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1. Introduction

Principal component analysis (PCA) has been extended to various ways because of its simple
definition. Especially, non-linear generalizations of PCA have been proposed and used in
various areas. Non-linear generalizations of PCA, such as principal curves (Hastie & Stuetzle,
1989) and manifolds (Gorban et al., 2008), have intuitive explanations and formulations
comparing to the other non-linear dimensional techniques such as ISOMAP (Tenenbaum et al.,
2000) and Locally-linear embedding (LLE) (Roweis & Saul, 2000).

Kernel PCA (KPCA) is one of the non-linear generalizations of PCA by using the kernel
trick (Schölkopf et al., 1998). The kernel trick nonlinearly maps input samples to higher
dimensional space so-called the feature space F . The mapping is denoted by Φ, and let x
be a d-dimensional input vector,

Φ :Rd → F , x �→ Φ(x). (1)

Then a linear operation in the feature space is a non-linear operation in the input space. The
dimension of the feature space F is usually much larger than the input dimension d, or could
be infinite. The positive definite kernel function k(·, ·) that satisfies following equation is used
to avoid calculation in the feature space,

k(x1,x2) = 〈Φ(x1), Φ(x2)〉 ∀x1,x2 ∈ R
d, (2)

where 〈·, ·〉 denotes the inner product.

By using the kernel function, inner products in F are replaced by the kernel function k :
R

d × R
d → R. According to this replacement, the problem in F is reduced to the problem

in R
n, where n is the number of samples since the space spanned by mapped samples is at

most n-dimensional subsapce. For example, the primal problem of Support vector machines
(SVMs) in F is reduced to the Wolf dual problem in R

n (Vapnik, 1998).

In real problems, the number of n is sometimes too large to solve the problem in R
n. In the

case of SVMs, the optimization problem is reduced to the convex quadratic programming
whose size is n. Even if n is too large, SVMs have efficient computational techniques such as
chunking or the sequential minimal optimization (SMO) (Platt, 1999), since SVMs have sparse
solutions for the Wolf dual problem. After the optimal solution is obtained, we only have to
store limited number of learning samples so-called support vectors to evaluate input vectors.
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2 Principal Component Analysis / Book 1

In the case of KPCA, the optimization problem is reduced to an eigenvalue problem
whose size is n. There are some efficient techniques for eigenvalue problems, such as the
divide-and-conquer eigenvalue algorithm (Demmel, 1997) or the implicitly restarted Arnoldi
method (IRAM) (Lehoucq et al., 1998) 1. However, their computational complexity is still too
large to solve when n is large, because KPCA does not have sparse solution. These algorithms
require O(n2) working memory space and O(rn2) computational complexity, where r is the
number of principal components. Moreover, we have to store all n learning samples to
evaluate input vectors.

Subset KPCA (SubKPCA) approximates KPCA using the subset of samples for its basis,
and all learning samples for the criterion of the cost function (Washizawa, 2009). Then the
optimization problem for SubKPCA is reduced to the generalized eigenvalue problem whose
size is the size of the subset, m. The size of the subset m defines the trade-off between the
approximation accuracy and the computational complexity. Since all learning samples are
utilized for its criterion, even if m is much smaller than n, the approximation error is small. The
approximation error due to this subset approximation is discussed in this chapter. Moreover,
after the construction, we only have to store the subset to evaluate input vectors.

An illustrative example is shown in Figure 1. Figure 1 (a) shows artificial 1000 2-dimensional
samples, and contour lines of norms of transformed vectors onto one-dimensional subspace
by PCA. Figure 1 (b) shows contour curves by KPCA (transformed to five-dimensional
subspace in F ). This is non-linear analysis, however, it requires to solve an eigenvalue
problem whose size is 1000. For an input vector, calculations of kernel function with all 1000
samples are required. Figure 1 (c) randomly selects 50 samples, and obtains KPCA. In this
case, the size of the eigenvalue problem is only 50, and calculations of kernel function with
only 50 samples are required to obtain the transform. However, the contour curves are rather
different from (b). Figure 1 (d) shows contour curves of SubKPCA by using the 50 samples
for its basis, and all 1000 samples for evaluation. The contour corves are almost that same
with (b). In this case, the size of the eigenvalue problem is also only 50, and the number of
calculations of kernel function is also 50.

There are some conventional approaches to reduce the computational complexity of KPCA.
improved KPCA (IKPCA) (Xu et al., 2007) is similar approach to SubKPCA, however, the
approximation error is much higher than SubKPCA. Experimental and theoretical difference
are shown in this chapter. Comparisons with Sparse KPCAs (Smola et al., 1999; Tipping, 2001),
Nyström method (Williams & Seeger, 2001), incomplete Cholesky decomposition (ICD) (Bach
& Jordan, 2002) and adaptive approaches (Ding et al., 2010; Günter et al., 2007; Kim et al.,
2005) are also diecussed.

In this chapter, we denote vectors by bold-italic lower symbols x,y, and matrices by bold-italic
capital symbols A,B. In kernel methods, F could be infinite-dimensional space up to
the selection of the kernel function. If vectors could be infinite (functions), we denote
them by italic lower symbols f , g. If either domain or range of linear transforms could be
infinite-dimensional space, we denote the transforms by italic capital symbols X, Y. This is
summarized as follows; (i) bold symbols, x,A, are always finite. (ii) non-bold symbols, f , X,
could be infinite.

1 IRAM is implemented as “eigs” in MATLAB

68 Principal Component Analysis
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Fig. 1. Illustrative example of SubKPCA

2. Kernel PCA

This section briefly reviews KPCA, and shows some characterizations of KPCA.

2.1 Brief review of KPCA

Let x1, . . . ,xn be d-dimensional learning samples, and X = [x1| . . . |xn] ∈ R
d×n.

Suppose that their mean is zero or subtracted. Standard PCA obtains eigenvectors of the
variance-covariance matrix Σ,

Σ =
1

n

n

∑
i=1

xix
⊤
i =

1

n
XX⊤. (3)

Then the ith largest eigenvector corresponds to the ith principal component. Suppose
UPCA = [u1| . . . |ur]. The projection and the transform of x onto r-dimensional eigenspace
are UPCAU

⊤
PCAx and U⊤

PCAx respectively.

69Subset Basis Approximation of Kernel Principal Component Analysis
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4 Principal Component Analysis / Book 1

In the case of KPCA, input vectors are mapped to feature space before the operation. Let

S =[Φ(x1)| . . . |Φ(xn)] (4)

ΣF =SS∗ (5)

K =S∗S ∈ R
n×n, (6)

where ·∗ denotes the adjoint operator 2, and K is called the kernel Gram matrix (Schölkopf
et al., 1999), and i,j-component of K is k(xi,xj). Then the ith largest eigenvector corresponds
to the ith principal component. If the dimension of F is large, eigenvalue decomposition
(EVD) cannot be performed. Let {λi, ui} be the ith eigenvalue and corresponding eigenvector
of ΣF respectively, and {λi,vi} be the ith eigenvalue and eigenvector of K. Note that K and
ΣF have the same eigenvalues. Then the ith principal component can be obtained from the
ith eigenvalue and eigenvector of K,

ui =
1√
λi

Svi. (7)

Note that it is difficult to obtain ui explicitly on a computer because the dimension of F
is large. However, the inner product of a mapped input vector Φ(x) and the ith principal
component is easily obtained from,

〈ui, Φ(x)〉 = 1√
λi

〈vi,kx〉, (8)

kx = [k(x,x1), . . . , k(x,xn)]
⊤ (9)

kx is an n-dimensional vector called the empirical kernel map.

Let us summarize using matrix notations. Let

ΛKPCA = diag([λ1, . . . , λr]) (10)

UKPCA = [u1| . . . |ur] (11)

VKPCA = [v1| . . . |vr]. (12)

Then the projection and the transform of x onto the r-dimensional eigenspace are

UKPCAU∗
KPCAΦ(x) = SVKPCAΛ

−1V ⊤
KPCAkx, (13)

U∗
KPCAΦ(x) = Λ

−1/2V ⊤
KPCAkx. (14)

2.2 Characterization of KPCA

There are some characterizations or definitions for PCA (Oja, 1983). SubKPCA is extended
from the least mean square (LMS) error criterion 3.

min
X

J0(X) =
1

n

n

∑
i=1

‖xi −Xxi‖2

Subject to rank(X) ≤ r.

(15)

2 In real finite dimensional space, the adjoint and the transpose ·⊤ are equivalent. However, in infinite
dimensional space, the transpose is not defined

3 Since all definitions of PCA lead to the equivalent solution, SubKPCA is also defined by the other
definitions. However, in this chapter, only LMS criteria is shown.
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Subset Basis Approximation of Kernel Principal Component Analysis 5

From this definition, X that minimizes the averaged distance between xi and Xxi over i is
obtained under the rank constraint. Note that from this criterion, each principal component is
not characterized, i.e., the minimum solution is X = UPCAU

⊤
PCA, and the transform UPCA is

not determined.

In the case of KPCA, the criterion is

min
X

J1(X) =
1

n

n

∑
i=1

‖Φ(xi)− XΦ(xi)‖2

Subject to rank(X) ≤ r, N (X) ⊃ R(S)⊥,

(16)

where R(A) denotes the range or the image of the matrix or the operator A, and N (A)
denotes the null space or the kernel of the matrix or the operator A. In linear case, we can
assume that the number of samples n is sufficiently larger than r and d, and the second
constraint N (X) ⊃ R(S)⊥ is often ignored. However, since the dimension of the feature
space is large, r could be larger than the dimension of the space spanned by mapped samples
Φ(x1), . . . , Φ(xn). For such cases, the second constraint is introduced.

2.2.1 Solution to the problem (16)

Here, brief derivation of the solution to the problem (16) is shown. Since the problem is in
R(S), X can be parameterized by X = SAS∗, A ∈ R

n×n. Accordingly, J1 yields

J1(A) =
1

n
‖S − SAS∗S‖2

F =
1

n
Trace[K −KAK −KA⊤K +A⊤KAK]

=
1

n
‖KAK1/2 −K1/2‖2

F (17)

where ·1/2 denotes the square root matrix, and ‖ · ‖F denotes the Frobenius norm. The
eigenvalue decomposition of K is K = ∑

n
i=1 λiviv

⊤
i . From the Schmidt approximation

theorem (also called Eckart-Young theorem) (Israel & Greville, 1973), J1 is minimized when

KAK1/2 =
r

∑
i=1

√

λiviv
⊤
i (18)

A =
r

∑
i=1

1

λi
viv

⊤
i = VKPCAΛ

−1V ⊤
KPCA (19)

2.3 Computational complexity of KPCA

The procedure of KPCA is as follows;

1. Calculate K from samples. [O(n2)]

2. Perform EVD for K, and obtain the r largest eigenvalues and eigenvectors, λ1, . . . , λr,
v1, . . . vr. [O(rn2)]

3. Obtain Λ
−1/2V ⊤

KPCA, and store all training samples.

4. For an input vector x, calculate the empirical kernel map kx from Eq. (9). [O(n)]

5. Obtain transformed vector Eq. (14). [O(rn)]

71Subset Basis Approximation of Kernel Principal Component Analysis
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6 Principal Component Analysis / Book 1

The procedures 1, 2, and 3 are called the learning (training) stage, and the procedures 4 and 5
are called the evaluation stage.

The dominant computation for the learning stage is EVD. In realistic situation, n should be
less than several tens of thousands. For example, if n = 100, 000, 20Gbyte RAM is required to
store K on four byte floating point system. This computational complexity is sometimes too
heavy to use for real large-scale problems. Moreover, in the evaluation stage, response time of
the system depends on the number of n.

3. Subset KPCA

3.1 Definition

Since the problem of KPCA in the feature space F is in the subspace spanned by the mapped
samples, Φ(x1), . . . , Φ(xn), i.e., R(S), the problem in F is transformed to the problem in R

n.
SubKPCA seeks the optimal solution in the space spanned by smaller number of samples,
Φ(y1), . . . , Φ(ym), m ≤ n that is called a basis set. Let T = [Φ(y1), . . . , Φ(ym)], then the
optimization problem of SubKPCA is defined as

min
X

J1(X)

Subject to rank(X) ≤ r, N (X) ⊃ R(T)⊥, R(X) ⊂ R(T).
(20)

The third and the fourth constraints indicate that the solution is in R(T). It is worth noting
that SubKPCA seeks the solution in the limited space, however, the objective function is the
same as that of KPCA, i.e., all training samples are used for the criterion. We call the set of all
training samples the criterion set. The selection of the basis set {y1, . . . ,ym} is also important
problem, however, here we assume that it is given, and the selection is discussed in the next
section.

3.2 Solution of SubKPCA

At first, the minimal solutions to the problem (20) are shown, then their derivations are shown.
If R(T) ⊂ R(S), its solution is simplified. Note that if the set {y1, . . . ,ym} the subset of
{x1, . . . ,xn}, R(T) ⊂ R(S) is satisfied. Therefore, solutions for two cases are shown, (R(T) ⊂
R(S) and all cases)

3.2.1 The case R(T) ⊂ R(S)

Let Ky = T∗T ∈ R
m×m, (Ky)i,j = k(yi,yj), Kxy = X∗T ∈ R

n×m, (Kxy)i,j = k(xi,yj).
Let κ1, . . . , κr and z1, . . . ,zr be sorted eigenvalues and corresponding eigenvectors of the
generalized eigenvalue problem,

K⊤
xyKxyz = κKyz (21)

respectively, where each eigenvector zi is normalized by zi ← zi/
√

〈zi,Kyzi〉, that is
〈zi,Kyzj〉 = δij (Kronecker delta). Let Z = [z1| . . . |zr], then the problem (20) is minimized
by

PSubKPCA = TZZ⊤T∗. (22)

72 Principal Component Analysis
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Subset Basis Approximation of Kernel Principal Component Analysis 7

The projection and the transform of SubKPCA for an input vector x are

PSubKPCAΦ(x) = TZZ⊤hx (23)

USubKPCAΦ(x) = Z⊤hx, (24)

where hx = [k(x,y1), . . . , k(x,ym)] ∈ R
m is the empirical kernel map of x for the subset.

A matrix or an operator A that satisfies AA = A and A⊤ = A (A∗ = A), is called a projector
(Harville, 1997). If R(T) ⊂ R(S), PSubKPCA is a projector since P∗

SubKPCA = PSubKPCA, and

PSubKPCAPSubKPCA =TZZ⊤KyZZ⊤T∗ = TZZ⊤T∗ = PSubKPCA. (25)

3.2.2 All cases

The Moore-Penrose pseudo inverse is denoted by ·†. Suppose that EVD of
(Ky)†K⊤

xyKxy(Ky)† is

(Ky)
†K⊤

xyKxy(Ky)
† =

m

∑
i=1

ξiwiw
⊤
i , (26)

and let W = [w1, . . . ,wr]. Then the problem (20) is minimized by

PSubKPCA = T(K1/2
y )†WW⊤(K1/2

y )†(K⊤
xyKxy)(K

⊤
xyKxy)

†T∗. (27)

Since the solution is rather complex, and we don’t find any advantages to use the basis set
{y1, . . . ,ym} such that R(T) �⊂ R(S), we henceforth assume that R(T) ⊂ R(S).

3.2.3 Derivation of the solutions

Since the problem (20) is in R(T), the solution can be parameterized as X = TBT∗, B ∈
R

m×m. Then the objective function is

J1(B) =
1

n
‖S − TBT∗S‖2

F (28)

=
1

n
Trace[BK⊤

xyKxyB
⊤Ky −B⊤K⊤

xyKxy −BK⊤
xyKxy +K]

=
1

n
‖K1/2

y BK⊤
xy − (K1/2

y )†K⊤
xy‖2

F +
1

n
Trace[K −KxyK

†
yK

⊤
xy , ] (29)

where the relations K⊤
xy = K1/2

y (K1/2
y )†K⊤

xy and Kxy = Kxy(K1/2
y )†K1/2

y are used. Since
the second term is a constant for B, from the Schmidt approximation theorem, The minimum
solution is given by the singular value decomposition (SVD) of (K1/2

y )†K⊤
xy ,

(K1/2
y )†K⊤

xy =
m

∑
i=1

√

ξiwiν
⊤
i . (30)

Then the minimum solution is given by

K1/2
y BK⊤

xy =
r

∑
i=1

√

ξiwiν
⊤
i . (31)

73Subset Basis Approximation of Kernel Principal Component Analysis
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8 Principal Component Analysis / Book 1

From the matrix equation theorem (Israel & Greville, 1973), the minimum solution is given by
Eq. (27).

Let us consider the case that R(T) ⊂ R(S).

Lemma 1 (Harville (1997)). Let A and B be non-negative definite matrices that satisfy R(A) ⊂
R(B). Consider an EVD and a generalized EVD,

(B1/2)†A(B1/2)†v = λv

Au = σBu,

and suppose that {(λi,vi)} and {(σi,ui)}, i = 1, 2, . . . are sorted pairs of the eigenvalues and the
eigenvectors respectively. Then

λi =σi

ui =α(B1/2)†vi, ∀α ∈ R

vi =βB1/2ui, ∀β ∈ R

are satisfied.

If R(T) ⊂ R(S), R(K⊤
xy) = R(Ky). Since (K⊤

xyKxy)(K⊤
xyKxy)† is a projector onto

R(Ky), (K1/2
y )†(K⊤

xyKxy)(K⊤
xyKxy)† = (K1/2

y )† in Eq. (27). From Lemma 1, the solution
Eq. (22) is derived.

3.3 Computational complexity of SubKPCA

The procedures and computational complexities of SubKPCA are as follows,

1. Select the subset from training samples (discussed in the next Section)

2. Calculate Ky and K⊤
xyKxy [ O(m2) + O(nm2)]

3. Perform generalized EVD, Eq. (21). [O(rm2)]

4. Store Z and the samples in the subset.

5. For an input vector x, calculate the empirical kernel map hx. [O(m)]

6. Obtain transformed vector Eq. (24).

The procedures 1, 2 and 3 are the construction, and 4 and 5 are the evaluation. The dominant
calculation in the construction stage is the generalized EVD. In the case of standard KPCA,
the size of EVD is n, whereas for SubKPCA, the size of generalized EVD is m. Moreover,
for evaluation stage, the computational complexity depends on the size of the subset, m, and
required memory to store Z and the subset is also reduced. It means the response time of the
system using SubKPCA for an input vector x is faster than standard KPCA.

3.4 Approximation error

It should be shown the approximation error due to the subset approximation. In the case of
KPCA, the approximation error, that is the value of the objective function of the problem (16).
From Eqs. (17) and (19), The value of J1 at the minimum solution is

J1 =
1

n

n

∑
i=r+1

λi. (32)

74 Principal Component Analysis
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Subset Basis Approximation of Kernel Principal Component Analysis 9

In the case of SubKPCA, the approximation error is

J1 =
1

n

n

∑
i=r+1

ξi +
1

n
Trace[K −Kxy(Ky)

†K⊤
xy ]. (33)

The first term is due to the approximation error for the rank reduction and the second term
is due to the subset approximation. Let PR(S) and PR(T) be orthogonal projectors onto R(S)

and R(T) respectively. The second term yields that

Trace[K −Kxy(Ky)
†K⊤

xy ] = Trace[S∗(PR(S) − PR(T))S], (34)

since K = S∗PR(S)S. Therefore, if R(S) = R(T) (for example, the subset contains all training
samples), the second term is zero. If the range of the subset is far from the range of the all
training set, the second term is large.

3.5 Pre-centering

Although we have assumed that the mean of training vector in the feature space is zero so far,
it is not always true in real problems. In the case of PCA, we subtract the mean vector from
all training samples when we obtain the variance-covariance matrix Σ. On the other hand, in
KPCA, although we cannot obtain the mean vector in the feature space, Φ̄ = 1

n ∑
n
i=1 Φ(xi),

explicitly, the pre-centering can be set in the algorithm of KPCA. The pre-centering can be
achieved by using subtracted vector Φ̄(xi), instead of a mapped vector Φ(xi),

Φ̄(xi) =Φ(xi)− Φ̄, (35)

that is to say, S and K in Eq. (17) are respectively replaced by

S̄ =S − Φ̄1⊤n = S(I − 1

n
1n,n) (36)

K̄ =S̄∗S̄ = (I − 1

n
1n,n)K(I − 1

n
1n,n) (37)

where I denotes the identify matrix, and 1n and 1n,n are an n-dimensional vector and an n× n
matrix whose elements are all one, respectively.

For SubKPCA, following three methods to estimate the centroid can be considered,

1. Φ̄1 =
1

n

n

∑
i=1

Φ(xi)

2. Φ̄2 =
1

m

m

∑
i=1

Φ(yi)

3. Φ̄3 = argmin
Ψ∈R(T)

‖Ψ − Φ̄1‖ =
1

n
TK†

yK
⊤
xy1n.

The first one is the same as that of KPCA. The second one is the mean of the basis set. If the
basis set is the subset of the criterion set, the estimation accuracy is not as good as Φ̄1. The
third one is the best approximation of Φ̄1 in R(T). Since SubKPCA is discussed in R(T),
Φ̄1 and Φ̄3 are equivalent. However, for the post-processing such as pre-image, they are not
equivalent.

75Subset Basis Approximation of Kernel Principal Component Analysis
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10 Principal Component Analysis / Book 1

For SubKPCA, only S in Eq. (28) has to be modified for per-centering 4. If Φ̄3 is used, S and
Kxy are replaced by

S̄ =S − Φ̄31
⊤
n (38)

K̄xy =S̄∗T = (I − 1

n
1n,n)Kxy . (39)

4. Selection of samples

Selection of samples for the basis set is an important problem in SubKPCA. Ideal criterion for
the selection depends on applications such as classification accuracy or PSNR for denoising.
We, here, show a simple criterion using empirical error,

min
y1,...,ym

min
X

J1(X)

Subject to rank(X) ≤ r, N (X) ⊃ R(T)⊥, R(X) ⊂ R(T),
{y1, . . . ,ym} ⊂ {x1, . . . ,xn}, T = [Φ(y1)| . . . |Φ(ym)].

(40)

This criterion is a combinatorial optimization problem for the samples, and it is hard to obtain
to global solution if n and m are large. Instead of solving directly, following techniques can be
introduced,

1. Greedy forward search

2. Backward search

3. Random sampling consensus (RANSAC)

4. Clustering,

and their combinations.

4.1 Sample selection methods

4.1.1 Greedy forward search

The greedy forward search adds a sample to the basis set one by one or bit by bit. The
algorithm is as follows, If several samples are added at 9 and 10, the algorithm is faster, but
the cost function may be larger.

4.1.2 Backward search

On the other hand, a backward search removes samples that have the least effect on the
cost function. In this case, the standard KPCA using the all samples has to be constructed
at the beginning, and this may have very high computational complexity. However, the
backward search may be useful in combination with the greedy forward search. In this case,
the size of the temporal basis set does not become large, and the value of the cost function is
monotonically decreasing.

Sparse KPCA (Tipping, 2001) is a kind of backward procedures. Therefore, the kernel Gram
matrix K using all training samples and its inverse have to be calculated in the beginning.

4 Of course, for KPCA, we can also consider the criterion set and the basis set, and perform pre-centering
only for the criterion set. It produces the equivalent result.
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Subset Basis Approximation of Kernel Principal Component Analysis 11

Algorithm 1 Greedy forward search (one-by-one version)

1: Set initial basis set T = φ, size of current basis set m̃ = 0, residual set S = {x1, . . . ,xn},
size of the residual set ñ = n.

2: while m̃ < m, do
3: for i = 1, . . . , ñ do
4: Let temporal basis set be T̃ = T ∪ {xi}
5: Obtain SubKPCA using the temporal basis set
6: Store the empirical error Ei = J1(X).
7: end for
8: Obtain the smallest Ei, k = argminiEi.
9: Add xk to the current basis set, T ← T ∪ {xk}, m̃ ← m̃ + 1

10: Remove xk from the residual set, S ← S\{xk}, ñ ← ñ − 1.
11: end while

4.1.3 Random sampling consensus

RANSAC is a simple sample (or parameter) selection technique. The best basis set is chosen
from many random sampling trials. The algorithm is simple to code.

4.1.4 Clustering

Clustering techniques also can be used for sample selection. When the subset is used for the
basis set, i) a sample that is the closest to each centroid should be used, or ii) centroids should
be included to the criterion set. Clustering in the feature space F is also proposed (Girolami,
2002).

5. Comparison with conventional methods

This section compares SubKPCA with related conventional methods.

5.1 Improved KPCA

Improved KPCA (IKPCA) (Xu et al., 2007) directly approximates ui ≃ Tṽi in Eq. (7). From
SS∗ui = λiui, the approximated eigenvalue problem is

SS∗Tṽ = λiTṽi. (41)

By multiplying T∗ from left side, one gets the approximated generalized EVD, K⊤
xyKxyṽ =

λiKyṽi. The parameter vector vi is substituted to the relation ũi = Tṽi, hence, the transform
of an input vector x is

U∗
IKPCAΦ(x) =

(

diag([
1√
κ1

, . . . ,
1√
κr
])

)

Z⊤hx, (42)

where κi is the ith largest eigenvalue of (21).

This approximation has no guarantee to be good approximation of ui. In our experiments
in the next section, IKPCA showed worse performance than SubKPCA. In so far as feature
extraction, each dimension of the feature vector is multiplied by 1√

κi
comparing to SubKPCA.

If the classifier accepts such linear transforms, the classification accuracy of feature vectors
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may be the same with SubKPCA. Indeed, (Xu et al., 2007) uses IKPCA only for feature
extraction of a classification problem, and IKPCA shows good performance.

5.2 Sparse KPCA

Two methods to obtain a sparse solution to KPCA are proposed (Smola et al., 1999; Tipping,
2001). Both approaches focus on reducing the computational complexity in the evaluation
stage, and do not consider that in the construction stage. In addition, the degree of sparsity
cannot be tuned directly for these sparse KPCAs, where as the number of the subset m can be
tuned for SubKPCA.

As mentioned in Section 4.1.2, (Tipping, 2001) is based on a backward search, therefore, it
requires to calculate the kernel Gram matrix using all training samples, and its inverse. These
procedures have high computational complexity, especially, when n is large.

(Smola et al., 1999) utilizes l1 norm regularization to make the solution sparse. The principal

components are represented by linear combinations of mapped samples, ui = ∑
n
j=1 α

j
iΦ(xj).

The coefficients α
j
i have many zero entry due to l1 norm regularization. However, since α

j
i has

two indeces, even if each principal component ui is represented by a few samples, it may not
be sparse for many i.

5.3 Nyström approximation

Nyström approximation is a method to approximate EVD, and it is applied to KPCA (Williams
& Seeger, 2001). Let ũi and ui be the ith eigenvectors of Ky and K respectively. Nyström
approximation approximates

ṽi =

√

m

n

1

λi
Kxyvi, (43)

where λi is the ith eigenvalue of Ky . Since the eigenvector of Kx is approximated by the
eigenvector of Ky , the computational complexity in the construction stage is reduced, but
that in the evaluation stage is not reduced. In our experiments, SubKPCA shows better
performance than Nyström approximation.

5.4 Iterative KPCA

There are some iterative approaches for KPCA (Ding et al., 2010; Günter et al., 2007; Kim et al.,

2005). They update the transform matrix Λ
−1/2V ⊤

KPCA in Eq. (14) for incoming samples.

Iterative approaches are sometimes used for reduction of computational complexities. Even if
optimization step does not converge to the optimal point, early stopping point may be a good
approximation of the optimal solution. However, Kim et al. (2005) and Günter et al. (2007)
do not compare their computational complexity with standard KPCA. In the next section,
comparisons of run-times show that iterative KPCAs are not faster than batch approaches.

5.5 Incomplete Cholesky decomposition

ICD can also be used for reduction of computational complexity of KPCA. ICD approximates
the kernel Gram matrix K by

K ≃GG⊤, (44)
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where G ∈ R
n×m whose upper triangle part is zero, and m is a parameter that specifies

the trade-off between approximation accuracy and computational complexity. Instead of
performing EVD of K, eigenvectors of K is obtained from EVD of G⊤G ∈ R

m×m using
the relation Eq. (7) approximately. Along with Nyström approximation, ICD reduces
computational complexity in the construction stage, but not in evaluation stage, and all
training samples have to be stored for the evaluation.

In the next section, our experimental results indicate that ICD is slower than SubKPCA for
very large dataset, n is more than several thousand.

ICD can also be applied to SubKPCA. In Eq. (21), K⊤
xyKxy is approximated by

K⊤
xyKxy ≃GG⊤. (45)

Then approximated z is obtained from EVD of G⊤KyG.

6. Numerical examples

This section presents numerical examples and numerical comparisons with the other methods.

6.1 Methods and evaluation criteria

At first, methods to be compared and evaluation criteria are described. Following methods
are compared,

1. SubKPCA [SubKp]

2. Full KPCA [FKp]
Standard KPCA using all training samples.

3. Reduced KPCA [RKp]
Standard KPCA using subset of training samples.

4. Improved KPCA (Xu et al., 2007) [IKp]

5. Sparse KPCA (Tipping, 2001) [SpKp]

6. Nyström approximation (Williams & Seeger, 2001) [Nys]

7. ICD (Bach & Jordan, 2002) [ICD]

8. Kernel Hebbian algorithm with stochastic meta-decent (Günter et al., 2007) [KHA-SMD]

Abbreviations in [] are used in Figures and Tables.

For evaluation criteria, the empirical error that is J1, is used.

Eemp(X) =J1(X) =
1

n

n

∑
i=1

‖Φ(xi)− XΦ(xi)‖2, (46)

where X is replaced by each operator. Note that full KPCA gives the minimum values for
Eemp(X) under the rank constraint. Since Eemp(X) depends on the problem, normalized by
that of full KPCA is also used, Eemp(X)/Eemp(PFkp), where PFKp is a projector of full KPCA.
Validation error Eval that uses validation samples instead of training samples in the empirical
error is also used.
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Sample selection SubKPCA Reduced KPCA Improved KPCA Nyström method

Random 1.0025±0.0019 1.1420±0.0771 4.7998±0.0000 2.3693±0.6826
K-means 1.0001±0.0000 1.0282±0.0114 4.7998±0.0000 1.7520±0.2535
Forward 1.0002±0.0001 1.3786±0.0719 4.7998±0.0000 14.3043±9.0850

Random 0.0045±0.0035 0.2279±0.1419 0.9900±0.0000 0.3583±0.1670
K-means 0.0002±0.0001 0.0517±0.0318 0.9900±0.0000 0.1520±0.0481
Forward 0.0002±0.0001 0.5773±0.0806 0.9900±0.0000 1.7232±0.9016

Table 1. Mean values and standard deviations over 10 trials of Eemp and D in Experiment 1:
Upper rows are Eemp(X)/Eemp(PFKp); lower rows are D; Sparse KPCA does not require
sample selection.

The alternative criterion is operator distance from full KPCA. Since these methods are
approximation of full KPCA, an operator that is closer to that of full KPCA is the better one.
In the feature space, the distance between projectors is measured by the Frobenius distance,

D(X, PFKp) =‖X − PFKp‖F. (47)

For example, if X = PSubKPCA = TZZ⊤T∗ (Eq. (27)),

D2(PSubKPCA, PFKp) =‖TZZ⊤T∗ − SVKPCAΛ
−1V ⊤

KPCA‖2
F

=Trace[Z⊤KyZ +V ⊤
KPCAKVKPCAΛ

−1

− 2Z⊤K⊤
xyVKPCAΛ

−1V ⊤
KPCAKxyZ].

6.2 Artificial data

Two-dimensional artificial data described in Introduction is used again with more
comparisons and quantitative evaluation. Gaussian kernel function k(x1,x2) =
exp(−0.1‖x1 − x2‖2) and the number of principal components, r = 5 are chosen. Training
samples of Reduced KPCA and the basis set of SubKPCA, Nyström approximation, and
IKPCA are identical, and chosen randomly. For Sparse KPCA (SpKp), a parameter σ is
chosen to have the same sparsity level with SubKPCA. Figure 2 shows contour curves and
values of evaluation criteria. From evaluation criteria Eemp and D, SubKp shows the best
approximation accuracy among these methods.

Table 1 compares sample selection methods. The values in the table are the mean values and
standard deviations over 10 trials using different random seeds or initial point. SubKPCA
performed better than the other methods. Regarding sample selection, K-means and forward
search give almost the same results for SubKPCA.

6.3 Open dataset

Three open benchmark datasets, “concrete,” “housing,” and “tic” from UCI (University of
California Irvine) machine learning repository are used 5 (Asuncion & Newman, 2007). Table
2 shows properties of the datasets.

5 As of Oct. 2011, the datasets are available from http://archive.ics.uci.edu/ml/index.html
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Fig. 2. Contour curves of projection norms

Gaussian kernel k(x1.x2) = exp(−‖x1 − x2‖2/(2σ2)) whose σ2 is set to be the variance of
for all elements of each dataset is used for the kernel function. The number of principal
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dataset no. of dim. no. of samples

concrete 9 1030
housing 14 506

tic 85 9822

Table 2. Open dataset

components, r, is set to be the input dimension of each dataset. 90% of samples are used
for training, and the remaining 10% of samples are used for validation. The division of the
training and the validation sets is repeated 50 times randomly.

Figures 3-(a) and (b) show the averaged squared distance from KPCA using all samples.
SubKPCA shows better performance than Reduced KPCA and the Nyström method,
especially SubKPCA with a forward search performed the best of all. In both datasets, even if
the number of basis is one of tenth that of all samples, the distance error of SubKPCA is less
than 1%.

Figures 3-(c) and (d) show the average normalized empirical error, and Figures (e) and (f)
show the averaged validation error. SubKPCA with K-means or forward search performed
the best, and its performance did not change much with 20% more basis. The results for the
Nyström method are outside of the range illustrated in the figures.

Figures 4-(a) and (b) show the calculation times for construction. The simulation was done
on the system that has an Intel Core 2 Quad CPU 2.83GHz and an 8Gbyte RAM. The routines
dsygvx and dsyevx in the Intel math kernel library (MKL) were respectively used for the
generalized eigenvalue decomposition of SubKPCA and the eigenvalue decomposition of
KPCA. The figures indicate that SubKPCA is faster than Full KPCA if the number of basis
is less than 80%.

Figure 5 shows the relation between runtime [s] and squared distance from Full KPCA. In
this figure, “kmeans” includes runtime for K-means clustering. The vertical dotted line
stands for run-time of full KPCA. For (a) concrete and (b) housing, incomplete Cholesky
decomposition is faster than our method. However, for a larger dataset, (c) tic, incomplete
Cholesky decomposition is slower than our method. KHA-SMD Günter et al. (2007) is slower
than full KPCA in these three methods.

6.4 Classification

PCA and KPCA are also used for classifier as subspace methods (Maeda & Murase, 1999; Oja,
1983; Tsuda, 1999). Subspace methods obtain projectors onto subspaces that correspond with
classes. Let Pi be a projector onto the subspace of the class i. In the class feature information
compression (CLAFIC) that is one of the subspace methods, Pi is a projector of PCA for each
class. Then an input sample x is classified to a class k whose squared distance is the largest,
that is,

k =argmax
i=1,...,c

‖x−Pix‖2, (48)

where c is the number of classes. Binary classifiers such as SVM cannot be applied to
multi-class problems directly, therefore, some extentions such as one-against-all strategy
have to be used. However, subspace methods can be applied to many-class problems
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Fig. 3. Results for open datasets. Rand: random, Clus: Clustering (K-means), Forw: Forward
search

easily. Furthermore, subspace methods are easily to be applied to multi-label problems or
class-addition/reduction problems. CLAFIC is easily extended to KPCA (Maeda & Murase,
1999; Tsuda, 1999).
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Fig. 4. Calculation time

No. of basis

Method 10% 30% 50% 100%

SubKp (nc) 3.89±0.82 2.87±0.71 2.55±0.64 2.03±0.56

SubKp (c) 3.93±0.82 2.83±0.70 2.55±0.64 2.02±0.56

RKp (nc) 4.92±0.95 3.17±0.71 2.65±0.60 2.03±0.56

RKp (c) 4.91±0.92 3.16±0.70 2.65±0.62 2.02±0.56

CLAFIC (nc) 5.24±0.92 3.64±0.79 3.25±0.70 2.95±0.73

CLAFIC (c) 5.24±0.89 3.71±0.76 3.38±0.68 3.06±0.74

Table 3. Minimum validation errors [%] and standard deviations I; random selection, nc:
non-centered, c: centered

A handwritten digits database, USPS (U.S. postal service database), is used for the
demonstration. The database has 7291 images for training, and 2001 images for testing. Each
image is 16x16 pixel gray-scale, and has a label (0, . . . , 9).

10% of samples (729 samples) from training set are extracted for validation, and rest 90% (6562
samples) are used for training. This division is repeated 100 times, and obtained the optimal
parameters from several picks, width of Gaussian kernel c ∈ {10−4.0, 10−3.8, . . . , 100.0}, the
number of principal components r ∈ {10, 20, . . . , 200}.

Tables 3 and 4 respectively show the validation errors [%] and standard deviations over 100
validations when the samples of the basis are selected randomly and by k-means respectively.
SubKPCA has lower error rate than reduced KPCA when the number of basis is small. Tables 5
and 6 show the test errors when the optimum parameters are given by the validation.

6.5 Denoising using a huge dataset

KPCA is also used for image denoising (Kim et al., 2005; Mika et al., 1999). This subsection
demonstrate image denoising by KPCA using MNIST database. The database has 60000
images for training, and 10000 samples for testing. Each image is a 28x28 pixel gray-scale
image of a handwritten digit. Each pixel value of the original image is scaled from 0 to 255.
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Fig. 5. Relation between runtime [s] and squared distance from Full KPCA

No. of basis

Method 10% 30% 50% 100%

SubKp (nc) 2.69±0.58 2.30±0.61 2.18±0.58 2.03±0.56

SubKp (c) 2.68±0.60 2.29±0.61 2.15±0.55 2.02±0.56

RKp (nc) 2.75±0.61 2.35±0.60 2.22±0.57 2.03±0.56

RKp (c) 2.91±0.63 2.40±0.59 2.24±0.58 2.02±0.56

PCA (nc) 3.60±0.66 3.38±0.60 3.21±0.56 3.03±0.60

Table 4. Minimum validation errors [%] and standard deviations II; K-means, nc:
non-centered, c: centered

Before the demonstration of image denoising, comparisons of computational complexities are
presented since the database has rather large data. The Gaussian kernel function k(x1,x2) =
exp(−10−5.1‖x1 − x2‖2) and the number of principal components r = 145 are used because
these parameters show the best result in latter denoising experiment. The random selection
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No. of basis

Method 10% 30% 50% 100%

SubKp (nc) 6.50±0.36 5.69±0.15 5.20±0.14 4.78±0.00

SubKp (c) 6.54±0.36 5.52±0.16 5.20±0.14 4.83±0.00

RKp (nc) 7.48±0.44 5.71±0.31 5.26±0.20 4.78±0.00

RKp (c) 7.50±0.43 5.76±0.31 5.28±0.20 4.83±0.00

Table 5. Test errors [%] and standard deviations; random selection, nc: non-centered, c:
centered

No. of basis

Method 10% 30% 50% 100%

SubKp (nc) 5.14±0.17 4.99±0.14 4.97±0.13 4.78±0.00

SubKp (c) 5.14±0.18 4.99±0.14 4.87±0.14 4.83±0.00

RKp (nc) 5.18±0.21 5.01±0.16 4.89±0.15 4.78±0.00

RKp (c) 5.36±0.24 5.07±0.17 4.93±0.15 4.83±0.00

Table 6. Test errors [%] and standard deviations; K-means, nc: non-centered, c: centered
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Fig. 6. Relation between training error and elapsed time in MNIST dataset

is used for basis of the SubKPCA. Figure 6 shows relation between run-time and training
error. SubKPCA achieves lower training error Eemp = 4.57 × 10−5 in 28 seconds, whereas

ICD achieves Eemp = 4.59 × 10−5 in 156 seconds.
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Denoising is done by following procedures,

1. Rescale each pixel value from 0 to 1.

2. Obtain the subset using K-means clustering from 60000 training samples.

3. Obtain operators,

(a) Obtain centered SubKPCA using 60000 training samples and the subset.

(b) Obtain centered KPCA using the subset.

4. Prepare noisy images using 10000 test samples;

(a) Add Gaussian noise whose variance is σ2.

(b) Add salt-and-pepper noise with a probability of p (a pixel flips white (1) with
probability p/2, and flips black (0) with probability p/2).

5. Obtain each transformed vector and pre-image using the method in (Mika et al., 1999).

6. Rescale each pixel value from 0 to 255, and truncate values if the values less than 0 or grater
than 255.

The evaluation criterion is the mean squared error

EMSE =
1

10000

10000

∑
i=1

‖fi − f̂i‖2, (49)

where fi is the ith original test image, and f̂ is its denoising image. The optimal parameters,
r: the number of principal components, and c: parameter of the Gaussian kernel, are
chosen to show the best performance in several picks r ∈ {5, 10, 15, . . . , m} and c ∈
{10−6.0, 10−5.9, . . . , 10−2.0}.

Tables 7 and 8 are denoising results. SubKPCA shows always lower errors than errors of
Reduced KPCA. Figures 7 show the original images, noisy images, and de-noised images.
Fields of experts (FoE) Roth & Black (2009) and block-matching and 3D filtering (BM3D)
Dabov et al. (2007) are state-of-the-art denoising methods for natural images 6. FoE and BM3D

σ 20 50 80 100

SubKp (100) 3.38±1.37 4.64±1.49 6.73±1.70 8.33±2.17
RKp (100) 3.48±1.42 4.71±1.51 6.80±1.74 8.55±2.11

SubKp (500) 0.99±0.24 3.64±0.82 6.22±1.43 7.95±1.91
RKp (500) 1.01±0.27 3.73±0.81 6.39±1.51 8.14±2.01

SubKp (1000) 0.93±0.22 3.20±0.83 5.11±1.67 6.18±2.02
RKp (1000) 0.94±0.20 3.27±0.87 5.49±1.60 7.18±1.88

WF 0.88±0.24 3.14±0.81 5.49±1.43 7.01±1.84
FoE 1.15±2.08 8.48±0.78 23.29±1.90 36.53±2.81

BM3D 1.07±1.80 7.17±1.09 17.39±2.96 25.49±4.17

Table 7. Denoising results for Gaussian noise , mean and SD of squared errors, values are
divided by 105; the numbers in brackets denote the numbers of basis

6 MATLAB codes were downloaded from http://www.gris.

tu-darmstadt.de/˜sroth/research/foe/downloads.html. and
http://www.cs.tut.fi/˜foi/GCF-BM3D/index.html
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p 0.05 0.10 0.20 0.40

SubKp (100) 4.73±1.51 6.45±1.73 10.07±2.16 18.11±3.06
RKp (100) 4.79±1.54 6.52±1.72 10.51±2.30 18.80±3.30

SubKp (500) 3.61±1.00 5.73±1.34 9.66±2.02 17.87±2.95
RKp (500) 3.72±1.00 6.00±1.39 10.04±2.13 18.31±3.05

SubKp (1000) 3.22±0.98 4.99±1.46 7.93±2.22 13.58±4.72
RKp (1000) 3.25±1.00 5.15±1.53 8.78±2.22 18.21±2.96

WF 3.15±0.87 5.15±1.17 8.93±1.72 17.07±2.61
Median 3.26±1.44 4.34±1.70 7.36±2.45 21.78±5.62

Table 8. Denoising results for salt-and-pepper noise , mean and SD of squared errors, values
are divided by 105; the numbers in brackets denote the numbers of basis

are assumed that the noise is Gaussian whose mean is zero and variance is known. Thus
these two methods are compared only in Gaussian noise case. Since the datasets is not natural
images, these methods are not better than SubKPCA. “WF” and “Median” denote Wiener filter
and median filter respectively. When noise is relatively small, (σ = 20 ∼ 50 in Gaussian or
p = 0.05 ∼ 0.10), these classical methods show better performance. On the other hand, when
noise is large, our method shows better performance. Note that Wiener filter is known to be
the optimal filter in terms of the mean squared error among linear operators. From different
point of view, Wiener filter is optimal among all linear and non-linear operators if both signal
and noise are Gaussian. However, KPCA is non-linear because of non-linear mapping Φ, and
pixel values of images and salt-and-pepper noise are not Gaussian in this case.

(a) Gaussian noise (b) Salt-and-pepper-noise

Fig. 7. Results of denoising (first 100 samples), top-left: original image, top-right: noisy
image (Gaussian, σ = 50), bottom-left: image de-noised by SubKPCA, bottom-right: image
de-noised by KPCA.
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7. Conclusion

Theories, properties, and numerical examples of SubKPCA have been presented in this
chapter. SubKPCA has a simple solution form Eq. (22) and no constraint for its kernel
functions. Therefore, SubKPCA can be applied to any applications of KPCA. Furthermore,
it should be emphasized that SubKPCA is always better than reduced KPCA in the sense of
the empirical errors if the subset is the same.
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