (2010a). We have included a brief explanation here
for readability and for the sake of completeness. We ask the readers to refer Vinjamuri et al.
(2010a) for further details.

Briefly, these were the steps involved in l1-norm minimization algorithm that was used for
reconstruction of natural and ASL movements. Let us assume for a subject m synergies were
obtained. The duration of the synergies is ts samples (ts = 39 in this study). Consider an
angular-velocity profile of the subject, {v(t), t = 1, ..., T}, where T (T = 82 in this study)
represents the movement duration (in samples). This profile can be rewritten as a row vector,
denoted vrow:

vrow = [v1(1), ..., v1(T), ..., v10(1), ..., v10(T)].

Similarly, a synergy s
j(·) can be rewritten as the following row vector:

[s
j
1(1), ..., s

j
1(ts), 0, ..., 0, ..., s

j
10(1), ..., s

j
10(ts), 0, ..., 0].

We add T − ts zeros after each s
j
i(ts) (i = 1, ..., 10) in the above vector in order to make the

length of the vector the same as that of vrow. If the synergy is shifted in time by tjk (tjk ≤ T− ts)
samples, then we obtain the following row vector:

[0, ..., 0, s
j
1(1), ..., s

j
1(ts), 0, ..., 0, ...,

0, ..., 0, s
j
10(1), ..., s

j
10(ts), 0, ..., 0]

with tjk zeros added before each s
j
i(1) and T − ts − tjk zeros added after each s

j
i(ts).

Then we construct a matrix as shown in Fig. 8 consisting of the row vectors of the synergies
and all their possible shifts with 1 ≤ tjk ≤ T − ts.

With the above notation, we are trying to achieve a linear combination of synergies that can
reconstruct the velocity profiles as in the following equation.

vrow = cB (8)
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Fig. 7. Six kinematic synergies obtained for subject 1 using kPCA. Each synergy is about 0.45
s in duration (39 samples at 86 Hz). Abbreviations: T, thumb; I, index finger; M, middle
finger; R, ring finger; P, pinky finger; MCP, metacarpophalangeal joint; IP, interphalangeal
joint; PIP, proximal IP joint.
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Fig. 8. (a) Synergies were rearranged as row vectors (b) A template matrix was formed by
adding the time-shifted versions of synergies along the rows. Adapted from Vinjamuri et al.
(2010a).

where c denotes
[0, ..., c11, ..., 0, ..., c1K1

, ..., 0, ..., cm1, ..., 0, ..., cmKm
, ..., 0]

with nonzero values cjk appearing at the (T − ts + 1)(j − 1) + tjk-th elements of c. The matrix
B (shown in Fig. 8(b)) can be viewed as a bank or library of template functions with each row
of B as a template. This bank can be overcomplete and contain linearly dependent subsets.
Therefore, for a given movement profile vrow and an overcomplete bank of template functions
B, there exists an infinite number of c satisfying (8).

We hypothesize that the strategy of central nervous system for dimensionality reduction in
movement control is to use a small number of synergies and a small number of recruitments
of these synergies for movement generation. Therefore, the coefficient vector c in (8) should
be sparse, i.e., having a lot of zeros and only a small number of nonzero elements. Therefore,
we seek the sparsest coefficient vector c such that cB = vrow.

The following was optimization problem that was used in selection of synergies in
reconstruction of a particular movement.

Minimize ‖ c ‖1 +
1

λ
‖ cB − vrow ‖2

2 (9)

where ‖ · ‖2 represents the l2 norm or Euclidean norm of a vector and λ is a regulation
parameter.
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Using the above optimization algorithm, the synergies extracted from four methods (PCA,
Isomap, LLE, and kPCA) were used in reconstruction of natural movements and ASL postural
movements. The reconstruction errors were calculated using the methods in Vinjamuri et al.
(2010a). Figures 9 and 10 showed the comparison between the four dimensionality reduction
methods. Fig. 9 showed the reconstruction errors for 100 natural movements and Fig. 10
showed the reconstruction errors for 36 ASL postural movements for all four methods. It
is observed that PCA still has the best overall performance when compared with the novel
nonlinear methods. Fig. 11 showed one of the best reconstructions by all four methods. Tables
1 and 2 summarize the reconstruction results obtained for all ten subjects.
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Fig. 9. The reconstruction errors for 100 natural movements with four dimensionality
reduction methods PCA, Isomap, LLE, and kPCA. PCA outperformed other three nonlinear
methods.
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Fig. 10. The reconstruction errors for 36 ASL postural movements with four dimensionality
reduction methods PCA, Isomap, LLE, and kPCA. All methods performed poorly in
reconstruction of ASL movements when compared to natural movements. PCA performed
better than other three nonlinear methods.

7. Summary

In this chapter we applied linear and nonlinear dimensionality reduction methods to extract
movement primitives or synergies from rapid reach and grasp movements. We then used
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these synergies to reconstruct natural movements that were similar to activities of daily living.
To broaden the applicability of synergies we also tested them on ASL postural movements
which are different movements when compared to natural reach and grasp movements. We
employed four types of dimensionality reduction methods: (1) PCA and MDS (2) Isomap (3)
LLE (4) kPCA. PCA is a well known linear dimensionality reduction method. Two widely
used PCA implementations (Covariance and SVD) were presented and relevant MATLAB
codes were provided. Classical MDS is very similar to PCA but operates on a distance matrix.
This was introduced as Isomap and LLE both work on a similar framework. Isomap and
LLE are both neighborhood graph based nonlinear dimensionality reduction methods. The
difference between Isomap and LLE is that the former is a global dimensionality reduction
technique where as the former as the name suggests is a local linear technique. kPCA is
similar to Isomap as it is a global dimensionality reduction method, but the uniqueness of the
method is in using kernel tricks to transform the input data to higher dimensional space.

Subject PCA Isomap LLE kPCA

1 0.0797 ± 0.0596 0.3240 ± 0.0769 0.3544±0.0954 0.2954 ± 0.0851
2 0.0845 ± 0.0781 0.3780 ± 0.0519 0.3998±0.0765 0.3444 ± 0.0658
3 0.0678 ± 0.0396 0.3180 ± 0.0554 0.3234±0.0834 0.2654 ± 0.0767
4 0.0590 ± 0.0432 0.3680 ± 0.0663 0.3879±0.0645 0.3214 ± 0.0873
5 0.0997 ± 0.0831 0.2640 ± 0.0734 0.2950±0.0790 0.2230 ± 0.0667
6 0.0661 ± 0.0976 0.3240 ± 0.0545 0.3754±0.0531 0.2875 ± 0.0931
7 0.0598 ± 0.0542 0.4140 ± 0.0787 0.4344±0.0632 0.3895 ± 0.0696
8 0.0732 ± 0.0348 0.3540 ± 0.0989 0.3954±0.0854 0.3123 ± 0.0555
9 0.0814 ± 0.0212 0.2290 ± 0.0823 0.3100±0.0991 0.2074 ± 0.0651

10 0.0883 ± 0.0443 0.2490 ± 0.0665 0.2780±0.0799 0.2189 ± 0.0799

Table 1. Mean reconstruction errors (± standard deviation) in natural movements

Subject PCA Isomap LLE kPCA

1 0.2449 ± 0.0986 0.3480 ± 0.0988 0.3867±0.1052 0.3654 ± 0.0865
2 0.2782 ± 0.0915 0.3280 ± 0.0891 0.3661±0.0963 0.3291 ± 0.0745
3 0.2677 ± 0.0866 0.3110 ± 0.0764 0.3527±0.0881 0.3321 ± 0.0666
4 0.2321 ± 0.0645 0.3450 ± 0.0662 0.3667±0.1123 0.3540 ± 0.0831
5 0.2899 ± 0.0713 0.3780 ± 0.0843 0.3889±0.0792 0.3624 ± 0.0934
6 0.2569 ± 0.0456 0.3200 ± 0.0894 0.3457±0.0856 0.3654 ± 0.0678
7 0.2319 ± 0.0521 0.3890 ± 0.0663 0.3999±0.0996 0.3889 ± 0.0610
8 0.2789 ± 0.0486 0.3671 ± 0.0713 0.3897±0.1152 0.3764 ± 0.0885
9 0.2999 ± 0.0816 0.3335 ± 0.0465 0.3867±0.1672 0.3478 ± 0.0585

10 0.2569 ± 0.0936 0.3146 ± 0.0548 0.3547±0.0082 0.3354 ± 0.0635

Table 2. Mean reconstruction errors (± standard deviation) in ASL postural movements

Thus the reader was given the opportunity to sample different varieties of dimensionality
reduction methods. Quantitative and qualitative comparison of the results obtained from
reconstruction follows but the verdict is that PCA outperformed the nonlinear methods
employed in this chapter.

The results from the reconstructions reveal that nonlinear techniques do not outperform
the traditional PCA for both natural movements as well as ASL postural movements. The
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Fig. 11. An example reconstruction (in black) of a natural movement (in red) for task 24 when
subject 1 was grasping an object.
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reconstruction errors were more for ASL postural movements when compared to those of
natural movements for all methods. The reconstruction errors were in general larger for
Isomap and LLE when compared with PCA and kPCA and of course PCA had outstanding
performance for more than 90% of the tasks. van der Maaten et al. ( van der Maaten et al.
(2009)) also found that nonlinear methods performed well on specific data sets but could
not perform better than PCA for real world tasks. For example, for the Swiss roll data
set that contains points that lie on a spiral like two dimensional manifold within a three
dimensional space, several nonlinear techniques such as Isomap, LLE were able to find the
two dimensional planar embedding, but linear techniques like PCA failed to find so. The
reasons for two nonlinear methods Isomap and LLE to perform poorly in this study, might
be that they relied neighborhood graphs. Moreover LLE might have been biased to local
properties that do not necessarily follow the global properties of high dimensional data. It was
surprising to see that Isomap, being a global dimensionality reduction technique performed
poorly when compared to LLE for natural movements. kPCA performed better than Isomap
and LLE, but kPCA does suffer from the limitation of selection of ideal kernel. The selection
of gaussian kernel in this study might not be favorable in extracting the kinematic synergies
in this study. In conclusion, although there are numerical advantages and disadvantages with
both linear and nonlinear dimensionality reduction methods, PCA seemed to generalize and
perform well on the real world data.
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