
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322408866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

During the past several decades techniques and technologies have emerged to design and
implement distributed systems effectively. A remaining challenge, however, is devising
techniques and technologies that will help design and implement SoSs. SoSs present some
unique challenges when compared to traditional systems since their scale, heterogeneity,
extensibility, and evolvability requirements are unprecedented compared to traditional
systems Northrop et al. (2006).

For instance, in Systems-of-Systems (SoS), such as the one depicted in Figure 1,
the computational and communication resources involved are highly heterogeneous,
which yields situations where high-end systems connected to high-speed networks must
cooperate with embedded devices or resource-constrained edge systems connected over
bandwidth-limited links. Moreover, in SoS it is common to find multiple administrative
entities that manage the different parts, so upgrading the system must be incremental and
never require a full redeployment of the whole SoS. In addition, SoS are often characterized
by high degrees of dynamism and thus must enable subsystems and devices dynamically
joining and leaving the federation of system elements.

The Object Management Group (OMG) Data Distribution Service for Real-Time Systems
(DDS) Group (2004) is a standard for data-centric Publish/Subscribe (P/S) introduced in 2004
to address the challenges faced by important mission-critical systems and systems-of-systems.
As described in the reminder of this Chapter, DDS addresses all the key challenges posed by
SoS outlined above. As a result, it provides the most natural choice as the communication
middleware fabrice for developing scalable and extensible SoS.

Since its inception DDS has experienced a swift adoption in several different domains. The
reason for this successful adoption stems largely from its following characteristics:

1. DDS has been designed to scale up and down, allowing deployments that range from
resource-constrained embedded systems to large-scale systems-of-systems.

2. DDS is equipped with a powerful set of QoS policies that allow applications fine-grain
control over key data distribution properties, such as data availability, timeliness, resource
consumption, and usage.

The Data Distribution Service –
The Communication Middleware Fabric for

Scalable and Extensible Systems-of-Systems

Angelo Corsaro1 and Douglas C. Schmidt2

1PrismTech
2Vanderbilt University

USA

2

www.intechopen.com

2 Will-be-set-by-IN-TECH

N
1,0

N
1,1

N
2,0

N
2,1

N
2,2 N

2,3

N
2,4

N
2,5

H 1,0,0

H 1,0,1

H 1,0,k

H 1,1,h

H 1,1,0

H 1,1,1

H 2,0,i

H 2,1,j

H 2,1,k H 2,1,h

H 2,1,n

H 2,1,m

Fig. 1. A System-of-Systems Architecture.

3. DDS is equipped with a powerful type system that provides end-to-end type safety for
built-in and user-defined types, as well as type-safe extensibility.

As a result of these characteristics, the OMG DDS standard is the most advanced data
distribution technology and is a key building-block for many existing and upcoming SoSs.

The remainder of this chapter presents an in-depth introduction to DDS, as well a set of
guidelines on how to apply this technology to architect scalable and efficient SoSs. The chapter
concludes with a preview of forthcoming DDS innovations.

2. Overview of the OMG Data Distribution Service (DDS)

P/S is a paradigm for one-to-many communication that provides anonymous, decoupled, and
asynchronous communication between producers of data–the publishers–and consumers of
data–the subscribers. This paradigm is at the foundation of many technologies used today to
develop and integrate distributed applications (such as social application, e-services, financial
trading, etc.), while ensuring the composed parts remain loosely coupled and independently
evolvable.

Different implementations of the P/S abstraction have emerged to support the needs of
different application domains. DDS Group (2004) is an OMG P/S standard that enables
scalable, real-time, dependable and high performance data exchanges between publishers and
subscribers. DDS addresses the needs of mission- and business-critical applications, such as,
financial trading, air traffic control and management, defense, aerospace, smart grids, and

14 System of Systems

www.intechopen.com

The Data Distribution Service. The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems 3

complex supervisory and telemetry systems. That key challenges addressed by DDS are to
provide a P/S technology in which data exchanged between publishers and subscribers are:

• Real-time, meaning that the right information is delivered at the right place at the right
time–all the time. Failing to deliver key information within the required deadlines can
lead to life-, mission- or business-threatening situations. For instance in financial trading
1ms can make the difference between losing or gaining $1M. Likewise, in a supervisory
applications for power-grids, failing to meet deadlines under an overload situation could
lead to severe blackout, such as the one experienced by the northeastern US and Canada
in 2003 http://bit.ly/oKmbhM (2003).

• Dependable, thus ensuring availability, reliability, safety and integrity in spite of hardware
and software failures. For instance, the lives of thousands of air travelers depend on the
reliable functioning of an air traffic control and management system. These systems must
ensure 99.999% availability and ensure that critical data is delivered reliably, regardless of
experienced failures.

• High-performance, which necessitates the ability to distribute very high volumes of data
with very low latencies. As an example, financial auto-trading applications must handle
millions of messages per second, each delivered reliably with minimal latency, e.g., on the
order of tens of microseconds.

2.1 Components in the DDS standard

The components in the OMG DDS standards family are shown in Figure 2 and consist of the
DDS v1.2 API Group (2004) and the Data Distribution Service Interoperability Wire Protocol
(DDSI) Group (2006). The DDS API standard ensures source code portability across different
vendor implementations, while the DDSI Standard ensures on the wire interoperability across
DDS implementations from different vendors. The DDS API standard shown in Figure 2
also defines several profiles that enhance real-time P/S with content filtering, persistence,
automatic fail-over, and transparent integration into object oriented languages.

The DDS standard was formally adopted by the OMG in 2004. It quickly became
the established P/S technology for distributing high volumes of data dependably and
with predictable low latencies in applications such as radar processors, flying and land
drones, combat management systems, air traffic control and management, high performance
telemetry, supervisory control and data acquisition systems, and automated stocks and
options trading. Along with wide commercial adoption, the DDS standard has been mandated
as the technology for real-time data distribution by organization worldwide, including the
US Navy, the Department of Defence (DoD) Information-Technology Standards Registry
(DISR) the UK Mistry of Defence (MoD), the Military Vehicle Association (MILVA), and
EUROCAE–the European organization that regulates standards in Air Traffic Control and
Management.

2.2 Key DDS architectural concepts and entities

Below we summarize the key architectural concepts and entities in DDS.

2.2.1 Global data space

The key abstraction at the foundation of DDS is a fully distributed Global Data Space (GDS)
(see Figure 3). The DDS specification requires a fully distributed implementation of the GDS

15
The Data Distribution Service –
The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems

www.intechopen.com

4 Will-be-set-by-IN-TECH

Object/Relational Mapping

Ownership Durability Content
Subscription

Minimum ProEle

Data Centric Publish/Subscribe (DCPS)

Data Local Reconstruction Layer (DLRL)

DDS Interoperability Wire Protocol

Application

UDP/IP

DDS Interoperability Wire Protocol - DDSI-RTPS

D
D

S
I

v
2

.1
D

D
S

 v
1

.2

Fig. 2. The DDS Standard.

to avoid single points of failure or single points of contention. Publishers and Subscribers can
join or leave the GDS at any point in time as they are dynamically discovered. The dynamic
discovery of Publisher and Subscribers is performed by the GDS and does not rely on any kind
of centralized registry, such as those found in other P/S technologies like the Java Message
Service (JMS) Microsystems (2002). The GDS also discovers application defined data types
and propagates them as part of the discovery process.

Since DDS provides a GDS equipped with dynamic discovery, there is no need for
applications to configure anything explicitly when a system is deployed. Applications will
be automatically discovered and data will begin to flow. Moreover, since the GDS is fully
distributed the crash of one server will not induce unknown consequences on the system
availability, i.e., in DDS there is no single point of failure and the system as a whole will
continue to run even if applications crash/restart or connect/disconnect.

2.2.2 Topic

The information that populates the GDS is defined by means of DDS Topics. A topic is
identified by a unique name, a data type, and a collection of Quality of Service (QoS) policies.
The unique name provides a mean of uniquely referring to given topics, the data type defines

16 System of Systems

www.intechopen.com

The Data Distribution Service. The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems 5

[DDS Global Data Space]

...

TopicA

TopicB
TopicC

TopicD

Data
Writer

Data
Writer

Data
Writer

Data
Writer

Data
Reader

Data
Reader

Data
Writer

Data
Reader

Fig. 3. The DDS Global Data Space.

the type of the stream of data, and the QoS captures all the non-functional aspect of the
information, such as its temporal properties or its availability.

2.2.2.1 Topic types.

DDS Topics can be specified using several different syntaxes, such as Interface Definition
Language (IDL), eXtensible Markup Langauge (XML), Unified Modeling Langauge (UML),
and annotated Java. For instance, Listing 1 shows a type declaration for an hypothetical
temperature sensor topic-type. Some of the attributes of a topic-type can be marked as
representing the key of the type.

Listing 1. Topic type declaration for an hypothetical temperature sensor

1 struct TempSensorType {
@Key

3 short id;
float temp;

5 float hum;
};

The key allows DDS to deal with specific instances of a given topic. For instance, the topic
type declaration in Listing 1 defines the id attributes as being the key of the type. Each
unique id value therefore identifies a specific topic instance for which DDS will manage the
entire life-cycle, which allows an application to identify the specific source of data, such as
the specific physical sensor whose id=5. Figure 4 provides a visual representation of the
relationship existing between a topic, its instances, and the associated data streams.

17
The Data Distribution Service –
The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems

www.intechopen.com

6 Will-be-set-by-IN-TECH

To pic

Instanc e sInstanc e s

struct TempSensor {
 @key long id;
 float temp;
 float hum;
};

id =701

id =809

id =977

Fig. 4. Topic Instances and Data Streams.

2.2.2.2 Topic QoS.

The Topic QoS provides a mechanism to express relevant non-functional properties of a topic.
Section 4 presents a detailed description of the DDS QoS model, but at this point we simply
mention the ability of defining QoS for topics to capture the key non-functional invariant of
the system and make them explicit and visible.

2.2.2.3 Content filters.

DDS supports defining content filters over a specific topic. These content filters are defined
by instantiating a ContentFilteredTopic for an existing topic and providing a filter
expression. The filter expression follows the same syntax of the WHERE clause on a SQL
statement and can operate on any of the topic type attributes. For instance, a filter expression
for a temperature sensor topic could be "id = 101 AND (temp > 35 OR hum > 65)".

2.2.3 DataWriters and DataReaders

Since a topic defines the subjects produced and consumed, DDS provides two abstractions
for writing and reading these topics: DataWriterss and DataReaders, respectively. Both
DataReaders and DataWriters are strongly typed and are defined for a specific topic and topic
type.

2.2.4 Publishers, Subscribers and Partitions

DDS also defines Publishers and Subscribers, which group together sets of DataReaders
and DataWriters and perform some coordinated actions over them, as well as manage the
communication session. DDS also supports the concept of a Partition which can be used to
organize data flows within a GDS to decompose un-related sets of topics.

2.3 Example of applying DDS

Now that we presented the key architectural concepts and entities in DDS, we will show
the anatomy of a simple DDS application. Listing 2 shows the steps required to join a DDS

18 System of Systems

www.intechopen.com

The Data Distribution Service. The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems 7

domain, to define a publisher and a topic on the given domain, and then create a data writer
and publish a sample.

Listing 2. A simple application writing DDS samples.

2 // -- Joing Domain by creating a DomainParticipant
int32_t domainID = 0;

4 DomainParticipant dp(domainID);

6 // -- Get write acces to a domain by creating a Publisher
Publisher pub(dp);

8

// -- Register Topic
10 Topic<TempSensor> topic(dp, "TemSensorTopic");

12 // -- Create DataWriter
DataWriter<TempSensor> dw(pub,topic);

14

// -- Writer a sample
16 dw << TempSensor(701, 25, 67);

Note that no QoS has been specified for any of the DDS entities defined in this code fragment,
so the behavior will be the default QoS.

Listing 3. A simple application reading DDS samples.

2 // -- Joing Domain by creating a DomainParticipant
int32_t domainID = 0;

4 DomainParticipant dp(domainID);

6 // -- Get write acces to a domain by creating a Subscriber
Subscriber sub(dp);

8

// -- Register Topic
10 Topic<TempSensor> topic(dp, "TemSensorTopic");

12 // -- Create DataReader
DataReader<TempSensor> dr(pub,topic);

14

16 std::vector<TempSensor> data(MAX_LEN);
std::vector<SampleInfo> info(MAX_LEN);

18 // -- Rear a samples
dr.read(data.begin(), info.begin(), MAX_LEN)

Listing 3 shows the steps required to read the data samples published on a given topic.
This code fragment shows the application proactively reading data. DDS also provides a
notification mechanism that informs a datareader via a callback when new data is available,
as well as an operation for waiting for new data to become available.

19
The Data Distribution Service –
The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems

www.intechopen.com

8 Will-be-set-by-IN-TECH

3. The DDS type system

Strong typing plays a key role in developing software systems that are easier to extend, less
expensive to maintain, and in which runtime errors are limited to those computational aspects
that either cannot be decided at compile-time or that cannot be detected at compile-time by the
type system. Since DDS was designed to target mission- and business-critical systems where
safety, extensibility, and maintainability are critically important, DDS adopted a strong and
statically typed system to define type properties of a topic. This section provides an overview
of the DDS type system.

3.1 Structural polymorphic types system

DDS provides a polymorphic structural type system Cardelli (1996); Cardelli & Wegner (1985);
Group (2010), which means that the type system not only supports polymorphism, but also
bases its sub-typing on the structure of a type, as opposed than its name. For example, consider
the types declared in Listing 4.

Listing 4. Nominal vs. Structural Subtypes

struct Coord2D {
2 int x;

int y;
4 };

6 struct Coord3D : Coord2D {
int z;

8 };

10 struct Coord {
int x;

12 int y;
int z;

14 };

In a traditional nominal polymorphic type system, the Coord3D would be a subtype of
Coord2D, which would be expressed by writing Coord3D <: Coord2D. In a nominal type
system, however, there would be no relationship between the Coord2D/Coord3D with the
type Coord. Conversely, in a polymorphic structural type system like DDS the type Coord is
a subtype of the type Coord2D—thus Coord <: Coord2D and it is structurally the same type
as the type Coord3D.

The main advantage of a polymorphic structural type system over nominal type systems
is that the former considers the structure of the type as opposed to the name to determine
sub-types relationships. As a result, polymorphic structural types systems are more flexible
and well-suited for SoS. In particular, types in SoS often need to evolve incrementally to
provide a new functionality to most subsystems and systems, without requiring a complete
redeploy of the entire SoS.

In the example above the type Coord is a monotonic extension of the type Coord2D since it
adds a new attribute “at the end.” The DDS type system can handle both attribute reordering
and attribute removal with equal alacrity.

20 System of Systems

www.intechopen.com

The Data Distribution Service. The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems 9

HISTORY

LIFESPAN

DURABILITY

DEADLINE

LATENCY BUDGET

TRANSPORT PRIO

TIME-BASED FILTER

RESOURCE LIMITS

USER DATA

TOPIC DATA

GROUP DATA

OWENERSHIP

OWN. STRENGTH

LIVELINESS

ENTITY FACTORY

DW LIFECYCLE

DR LIFECYCLE

PRESENTATION

RELIABILITY

PARTITION

DEST. ORDER

RxO QoS Local QoS

Fig. 5. DDS QoS Policies.

3.2 Type annotations

The DDS type systems supports an annotation system very similar to that available in Java
Gosling et al. (2005). It also defines a set of built-in annotations that can be used to control
the extensibility of a type, as well as the properties of the attributes of a given type. Some
important built-in annotations are described below:

• The @ID annotation can be used to assign a global unique ID to the data members of a
type. This ID is used to deal efficiently with attributes reordering.

• The @Key annotation can be used to identify the type members that constitute the key of
the topic type.

• The @Optional annotations can be used to express that an attribute is optional and might
not be set by the sender. DDS provides specific accessors for optional attributes that can
be used to safely check whether the attribute is set or not. In addition, to save bandwidth,
DDS will not send optional attributes for which a value has not been provided.

• The @Shared annotation can be used to specify that the attribute must be referenced
through a pointer. This annotations helps avoid situations when large data-structures
(such as images or large arrays) would be allocated contiguously with the topic type, which
may be undesirable in resource-contrained embedded systems.

• The @Extensibility annotation can be used to control the level of extensibility allowed
for a given topic type. The possible values for this annotation are (1) Final to express
the fact that the type is sealed and cannot be evolved – as a result this type cannot be
substituted by any other type that is structurally its subtype, (2) Extensible to express
that only monotonic extensibility should be considered for a type, and (3) mutable to
express that the most generic structural subtype rules for a type should be applied when
considering subtypes.

In summary, the DDS type system provides all the advantages of a strongly-typed system,
together with the flexibility of structural type systems. This combinations supports key
requirements of a SoS since it preserves types end-to-end, while providing type-safe
extensibility and incremental system evolution.

4. The DDS QoS model

DDS provides applications with explicit control over a wide set of non-functional properties,
such as data availability, data delivery, data timeliness and resource usage through a rich set

21
The Data Distribution Service –
The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems

www.intechopen.com

10 Will-be-set-by-IN-TECH

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

......

QoS QoS

Type Matching

DomainParticipant DomainParticipant

QoS QoS

Fig. 6. DDS Request vs. Offered QoS Model.

of QoS policies – Figure 5 shows the full list of available QoS. The control provided by these
policies over the key non-functional properties of data is important for traditional systems
and indispensable for SoS. Each DDS entity (such as a topic, data reader, and data writer) can
apply a subset of available QoS policies. The policies that control and end-to-end property are
considered as part of the subscription matching. DDS uses a request vs. offered QoS matching
approach, as shown in Figure 6 in which a data reader matches a data writer if and only if the
QoS it is requesting for the given topic does not exceed (e.g., is no more stringent) than the
QoS with which the data is produced by the data writer.

DDS subscriptions are matched against the topic type and name, as well as against the QoS
being offered/requested by data writers and readers. This DDS matching mechanism ensures
that (1) types are preserved end-to-end due to the topic type matching and (2) end-to-end QoS
invariants are also preserved.

The reminder of this section describes the most important QoS policies in DDS.

4.1 Data availability

DDS provides the following QoS policies that control the availability of data to domain
participants:

• The DURABILITY QoS policy controls the lifetime of the data written to the global data
space in a DDS domain. Supported durability levels include (1) VOLATILE, which
specifies that once data is published it is not maintained by DDS for delivery to late
joining applications, (2) TRANSIENT_LOCAL, which specifies that publishers store data
locally so that late joining subscribers get the last published item if a publisher is still
alive, (3) TRANSIENT, which ensures that the GDS maintains the information outside the
local scope of any publishers for use by late joining subscribers, and (4) PERSISTENT,
which ensures that the GDS stores the information persistently so to make it available
to late joiners even after the shutdown and restart of the whole system. Durability is
achieved by relying on a durability service whose properties are configured by means of
the DURABILITY_SERVICEQoS of non-volatile topics.

22 System of Systems

www.intechopen.com

The Data Distribution Service. The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems 11

• The LIFESPAN QoS policy controls the interval of time during which a data sample is
valid. The default value is infinite, with alternative values being the time-span for which
the data can be considered valid.

• The HISTORY QoS policy controls the number of data samples (i.e., subsequent writes of
the same topic) that must be stored for readers or writers. Possible values are the last
sample, the last n samples, or all samples.

These DDS data availability QoS policies decouple applications in time and space. They
also enable these applications to cooperate in highly dynamic environments characterized
by continuous joining and leaving of publisher/subscribers. Such properties are particularly
relevant in SoS since they increase the decoupling of the component parts.

4.2 Data delivery

DDS provides the following QoS policies that control how data is delivered and how
publishers can claim exclusive rights on data updates:

• The PRESENTATION QoS policy gives control on how changes to the information model
are presented to subscribers. This QoS gives control on the ordering as well as the
coherency of data updates. The scope at which it is applied is defined by the access scope,
which can be one of INSTANCE, TOPIC, or GROUP level.

• The RELIABILITY QoS policy controls the level of reliability associated with data
diffusion. Possible choices are RELIABLE and BEST_EFFORT distribution.

• The PARTITION QoS policy gives control over the association between DDS partitions
(represented by a string name) and a specific instance of a publisher/subscriber. This
association provides DDS implementations with an abstraction that allow to segregate
traffic generated by different partitions, thereby improving overall system scalability and
performance.

• The DESTINATION_ORDER QoS policy controls the order of changes made by publishers
to some instance of a given topic. DDS allows the ordering of different changes according
to source or destination timestamps.

• The OWNERSHIP QoS policy controls whether it is allowed for multiple data writers
to concurrently update a given topic instance. When set to EXCLUSIVE, this policy
ensures that only one among active data writers–namely the one with the highest
OWNERSHIP_STRENGTH–will change the value of a topic instance. The other writers, those
with lower OWNERSHIP_STRENGTH, are still able to write, yet their updates will not have
an impact visible on the distributed system. In case of failure of the highest strength data
writer, DDS automatically switches to the next among the remaining data writers.

These DDS data delivery QoS policies control the reliability and availability of data, thereby
allowing the delivery of the right data to the right place at the right time. More elaborate ways
of selecting the right data are offered by the DDS content-awareness profile, which allows
applications to select information of interest based upon their content. These QoS policies are
particularly useful in SoS since they can be used to finely tune how—and to whom—data is
delivered, thus limiting not only the amount of resources used, but also minimizing the level
of interference by independent data streams.

23
The Data Distribution Service –
The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems

www.intechopen.com

12 Will-be-set-by-IN-TECH

4.3 Data timeliness

DDS provides the following QoS policies to control the timeliness properties of distributed
data:

• The DEADLINE QoS policy allows applications to define the maximum inter-arrival time
for data. DDS can be configured to automatically notify applications when deadlines are
missed.

• The LATENCY_BUDGET QoS policy provides a means for applications to inform DDS how
long time the middleware can take in order to make data available to subscribers. When set
to zero, DDS sends the data right away, otherwise it uses the specified interval to exploit
temporal locality and batch data into bigger messages so to optimize bandwidth, CPU and
battery usage.

• The TRANSPORT_PRIORITY QoS policy allows applications to control the priority
associated with the data flowing on the network. This priority is used by DDS to prioritize
more important data relative to less important data.

The DEADLINE, LATENCY_BUDGET and TRANSPORT_PRIORITY QoS policy provide
the controls necessary to build priority pre-emptive distributed real-time systems. In
these systems, the TRANSPORT_PRIORITY is derived from a static priority scheduling
analysis, such as Rate Monotonic Analysis, the DEADLINE QoS policy represents the
natural deadline of information and is used by DDS to notify violations, finally the
LATENCY_BUDGET is used to optimize the resource utilization in the system.

These DDS data timeliness QoS policies provide control over the temporal properties of data.
Such properties are particularly relevant in SoS since they can be used to define and control
the temporal aspects of various subsystem data exchanges, while ensuring that bandwidth is
exploited optimally.

4.4 Resources

DDS defines the following QoS policies to control the network and computing resources that
are essential to meet data dissemination requirements:

• The TIME_BASED_FILTER QoS policy allows applications to specify the minimum
inter-arrival time between data samples, thereby expressing their capability to consume
information at a maximum rate. Samples that are produced at a faster pace are not
delivered. This policy helps a DDS implementation optimize network bandwidth,
memory, and processing power for subscribers that are connected over limited bandwidth
networks or which have limited computing capabilities.

• The RESOURCE_LIMITSQoS policy allows applications to control the maximum available
storage to hold topic instances and related number of historical samples DDS’s QoS
policies support the various elements and operating scenarios that constitute net-centric
mission-critical information management. By controlling these QoS policies it is possible
to scale DDS from low-end embedded systems connected with narrow and noisy radio
links, to high-end servers connected to high-speed fiber-optic networks.

These DDS resource QoS policies provide control over the local and end-to-end resources,
such as memory and network bandwidth. Such properties are particularly relevant in SoS
since they are characterized by largely heterogeneous subsystems, devices, and network
connections that often require down-sampling, as well as overall controlled limit on the
amount of resources used.

24 System of Systems

www.intechopen.com

The Data Distribution Service. The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems 13

4.5 Configuration

The QoS policies described above, provide control over the most important aspects of data
delivery, availability, timeliness, and resource usage. DDS also supports the definition and
distribution of user specified bootstrapping information via the following QoS policies:

• The USER_DATAQoS policy allows applications to associate a sequence of octets to domain
participant, data readers and data writers. This data is then distributed by means of a
built-in topic—which are topics pre-defined by the DDS standard and used for internal
purposes. This QoS policy is commonly used to distribute security credentials.

• The TOPIC_DATA QoS policy allows applications to associate a sequence of octet with
a topic. This bootstrapping information is distributed by means of a built-in topic.
A common use of this QoS policy is to extend topics with additional information, or
meta-information, such as IDL type-codes or XML schemas.

• The GROUP_DATA QoS policy allows applications to associate a sequence of octets with
publishers and subscribers–this bootstrapping information is distributed by means built-in
topics. A typical use of this information is to allow additional application control over
subscriptions matching.

These DDS configuration QoS policies provide useful a mechanism for bootstrapping and
configuring applications that run in SoS. This mechanism is particularly relevant in SoS since
it provides a fully distributed means of providing configuration information.

5. Guidelines for building system of systems with DDS

This section presents a systematic method for building scalable, extensible, and efficient SoS
by integrating them through DDS. This method has been used successfully in many SoS and
has shown over time its value on addressing the key requirements faced when architecting a
SoS, including (1) achieving the right level of scalability and extensibility while maintaining
loose coupling and (2) minimizing resource usage.

The method described below will be presented as a series of steps, which are applied
incrementally—and often iteratively–to achieve the appropriate SoS design. With time and
experience the number of iterations required will diminish. It is advisable, however, to iterate
two to three times through the steps described below when first applying the method. A
visual representation of the steps involved in this approach is outlined in Figure 7.

5.1 Step I: Define the common information model

Integrating systems to form a SoS involves interconnecting these systems in a meaningful
way. A conventional approach is to integrate systems in a pairwise manner, thus leading to
a star-like system topology depicted in Figure 8(a). This conventional approach to system
integration has several shortcomings, however, because (1) is not scalable since it requires
integrating with n − 1 systems, (2) it is not resource efficient since it duplicates information,
and (3) it is hard to extend since each change is usually propagated on the n − 1 point-to-point
integrations.

An alternative approach to architect SoS involves focusing on a common set of
abstractions—the common information model—used to represent all information that is
necessary and relevant for the interworkings of the SoS. This approach, depicted in
Figure 8(b), reduces—and in some cases eliminates—the integration effort since all systems

25
The Data Distribution Service –
The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems

www.intechopen.com

14 Will-be-set-by-IN-TECH

Step I

Step II

Step III

Step IV

De@ne the Common
Information Model

Annotate for Extensibility

Identify QoS Invariants

Optimize for the Network

Fig. 7. Visual representation of the steps involved in the common information model
approach.

S1

S2 S3

...

...Sn

S1 S2 S3 Sn

Common Information Model

(a) Point-to-Point Integration (b) Common Information Model Integration

Fig. 8. System of System Integration Styles.

communicate using the same protocol and type system. This approach also migrates some
effort to the careful design of the common information model, which defines the data
representations that establish the lingua franca for the SoS.

The first step required to build a common information model involves devising the data types
that capture the state and the events relevant throughout the SoS. This data can then be
normalized using one of the several forms defined in the database management systems
literature Ramakrishnan & Gehrke (2002). After applying this first step, the information
model should be free of common anomalies, such as the update or deletion anomalies, and
should be efficient, in the sense that information duplication will have been removed via the
normalization process. At this point, however, the information model may not be ideal for
SoS with respect to aspects like evolvability, efficiency, and QoS.

5.2 Step II: Annotate for extensibility

The second step of information model design should account for the extensibility
requirements of each data type. Some data types must support evolutions, such as the ability
of adding or removing attributes. Other data types must disallow extensions since they
represent structural invariants, such as the type representing some physical structure of the

26 System of Systems

www.intechopen.com

The Data Distribution Service. The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems 15

system like the position and number of wheels. In either case, it is necessary to consciously
decide what kind of extensibility is associated with each data type and use the annotations
described in Section refSection:DDS:TypeSystem.

5.3 Step III: Identify QoS invariants

The previous steps allow refinement of an information model so that it cleanly captures
key traits of the SoS. At this point, however, the information model does not capture any
non-functional requirements associated with various data types. The next step, therefore,
involves identifying the least stringent set of QoS policies (see Section 4) that should be
associated with each data type to meet SoS non-functional requirements.

Decorating the common information model with the proper QoS ensures data producers can
only produce data with stronger guarantees, whereas data consumers can only ask to consume
data with weaker guarantees. This rule ensures the QoS violations do not occur and that the
SoS will work as expected.

5.4 Step IV: Optimize for the network

After the common information model is decorated with QoS there is yet another steps to
perform to address the fact that (1) a SoS is a distributed system, which requires awareness of
network characteristics, and optimization of the used bandwidth as some of the subsystem
or devices will often be connected through narrow-bandwidth links or will inherently
have scarce computational and storage resources, and (2) DDS data is sent atomically, i.e.,
regardless of what changes occur in the (non-optional) fields of a data type when the entire
data type is transmitted across the network.

These considerations requires additional scrutiny on the information model. In particular, it
is necessary to identify all the data types that belong in one of the following cases:

• Update frequency mix. Each data type should be regarded with respect to the relative
update frequency of its attributes. If there is a subset of attributes that are relatively static
and another subset that changes relatively often, it is advisable to split the data type into
two data types. The two types will share the key to allow correlation on the receiving side.
This technique minimizes bandwidth utilization by limiting the amount of data sent over
the network. For SoS that communicate over some low bandwidth links this technique
significantly improve performance.

• QoS mix. Since QoS policies in DDS apply to the whole topic it is important to recognize
that the DURABILITY or RELIABILITY QoS policy affects all attributes of the data type
associated with the topic. In certain cases, however, some attributes will work fine with
a weaker QoS setting. In such case, it is advisable to split data types into as many types
as necessary to ensure that all attributes within a given data type share the same QoS, i.e.,
no attribute could select a weaker QoS without compromising correctness. This technique
can improve both performance and resource utilization.

5.5 Step V: Iterate

The steps I to IV described above should be performed iteratively to ensure that (1) all key
SoS concepts have been captured, (2) extensibility constraints have been handled, (3) the
QoS policies properly capture non-functional invariants, and (4) the data model is efficient
and scalable. With experience the number of iterations required will reduce, but you should
typically apply these steps at least twice.

27
The Data Distribution Service –
The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems

www.intechopen.com

16 Will-be-set-by-IN-TECH

6. DDS: The road ahead

The DDS technology ecosystem is characterized by a lively and vibrant community that
continues to innovate and extend the applicability of this powerful P/S technology. This
section we summarize the state-of-the-art in DDS and then examine the DDS standards that
will be forthcoming in the next year or so.

ULS-DDSI ULS-DDSI

DDS

App

Standard API

network

Interoperable
Wire Protocol

UML4DDS

ISO-C++ PSM
2010

Java5 PSM
2010 2004

2011

2008

X
-T

y
p

e
s

2
0
1
0

DDS

App

UML4DDS

2004

2011

2008

X
-T

y
p

e
s

2
0
1
0

W
e

b
-D

D
S

2
0
1
1

W
e

b
-D

D
S

2
0
1
1

S
e

c
u

ri
ty

2
0
1
2

S
e

c
u

ri
ty

2
0
1
2

DDS-RMI
2012

DDS-RMI
2012

Fig. 9. The DDS Standard Evolution.

6.1 State-of-the-art for DDS

Figure 9 presents the whole family of standards belonging to the DDS ecosystem, including
some of the upcoming extensions. As described in earlier sections, DDS supports QoS-enabled
topic-based P/S Group (2004) where topics are strongly typed and where a structural
polymorphic type system is used to enable type-safe system extensibility and evolution Group
(2010). DDS is equipped with a standard wire-protocol, DDSI Group (2006), that provides
native interoperability across vendor implementations of the standard.

Two new APIs were recently specified for DDS. One API defines a new mapping to ISO
C++ and another defines a mapping to Java 5. Both APIs improve the productivity, safety and
efficiency of DDS applications. As a result of these enhancements, DDS now provides the most
dependable and productive standard-based communication middleware infrastructure for
building mission- and business-critical SoS that require scalability, fault-tolerance, efficiency
and performance.

6.2 Coming next

There are three areas that will yield the following new DDS standards by 2012:

• Web-enabled DDS. This specification addresses the needs of SoS that must expose
DDS data to Web/Internet applications. These capabilities will make it possible to
expose DDS topics in a standardized manner to both RESTful and W3C web services.
Web-enabled DDS will simplify the way in which SoS can bring mission-critical and
real-time information to enterprise applications, as well as to browser-enabled devices,
such as smart phones and tablets.

• Secure DDS. To date, DDS Security has been an area where each vendor has provided their
own proprietary (and thus non-interoperable) solutions. With the increased adoption of

28 System of Systems

www.intechopen.com

The Data Distribution Service. The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems 17

DDS in SoS the need for an interoperable and extensible security infrastructure has become
evident. As a result, work is progressing on an interoperable DDS security specification
that will address many aspects of security, such as data confidentiality, integrity, assurance
and availability. This specification is based on pluggable security modules that will allow
vendors to provide a default interoperable set of behaviours and customers or vertical
domains to develop their own customized security plugins.

• Ultra Large Scale Systems (ULS) DDSI. The DDS wire-protocol, known as DDSI,
was designed by first optimizing for LAN deployments and then adding a series of
mechanisms that vendors can use over WANs. The DDSI wire-protocol does not, however,
take advantage of the latest research on dissemination and discovery protocols, such as
encoding techniques, dynamic distribution trees, and distributed hash-tables. The ULS
DDSI specification will thus extend the existing DDSI protocol to further improve its
efficiency over WAN and improve the scalability on ULS deployments Northrop et al.
(2006).

In summary, the DDS technology ecosystem continues to expand its applicability and support
systems and SoS efficiently and effectively.

7. Concluding remarks

This chapter has introduced the DDS standard and explained its core concepts in the context
of meeting the requirements of SoS. As it has emerged from the use cases cited throughout the
chapter—as well as from the set of features characterizing this technology—DDS is the ideal
technology for integrating Systems-of-Systems. The main properties DDS-based SoS enjoy
include:

• Interoperability and portability. DDS provides a standardized API and a standardized
wire-protocol, thereby enabling portability and interoperability of applications across DDS
implementations. These capabilities are essential for SoS since it is hard to mandate a single
product be used for all systems and subsystems, but it is easier to mandate a standard.

• Loose coupling. DDS completely decouples publishers and subscribers in both
time, e.g., data readers can receive data that was produced before they had joined
the system, and space, e.g., through its dynamic discovery that requires no specific
configuration—applications dynamically discover the data and topics of interest. These
two properties minimize coupling between the constituent parts of SoS, thereby enabling
them to scale up and down seamlessly.

• Extensibility. The DDS type system provides built-in support for system extensibility
and evolution. Moreover, the system information model can be evolved dynamically in
a type-safe manner, which helps ensure key quality assurance properties in SoS.

• Scalability, efficiency, and timeliness. The DDS architecture and the protocols used in its
core where designed to ensure scalability, efficiency, and performance. In addition, the QoS
policies available in DDS provide fine-grained control over the non-functional properties
of a system, thereby allowing finely tuning and optimization of its scalability, efficiency,
and timeliness.

In summary, DDS is a natural choice as the integration infrastructure for SoS, as evidenced by
the many adoptions of DDS as the basis for current and next-generation SoS.

29
The Data Distribution Service –
The Communication Middleware Fabric for Scalable and Extensible Systems-of-Systems

www.intechopen.com

18 Will-be-set-by-IN-TECH

8. Acronyms

DDS Data Distribution Service for Real-Time Systems . 1

DDSI Data Distribution Service Interoperability Wire Protocol . 3

DISR DoD Information-Technology Standards Registry . 3

DoD Department of Defence . 3

GDS Global Data Space . 3

IDL Interface Definition Language . 5

JMS the Java Message Service . 4

MILVA Military Vehicle Association . 3

MoD Mistry of Defence . 3

OMG Object Management Group . 1

P/S Publish/Subscribe . 1

QoS Quality of Service . 4

SoS Systems-of-Systems. .1

ULS Ultra Large Scale Systems . 17

UML Unified Modeling Langauge. .5

XML eXtensible Markup Langauge . 5

9. References

Cardelli, L. (1996). Type systems, ACM Comput. Surv. 28: 263–264.
Cardelli, L. & Wegner, P. (1985). On understanding types, data abstraction, and

polymorphism, ACM Computing Surveys 17(4): 471–522.
Gosling, J., Joy, B., Steele, G. & Bracha, G. (2005). Java(TM) Language Specification, The (3rd

Edition) (Java (Addison-Wesley)), Addison-Wesley Professional.
Group (2004). Data distribution service for real-time systems.
Group (2006). Data distribution service interoperability wire protocol.
Group (2010). Dynamic and extensible topic types.
http://bit.ly/oKmbhM (2003).
Microsystems, S. (2002). The java message service specification v1.1.
Northrop, L., Feiler, P., Gabriel, R. P., Goodenough, J., Linger, R., Longstaff, T., Kazman, R.,

Klein, M., Schmidt, D., Sullivan, K. & Wallnau, K. (2006). Ultra-Large-Scale Systems -
The Software Challenge of the Future, Technical report, Software Engineering Institute,
Carnegie Mellon.
URL: http://www.sei.cmu.edu/uls/downloads.html

Ramakrishnan, R. & Gehrke, J. (2002). Database Management Systems, 3rd edn, McGraw Hill
Higher Education.

30 System of Systems

www.intechopen.com

System of Systems

Edited by Dr. Adrian V. Gheorghe

ISBN 978-953-51-0101-7

Hard cover, 114 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The present book proposes and fosters discussion on the current applications in the field of system of

systems, with emphasis on the implications of the fact that new developments and area of technical and non-

technical applications are merging. The book aims to establish an effective platform for communication among

various types of practitioners and theory developers involved in using the system thinking and systems

engineering approaches at the scale of increased complexity and advancing computational solutions to such

systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Angelo Corsaro and Douglas C. Schmidt (2012). The Data Distribution Service – The Communication

Middleware Fabric for Scalable and Extensible Systems-of-Systems, System of Systems, Dr. Adrian V.

Gheorghe (Ed.), ISBN: 978-953-51-0101-7, InTech, Available from: http://www.intechopen.com/books/system-

of-systems/the-data-distribution-service-the-fabric-for-building-scalable-and-extensible-system-of-systems

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

