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1. Introduction 

Microorganisms display a considerable versatility, with mechanisms that govern cell 
bioenergetics and a large number of redox active molecules being used as electron donors or 
acceptors. We will not review the basis of microbial bioenergetics here, but instead focus 
attention on the metabolic systems that microorganisms have evolved to optimise the 
efficiency of cell catabolism and cell energy homeostasis. The mechanisms that act in the 
regulation of cell bioenergetics belong to the complexity of biological systems in which large 
networks of metabolic pathways interact to govern the life and responsiveness of cells towards 
environmental fluctuations. During growth, all microorganisms determine considerable 
changes in the environmental concentration of nutrients, organic acids and other molecules 
generated by cell catabolism. As a consequence, microorganisms are constantly faced with 
different environmental stimuli and stresses. The natural habitats of some microorganisms 
may fluctuate erratically, whereas others which are more predictable offer the opportunity to 
prepare in advance for the next environmental change. In this context, microorganisms may 
have evolved the bioenergetic machinery to anticipate environmental fluctuations by adapting 
to their temporal order of appearance. Food matrixes represent an example of 'predictable' 
fluctuating environments, generated by anthropic activities and able to drive the speciation of 
several microorganisms. The nutrient’s richness, and specifically the abundance of mono- and 
disaccharides that characterise several food matrixes (such as milk and grape juice), have 
allowed the speciation of lactic acid bacteria (LAB) and yeasts with a high fermentation 
capacity. The bakers' yeast Saccharomyces cerevisiae degrades sugars to two-carbon components 
– in particular, ethanol – even in the presence of excess oxygen, thus using a fermentation 
metabolism instead of the energetically favourable respiration metabolism (2 mol versus about 
32 mol of ATP per mol of glucose respectively). S. cerevisiae alcoholic fermentation has been 
exploited for several millennia throughout the world in a variety of food processes of crucial 
importance for humans, such as the making of beer, wine and bread. Moreover, LAB species 
have partially lost the genetic information need in order to carry out a respiratory metabolism 
on behalf of a homofermentative pathway in which lactic acid is the primary product, or a 
heterofermentative pathway in which lactic acid, CO2, acetic acid and/or ethanol are produced 
(Kandler, 1983). The seemingly simplistic metabolism of LAB has been exploited throughout 
history for the preservation of foods and beverages in nearly all societies, and dates back to the 
origins of agriculture. The domestication of LAB strains passed down through various 
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culinary traditions and the continuous passage of food stuffs has resulted in modern-day 
cultures that are able to carry out these fermentations (Makarova et al., 2006).  

 

 

Fig. 1. View of the overlapping regulatory mechanisms modulating metabolic fluxes. A) 
Example of a metabolic network and schematic representation of the three layers of cellular 
regulatory mechanisms. The metabolic flux and metabolite pools’ concentrations are 
subjected to the three layers of regulation. The regulation mechanisms act as a response to 
environmental stimuli. B) Different environmental stimuli (blue and green areas) affect the 
metabolic fluxes thereby determining the accumulation or depletion of intermediate 
metabolites. 
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Both LAB and S. cerevisiae have definitely evolved their energetic metabolism to reach 
maximum fitness in a defined environmental niche characterised by a high carbohydrates 
concentration. Milk, the proposed evolutionary environmental niche for the LAB 
Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and the "domesticated" 
strains of Lactococcus lactis (Bolotin et al., 2004; van de Guchte, 2006; Passerini et al., 2010), 
and the man-made niches, grape juice, has driven the evolution of the domesticated strains 
of S. cerevisiae (Martini, 1993, Fay & Benavides, 2005).  These two are environments in which 
mono- and disaccharides resources are both large and dense. In these environmental 
contexts, fast sugar consumption, lactic acid or ethanol production, accumulation and 
tolerance, and the ability to propagate without oxygen are some of the ‘winning’ traits, and 
they have apparently evolved and become specialised to perfection in these fermenting 
microorganisms. In other words, energetic limitation is an important factor for organisms in 
their natural environment and therefore the ATP-production pathways have been under 
strong selection pressure during evolution (Pfeiffer et al., 2001). Similarly, we can 
hypothesise that all mechanisms acting in the regulation and optimisation of the ATP-
production pathways are subjected to the same selection pressures. 
The complexity of the understanding of how metabolic fluxes are modulated arises from 
multiple overlapping regulatory mechanisms and metabolic feedback into regulatory 
networks (Figure 1). The in vivo capacity of an enzyme to govern and modulate a metabolic 
flux is a function of its abundance and kinetic properties. Both abundance and the kinetic 
properties of enzymes are governed by three layers of cellular regulatory mechanisms: i) 
gene expression, acting on enzyme abundance, ii) post-translational modification, modulating 
enzyme abundance and kinetic parameters, and iii) allosteric modulation, exclusively affecting 
the kinetic parameters. Moreover, the in vivo metabolic flux depends also on the in vivo 
reactant concentrations (Gerosa & Sauer, 2011) which are function of thermodynamics and 
reaction kinetics, i.e. parameters that a cell may modulate only indirectly. 
This chapter examines the mechanisms regulating the primary metabolism by using as 
model organisms the dairy species L. lactis among prokaryotes, and the bakers' yeast S. 
cerevisiae among eukaryotes. Moreover, some enzymatic activities and metabolic pathways 
are described and their physiological role is revisited, taking into consideration the 
optimisation of the cellular bioenergetics as a result of an environment-dependent selection 
pressure. 

2. The regulation of the energetic metabolism in lactic acid bacteria 

Despite the wide use of LAB in food production and the role of some species for their health 
benefits for the human gastro intestinal tract, the regulatory mechanisms that govern the 
main energetic metabolism of these bacteria have still not been completely disclosed. Most 
of the studies have been carried out on the 'domesticated' L. lactis species, a member of the 
LAB widely used in the industrial manufacture of milk-fermented products. The most 
important industrial application of L. lactis is based on its energetic metabolism, which leads 
mainly to the production of high amounts of lactic acid. Anaerobic glycolysis is the principal 
energy-generating process of L. lactis, it is thus considered exclusively as a fermenting 
microorganism. Nevertheless, in aerobic conditions and in presence of an exogenous source 
of heme, L. lactis may be able to carry out oxidative phosphorylation (Duwat et al., 2001). 
This cofactor-dependent respiration capacity has also been discovered in other LAB species 
(Lechardeur et al., 2011). Although named and used for their capacity to produced lactic 
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acid, numerous LAB can be induced through a respiratory metabolism, thereby improving 
the population size and its survival. It follows that L. lactis is currently industrially produced 
as biomass using a heme-dependent respiration, while in the manufacture of fermented milk 
and cheeses the homolactic fermentation has a key role in the food matrix’s transformation 
or preservation as a consequence of the sizable production lactic acid. Due to the relatively 
recent timing of studies on the respiratory behaviour of L. Lactis, most of the work carried 
out in order to elucidate the intricate regulation of the energetic metabolism in this species 
has focused on lactic fermentation. A detailed description of the dynamics of metabolic 
pools were obtained through in vivo measurements, and kinetic analysis by using cell 
extracts and the techniques of nonlinear systems modelling (Voit et al., 2006). The 
monitoring of the glycolytic intermediates made, at first glance, intuitive sense. During 
homolactic fermentation, glucose was taken-up by lactococcal cells and converted into 
glucose 6-phosphate and then fructose 1,6-biphosphate. The latter is converted into trioses, 
which ultimately form lactate (Figure 2).  
 

 

Fig. 2. Simplified representation of glycolysis, homolactic fermentation and heme-dependent 
respiration in L. lactis. The Black arrows show the metabolic fluxes. The red arrow shows the 
regeneration of NAD+ occurring during the heme-dependent respiration. Glucose-6-
phosphate (G6P), dihydroxyacetone phosphate (DHA-P), glyceraldehyde-3-phosphate 
(GA3P), 1,3-biphosphoglycerate (1-3PGA), 3-phosphoglycerate (3PGA), 2-phosphoglycerate 
(2PGA) phosphoenolpyruvate (PEP), pyruvate (PYR). The green arrows show the role of 
PEP as a phosphate donor in the glucose uptake, PTS-dependent phosphoenolpyruvate 
phosphotransferase system (PTS). EIIC, EIIB, EIIA, HPr, HPr-His-P, EI, and EI-P are 
components of the PTS system. 
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While it is usually assumed that the accumulation of intermediates in a linear pathway is 

disadvantageous because their storage is chemically costly, in L. lactis it a strongly persistent 

accumulation of trioses (3-phosphoglycerate and phosphoenolpyruvate) at relatively high 

concentrations (6-20 mM) after glucose consumption was observed (Voit et al., 2006). The 

reason for the accumulation of trioses in the glycolytic pathway was identified when the 

overall primary metabolism was considered (Figure 2) together with the nutritional 

characteristics of the environments where many homofermentative bacteria, including L. 

lactis, live. These environments are characterised by the availability of glucose, which 

fluctuates widely between high concentrations and extended periods of starvation. As long 

as glucose is available, the glycolytic pathway is efficiently fed so as to obtain energy 

production and population growth. During glucose starvation, it becomes crucial to be well-

prepared for future carbohydrate availability, when the cell must use them as fast as 

possible in order to restart the flux of the glycolytic pathway and grow. The maintenance of 

the high concentration of trioses is, therefore, necessary because glucose transport across the 

membrane depends upon phosphoenolpyruvate (PEP) as phosphate donor through a PTS 

system (Figure 2) (Voit et al., 2006). As such, it can be speculated that L. lactis and other 

homofermentative LAB have evolved regulatory mechanisms to be able to control the level 

of PEP in order to bridge normal periods of starvation. 

The maintenance of the 'necessary' concentration of PEP (PEP holding pattern) during 

starvation periods requires a fine tuning of downstream reactions in the pathway. If 

pyruvate kinase is closed too rapidly, unnecessary amounts of materials are stored in the 

form of trioses. Otherwise, if pyruvate kinase is deactivated too slowly, the glycolytic flux 

is accelerated towards the production of lactate. In other words, this regulatory 

mechanism has evolved to use the phosphotransferase system rather than ATP for glucose 

phosphorylation, thereby having most of the glycolytic process short-circuited through 

the PTS system. The main ecological advantage of such metabolic control is that cells use 

the first available glucose directly in order to produce pyruvate and than lactate, thereby 

acidifying the local environment when potential competitors attempt to take up glucose 

(Voit et al., 2006). 

Beside the PEP holding pattern, a further interesting metabolic control mechanism 

developed by L. lactis is represented by the 'feed-forward activation', which is quite rare in 

metabolic systems. The observation of a transient high concentration of fructose 1,6-

biphosphate (FBP) during glucose consumption led to the hypothesis of a regulatory role for 

this glycolytic intermediate. It was suggested that FBP represents a strong activator of the 

pyruvate kinase (PK), thereby facilitating the very quick conversion of PEP into pyruvate 

and lactate while glucose is available. On the other hand, the reduction of glucose 

availability and, therefore a drop in FBP concentration, allows the decrease of PK activity 

until an effective stop when glucose is no longer available. The specific activation of PK by 

FBP has also affected the tuning of PEP concentration. This complex regulation of the 

energetic metabolism was strictly driven by environmental and ecological constraints. In a 

more general view, the 'PEP holding' strategy and the FBP 'feed-forward activation' 

represent an adaptive prediction of environmental changes (in this case related to the 

availability of carbohydrates). The increasing concentration of PEP during glucose 

starvation represents a metabolic anticipation of the next environmental stimulus (i.e. new 
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glucose availability). The anticipation of environmental change is considered an adaptive 

trait because pre-exposure to the stimulus – which typically appears early in the ecology – 

improves the organism's fitness when it encounters a second stimulus (Mitchell et al., 2009). 

In the regulatory mechanisms described above, carbohydrates-availability and 

carbohydrates-starvation represent two consecutive and predictable environmental stimuli 

for fermentative domesticated LAB. In L. lactis the FBP 'feed-forward activation' represents a 

clear example of the relevance of allosteric regulatory mechanisms (Figure 1) on the 

modulation of the energetic metabolism. 

A study done to explain the ability of L. lactis to grow, retain an active metabolism and 

survive at low pH highlights the complexity and the interplay of the overlapping regulatory 

mechanisms that operate in the regulation of the energetic metabolism. Culturing the 

microorganisms at low environmental pH sees the biomass yield diminished and the energy 

dedicated to maintenance increased as a response to the organic acid inhibition and 

cytoplasmic acidification (Even at al., 2003). The request for energy for maintenance in acid 

conditions resulted in an increase in glucose consumption and the glycolytic rate with a 

significant reduction of biomass yield relative to ATP production. The adjustment of the 

metabolic flux in response to a low environmental pH was determined by an increase in the 

enzymes’ capacity and by a specific modulation of the enzyme activities of the glycolytic 

pathway. A transcription profile and regulation analysis were effective in evaluating the 

contribution of each layer of regulatory mechanisms in the observed phenomena, 

highlighting the primary contribution of translational regulation to the increased 

concentration of glycolytic enzymes in acidic conditions, and confirming that the translation 

apparatus of L. lactis was optimised under acid stress conditions (Even et al., 2003). In this 

case, the decrease of intracellular pH due to the acidity of the extracellular environment 

determines an important decrease in enzyme activity that was compensated for by an 

increase in the enzyme capacity through the efficiency of the translation machinery. In this 

context, it should be underlined that the enzyme concentration results from the rate of 

protein synthesis, corrected by dilution coefficient, which is affected by protein turnover 

(normally negligible except under conditions of stress) and the rate of cell division (at each 

cell division, the enzymes cellular content will be halved). It follows that cells growing at 

different rates will have substantially different rates of protein synthesis, even though the 

specific activities may remain similar (Even et al., 2001). More recently, the primary role of 

allosteric regulatory mechanisms in controlling the glycolytic flux of L. lactis has been 

questioned, underlining the predominant regulatory role of the enzymes’ concentration. 

This statement was supported by a new methodology whereby experimental measurements 

of fluxes and enzyme concentrations can be integrated into flux functions capable of 

predicting the 'fulsome' from the proteome (Rossel et al., 2011). Nevertheless, by such an 

approach the understanding of the role of each layer of regulation can only be partially 

addressed. In this case, the approach of regulation analysis is more informative in 

delineating which regulatory layer is responsible for establishing fluxes through a given 

enzyme (Gerosa & Sauer, 2011). 

Concerning the hierarchical (i.e. expression and post-translational modification) regulation 

of the energetic metabolism of LAB, the little information available are related to the 

catabolite control protein CcpA, the major regulator of the carbon metabolism in L. lactis and 
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other Gram-positive bacteria. CcpA belongs to the LacI/GalR family of bacterial regulator 

proteins, and the disruption of the ccpA gene reduces the carbon catabolite repression (CR) 

of several genes involved in carbohydrate metabolisms. CcpA-mediated regulation depends 

basically on three elements: i) a specific cis-acting DNA sequence, termed catabolite-

responsive element (cre) which is present near the promoter region of genes affected by CR, 

ii) the HPr protein, a phosphotransferase protein of the PTS system, and iii) the 

concentration of glycolytic intermediates (such as FBP). A metabolite-activated kinase has 

been shown to phosphorylate HPr on residue serine 46. This phosphorylated form of HPr 

[HPr(Ser-P)] interacts with CcpA, and this interaction enhances the binding of CcpA to cre 

on the promoter region of genes, so affecting the level of their expression. Indirectly, the 

phosphorylation of HPr on serine residue, enhanced by high level of glycolytic 

intermediates (e.g. FBP), reduces the number of HPr molecules that can be phosphorylated 

on histidine residue so as to ensure the functionality of the PTS system in sugar uptake 

across the membrane (Figure 1). Besides the role of CcpA in the control of sugar metabolism 

(mainly the sugar uptake), it was demonstrated that the role of this protein in the 

transcriptional activation of the glycolytic las operon, encoding the enzymes 

phosphofructokinase, pyruvate kinase and L-lactate  dehydrogenase (Luesink et al., 1998). 

Specifically, the disruption of the ccpA gene lowered the activity of pyruvate kinase and L-

lactate dehydrogenase, resulting in the production of metabolites that are characteristic of a 

mixed-acid fermentation. It was, therefore, speculated that homolactic fermentation in L. 

lactis is maintained by CcpA-mediated repression of mixed-acid fermentation (Luesink et al., 

1998). 

The regulatory function of CcpA on the energetic metabolism was further confirmed when 

its primary role in the regulation of aerobic and respirational growth of L. lactis was 

described (Gaudu et al., 2003). CcpA was found to repress NADH oxidase activity, thus 

maintaining a correct NADH/NAD+ ratio that directed the metabolism in favour of 

respiration. Moreover, it was proposed that a CcpA-mediated repression of the heme 

transportation system thereby prevented the oxidative damage provoked by precocious 

heme uptake at the start exponential growth. CcpA thus appears to govern a regulatory 

network that coordinates oxygen, iron and the energetic metabolism. 

3. The regulation of the glycolytic pathway in Saccharomyces cerevisiae 

The S. cerevisiae metabolism has been exploited by humans for several millennia through a 

variety of food processes in order to produce alcoholic beverages and leavened bread. 

Alcoholic fermentation began due to the presence of indigenous yeast in grapes, must, wort 

and dough, and with total ignorance regarding the existence of microorganisms and their 

fermentative role. In practice, humans started to apply microbiology before the role of yeast 

in beer, wine and bread production was formally proven by Pasteur in 1860 (Pasteur, 1860). 

Starting with the work of Emil Christian Hansen at the Carlsberg Laboratory in 

Copenhagen, in the early 1880s, the control of the S. cerevisiae metabolism became of crucial 

importance to enhance the efficiency of fermentation processes as well as the quality of the 

various products. Alcoholic fermentation is not the unique energetic metabolism in S. 

cerevisiae since it can use the more energetically favourable respiration, which sees a 

significant increase of ATP being produced per mole of glucose (Figure 3).  
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Fig. 3. Simplified representation of the glycolysis, alcoholic fermentation and respiration 
metabolism in S. cerevisiae. Black arrows show the metabolic fluxes. Glucose-6-phosphate 
(G6P), dihydroxyacetone phosphate (DHA-P), glyceraldehyde-3-phosphate (GA3P), 1,3-
biphosphoglycerate (1-3PGA), 3-phosphoglycerate (3PGA), 2-phosphoglycerate (2PGA) 
phosphoenolpyruvate (PEP), pyruvate (PYR). 

A fundamental characteristic of S. cerevisiae is the ability to ferment sugars, even in the 

presence of oxygen in aerobic conditions. This phenomenon is called the Crabtree effect, in 

honour of Herbert Grace Crabtree who first described the reversible switch between the 

glycolytic and oxidative metabolism in some cancer cells (Crabtree 1929). In more general 

terms, the duality of the S. cerevisiae metabolism allows this microorganism to use two 

different strategies for exploiting resources: the 'selfish' strategy and the 'cooperative' 

strategy. According to the 'selfish' strategy the individuals quickly consume resources and 

increase their own reproduction rate, whilst according to the 'cooperative' strategy the 

individuals exploit resources slowly but efficiently. A high rate of ATP production per unit 

of time is associated with a high reproduction rate and is considered to be a 'selfish' strategy 

(e.g., fermentation), whereas a high yield of ATP production (the number of units of ATP 

per unit of resource consumed) is associated with a low reproduction rate but with high 

biomass production, and is therefore considered to be a 'cooperative' strategy (e.g., 

respiration) (Pfeiffer, 2001). Given that, resource supply is one of the most important 
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ecological factors that drive the evolution of organisms, the presence in S. cerevisiae of two 

different metabolic strategies for exploiting resources (fermentation and respiration) 

represents an ecological advantage that has allowed this species to survive under different 

environmental conditions. The duality of the S. cerevisiae metabolism increases the 

complexity of the regulatory mechanisms interacting with each other to control the energetic 

metabolism under different environmental stimuli. 

Despite S. cerevisiae has been extensively studied with regard to several of its characteristics, 

little information is available concerning the complexity of the regulatory mechanisms 

acting on the glycolytic pathway, i.e. the common pathway for fermentative and respiratory 

metabolism (Figure 3). Glycolysis is a highly conserved pathway from bacteria to yeast and 

humans, and presumably it has been under intense evolutionary pressure for its robust 

efficiency. It therefore represents an interesting model for investigating the correlation 

between the different levels of gene expression. As stated by the central dogma of molecular 

biology (DNA encodes mRNA and mRNA encodes proteins), a strong correlation was 

anticipated amongst mRNA concentrations, protein concentrations and metabolic fluxes. 

However, all attempts to verify these correlations – starting from the data on mRNA and 

protein levels, enzyme activities and in vivo fluxes – were far from perfect. A recent study 

developed a method to dissect the hierarchical regulation of S. cerevisiae glycolysis into 

contributions by transcription, translation, protein degradation and post-translational 

modification (Daran-Lapujade et al., 2007). The authors propose the calculation of two 

coefficients, the hierarchical regulation coefficient ρh and the metabolic regulation coefficient 

ρm. ρh quantifies to what extent the local flux through the enzyme is regulated by a change in 

enzyme capacity which is affected by a cascade of gene expression, from transcription to 

post-translational modification. ρm quantifies the relative contribution of changes in the 

interaction of the enzyme with the rest of the metabolism to the regulation of the enzyme's 

local flux. While ρh can be measurable, ρm is calculated assuming that ρh + ρm = 1. It follows 

that a reaction that is purely regulated by a cascade of gene expression would have a ρh of 1, 

whereas a reaction that is solely metabolically regulated would have ρh of 0 and ρm of 1. A 

study by Daran-Lapujade compared different cultivation conditions in order to compare a 

fully respiratory metabolism with a fully anaerobic fermentative metabolism. Moreover, the 

anaerobic fermentative metabolism was studied by increasing the carbon fluxes in glycolysis 

by adding to the culture the non-metabolisable weak acid benzoic acid. The comparison of 

the three different cultivation conditions, carried out using a glucose-limited chemostat at 

the same dilution rate, highlights an increase of carbon fluxes (5- to 11-fold) in anaerobic 

rather than in aerobic cultures, with a further increase in the presence of benzoic acid. The 

dissection analysis revealed that in most cases the fluxes resulted from both hierarchical and 

metabolic regulatory mechanisms (ρh between 0.2 and 0.5). Surprisingly, the increase of 

glycolytic fluxes stimulated by benzoic acid revealed a dominant contribution of metabolic 

regulation because most of the reactions showed small ρh values and ρm values which were 

close to 1 (with the exception of the reactions governed by phosphofructokinase, fructose-

bisphosphate aldolase, triose-phosphate isomerase and pyruvate kinase) (Daran-Lapujade, 

2007). A further dissection approach was useful for analysing the contribution of 

transcription, mRNA degradation, translation, protein degradation or post-translational 

modification, to the hierarchical regulation of enzymes’ capacities. The main conclusion was 

that fluxes through glycolytic enzymes were only marginally regulated by mRNA levels, 
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whereas most of the observed gene-expression regulation was exerted at the level of protein 

synthesis and/or degradation and the post-translational level. It was, therefore, speculated 

that in S. cerevisiae, the whole glycolytic regulation is an interplay of purely hierarchical 

regulation (ρh close to 1), purely metabolic regulation (ρm close to 1), cooperative regulation 

(ρm and ρm between 0 and 1) and antagonistic regulation (both ρh and ρm negative). The 

nature and the role of post-translational modification, which appeared to be relevant in the 

control of glycolytic fluxes, has not yet been investigated systematically for all glycolytic 

enzymes, even though phosphorylation seems to be the predominant mechanism of protein 

modification. 

The ability of S. cerevisiae to switch from respiratory to fermentative metabolism is an 

important characteristic in the evolutionary and ecological context and for many of its 

industrial applications. In the natural – evolutionary – context, this ability may have helped 

this organism to quickly recover sugars and create a hostile environment for competing 

microorganisms. Concerning the industrial application of S. cerevisiae, yeast biomass starved 

of glucose during storage must rapidly adapt to a high sugar concentration when it is added 

to bread dough or wort. As has been reported, the shift from respiratory to fermentative 

metabolism resulted in a rapidly increase of the yeast glycolytic flux in order to compensate 

the differences in the ATP yield of the two metabolisms. The dynamics of glycolytic 

regulation during the adaptation of S. cerevisiae to fermentative metabolism have been 

investigated with the aim of understanding the time-dependent, multilevel regulation of 

glycolytic enzymes during the metabolic switch just described (van de Brink et al., 2008). It 

was reported that within 45 min of the switch from respiratory to fermentative metabolism, 

the glycolytic flux increases eightfold without any changes in the glycolytic enzymes’ 

capacities, thereby highlighting an increase of the enzymes activities via metabolic 

regulation (i.e. the regulation of activities by interaction with low-molecular-weight 

substrates, products and effectors). By prolonging the incubation during the fermentative 

metabolism under anaerobic, glucose-excessive conditions, a hierarchical regulation of 

enzymes was also observed. Specifically, the capacity of the kinases of the upper part of the 

glycolysis remained unaffected, whereas the enzymes’ capacities of the lower part of the 

glycolysis increased, establishing a new homeostasis of glycolytic metabolites. The delay of 

the transcriptional regulation compared to the metabolic regulation of glycolytic enzymes 

observed after the metabolic switch was ascribed to the dramatic change in the rate of ATP 

production. While the glucose consumption rate increased more than 12-fold during the 2 

hours after the switch, the rate of ATP decreased during the first 15 minutes as a result of 

the reduced ATP yield under fermentative conditions. It was, therefore, speculated that cells 

energy levels influence the induction of the enzymatic capacity in glycolysis. Due to the fact 

that an increased level of glycolytic enzymes was only observed 45 minutes after the 

metabolic switch, and given that the majority of the relevant transcripts were induced after 

10 minutes, the step was severely affected by the cellular energetic status which was 

identified in the translation machinery.  

4. Alkalising reactions and cell bioenergetics 

Food associated bacteria, and in particular LAB, have been selected and used by humans in 
several food processes because of their ability to acidify milk or vegetables in order to obtain 
a more stable and safer food products. Acidification occurs in homofermentative LAB 
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through lactic acid production as the final product of their energetic metabolism. It follows 
that the growth of LAB determines a significant change in the environmental chemical 
composition, with a progressive decrease in sugar concentration and a simultaneous 
increase in lactic acid concentration thereby determining a decrease in environmental pH. 
Consequently, LAB during each fermentation process are faced with 'predictable' 
environmental changes, ending with the cessation of growth due to carbon source starvation 
and, mostly, with an environmental pH which is incompatible with the metabolic processes 
of the microorganism. The exposure to low pH for long period times determines the 
arresting of growth and a dramatic decrease of glycolytic fluxes, structural damage to the 
cell membrane and macromolecules (such as DNA and proteins), and a progressive loss in 
viability. Weak acids, such as lactic acid, have potent antimicrobial activity because the 
undissociated forms of weak acids pass freely through the cell membrane. Since the 
cytoplasmic pH is generally higher than that of the growth medium, inside the cell the weak 
acid dissociates by releasing a proton and leading to the acidification of the cytoplasm. Due 
to environmental constraints, LAB have developed through evolution a 'make-accumulate-
consume' metabolic strategy (Pfeiffer et al., 2001; Rozpedowska et al., 2011) in order to have a 
faster sugar consumption, lactic acid production and accumulation. This strategy is aimed at 
rapidly monopolising sugars and creating an unfavourable environment so as to out-
compete other microorganisms by the rapid secretion of fermentation products. In order to 
survive themselves, LAB have therefore developed a series of mechanisms to counteract low 
environmental pH and the negative effects of weak organic acids produced by their own 
metabolism. Several of these mechanisms have been extensively studied (Cotter & Hill, 
2003) to understand how LAB protect themselves from the challenge posed by low-pH 
environments, such as food and gastric juice, and how they develop the strategies by which 
they can be aided or impeded. Nevertheless, the role of these mechanisms in the regulation 
of the energetic metabolism was barely investigated even though the loss of the activity of 
the relatively acid-sensitive glycolytic enzymes (which severely affects the ability to produce 
ATP) was well known. Indeed, even if LAB species are acid-tolerant bacteria, they cannot be 
considered to be acidotrophic, and the optimum pH of the highly conserved glycolytic 
enzymes is close to neutral-alkaline values (Hutkins & Nannen, 1993).  
 

 

Fig. 4. Reaction catalysed by urease (EC 3.5.1.5) and the spontaneity of carbamate in 
ammonia and carbonic acid. 
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Fig. 5. Simplified representation of glycolysis, homolactic fermentation and urease activity 
in S. thermophilus. The inset represents the raw isothermal titration calorimetry data (heat 
flux versus time) of S. thermophilus lactose metabolism either alone (blue line) or in the 
presence of ammonia (green line) or urea (red line) (for the detailed experimental procedure 
see Arioli et al., 2010). 

Quite recently, the urease activity – an enzymatic reaction known as a stress response to 
counteract environmental acidic pH in several bacteria – has been described as a metabolic 
regulatory mechanism of the energetic metabolism in the dairy bacterium Streptococcus 
thermophilus (Arioli et al., 2010). Urease is a multi-subunit urea amidohydrolase (EC 3.5.1.5) 
that catalyses the hydrolysis of urea to yield ammonia and carbamate, which spontaneously 
decomposes to yield a second molecule of ammonia and carbonic acid (Figure 4). The 
released carbonic acid and the two molecules of ammonia are in equilibrium with their 
deprotonated and protonated forms respectively, and the net effect of these reactions is an 
increase in intracellular (pHin) and extracellular (pHout) pH (Figure 5). Urea hydrolysis 
increases the catabolic efficiency of S. thermophilus by modulating the intracellular pH and 
thereby increasing the activity of β-galactosidase, glycolytic enzymes, and lactate 
dehydrogenase. Moreover, urease increases the overall change in enthalpy generated by the 
microbial metabolism as a consequence of an increased glycolytic flux (Figure 5). 
In light of these considerations, urease activity – which is stimulated when environmental 
pH is weakly acidic (pH 5.8-6) (Mora et al., 2005) – should be considered as a regulatory 
system that has evolved to optimise the activity of the glycolytic enzymes. These enzymes 
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are exposed to an increasingly acidic intracellular environment and must maintain cell 
energy homeostasis when the pHout and pHin decrease as a result of lactic acid production. 
Urease biogenesis is only important when the cells are actively growing, since it increases 
the fermentative capacity of S. thermophilus and leads to rapid growth and an increased 
acidification rate in milk (i.e. urease favour a cytoplasmic background suitable for a 'make-
accumulate-consume' strategy). If we consider that energetic limitation is an important 
factor for organisms in their natural environment, we then expect that the properties of 
ATP-production pathways have been under strong selection during evolution (Pfeiffer et al., 
2001). Similarly, the regulatory mechanisms which act in optimising the efficiency of the 
ATP-production pathway should be under the same evolutionary selection. In this context, 
it is notable that eleven genes are necessary in order for the maintenance of an active urease, 
which accounts for 0.9% of the estimated core genome of S. thermophilus. This enzyme has 
been found in all the previously characterised S. thermophilus strains, and urease-negative 
mutants are not common in nature. The S. thermophilus genome has mainly evolved 
following divergent evolution from the phylogenetically related pathogenic streptococci 
bacteria. Loss-of-function mutations, counterbalanced by the acquisition of relevant traits 
(e.g. lactose utilisation) have resulted in a S. thermophilus genome that is well-adapted for 
dairy colonisation (Bolotin et al., 2004). Because urease is not common in pathogenic 
streptococci (Mora et al., 2005), its acquisition and maintenance within the S. thermophilus 
genome is likely to be dependent upon its contribution to the environmental fitness of this 
microorganism when linked to the environmental availability of urea. Urea is the major 
nitrogenous waste product of most terrestrial animals. Urea is produced in the liver, carried 
in the bloodstream to the kidneys and excreted in urine. Urea is also present in milk and in 
the secretions of the major and minor exocrine glands at concentrations approximately 
equivalent to serum, so a large proportion of circulating urea is translocated onto epithelial 
surfaces by secretory systems or else in tissue exudates. In this context, it is not surprisingly 
that urease is present in a high number of human pathogenic bacteria and represents an 
important factor in infection and disease (Burne and Chen, 2000; Mora et al., 2005).  
Since the activity of the bioenergetic machinery is modulated by the intracellular pH, the 
mechanism of metabolism regulation in other urease-positive bacteria, including human 
pathogens, should be further analysed. All of the metabolic reactions that result in the 
alkalisation of the cytosol of acidogenic organisms (such as those involved in the arginine 
deiminase (ADI) pathway, the citrate metabolism or else those involved in malolactic 
conversion) should be analysed in light of these novel findings. Indeed, and not 
surprisingly, all previous pathways act by subtracting protons from the cytoplasm and are 
strongly induced by an acidic environmental pH (Magni et al., 1999; Cotter & Hill, 2003; 
Broadbent et al., 2010). The conserved role of alkalising reactions across acidogenic bacteria 
is also supported by the data obtained for L. lactis IL1403-945 and S. pneumoniae SP292-945 in 
the presence of glucose and cellobiose as a carbon source (Arioli et al., 2010). In both cases, 
the rate of ATP produced during the sugar catabolism was increased, alkalising with the 
ammonia the cytoplasm. Besides the selfish utility of urease for cells harbouring this 
enzymatic activity, the cooperative behaviour of urease in an ecological context in which 
different microbial species share the same environment was also underlined. Urea 
hydrolysis results in a rise of both pHin and pHout due to the rapid diffusion of ammonia 
outside the cell. It follows that in the presence of urea and a urease-positive microorganism, 
(or a urease-negative microorganism) sharing the same micro-environment, there will be 
benefits from the local transient increase of pH (Arioli et al., 2010). 
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5. Conclusions and perspectives 

The regulation and control of metabolic fluxes in microbes is based on our knowledge of 
regulatory networks topology, on input-output regulatory logics and metabolic feedback, 
and on the quantitative effect of control exerted by regulation events. No less important is 
our understanding of how metabolic regulatory circuits have evolved and what the 
significance of the impact of environmental constraints on the regulatory configuration will 
be. It has recently been described that microbes can 'learn' form exposure to a series of new 
environmental changes and rearrange some regulatory networks so as to predict the new 
environmental stimuli (Mitchell et al., 2009). The ecological forces and the molecular 
mechanisms that govern this ability are not clear but it is evident that the regulatory 
networks that link environmental stimuli to microbial responses are complex and can evolve 
rapidly (Cooper, 2009). The origin of the adaptability of regulatory networks could be 
ascribed to microbial cell individuality and the underlying sources of heterogeneity. This 
heterogeneity is related to stochastic fluctuations in transcription or translation, despite a 
genetically homogeneous background and constant environmental conditions. 
Heterogeneity at single-cell level is typically masked in conventional studies of microbial 
populations, which are based on the average behaviour of thousands or millions of cells, but 
it has the potential to create variant subpopulations better equipped to persist during 
environmental perturbation (Avery, 2006). In other words, a population might enhance its 
fitness by allowing individual cells to make a stochastically transition amongst multiple 
phenotypes, thus ensuring that some cells are always prepared for erratic, unpredictable 
environmental fluctuations. It can be therefore be concluded that the regulatory mechanisms 
that act in the optimisation of the bioenergetics of food-associated bacteria should be 
analyzed by always taking into consideration the 'predictable' succession of environmental 
stimuli that have driven their domesticated speciation and evolution.  

6. References 

Arioli, S., Ragg, E., Scaglioni, L., Fessas, D., Signorelli M., Karp, M., Daffonchio, D., De Noni, 
I., Mulas, L., Oggioni, M., Guglielmetti, S., Mora, D. (2010). Alkalizing reactions 
streamline cellular metabolism in acidogenic microorganisms. Plos One, Vol.5, 
No.11 (November 2010) e1520. doi:10.1371/journal.pone.0015520, ISSN 1932-6203 

Avery, S.V. (2006). Microbial cell individuality and the underlying sources of heterogeneity. 
Nature Review Microbiology, Vol.4, No.8 (August 2006) pp.577-587, ISSN 1740-1526 

Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Ehrlich, S.D., Kulakauskas, S., Lapidus, A., 
Goltsman, E., Mazur, M., Pusch, G.D., Fonstein, M., Overbeek, R., Kyprides, N., 
Purnelle, B., Prozzi, D., Ngui, K., Masuy, D., Hancy, F., Burteau, S., Boutry, M., 
Delcour, J., Goffeau, A., & Hols, P. (2004). Complete sequence and comparative 
genome analysis of the dairy bacterium Streptococcus thermophilus. Nature, Vol.22, 
No.12 (December 2004) pp. 1554-1558, ISSN 1087-0156 

Broadbent, J.R., Larsen, R.I., Deiel, V. & Steele, J.L. (2010). Physiological and transcriptional 
response of Lactobacillus casei ATCC 334 to acid stress. Journal of Bacteriology, 
Vol.192, No.9 ( May 2010) pp. 2445-2458, ISSN 0021-9193 

van de Brink, J., Canelas, A.B., van Gulik, W.M., Pronk, J.T., Heijnen, J.J., de Winde, J. & 
Daran-Lapujade, P. Dynamics of glycolytic regulation during adaptation of 
Saccharomyces cerevisiae to fermentative metabolism. Applied and Environmental 
Microbiology, Vol.74, No.18 (September 2008) pp. 5710-5723, ISSN 0099-2240 

www.intechopen.com



 
Optimisation of Cell Bioenergetics in Food-Associated Microorganisms 

 

233 

Burne, R.A. & Chen, Y.Y. (2000). Bacterial ureases in infection diseases. Microbes and 
Infection, Vol.2, No.5 ( April 2000) pp. 533-542, ISSN 1286-4579 

Crabtree, H.G. (1929). Observations on the carbohydrate metabolism of tumors, Biochemical 
Journal, Vol.23, No.3 (1929) pp. 536–545, ISSN 0264-6021 

Cooper, T.F. (2009). Microbes exploit groundhog day. Nature, Vol. 460, No.7252 (July 2009) 
pp. 181, ISSN 0028-0836 

Cotter, P.D. & Hill, C. (2003). Surviving the acid test: responses of Gram-positive bacteria to 
low pH. Microbiology and Molecular Biology Reviews, Vol.67, No.3 (September 2003) 
pp. 429-453, ISSN 1092-2172 

Daran-Lapujade, P., Rossel, S., van Gulik, W.M., Luttik, M.A.H., de Groot, M.J.L., Slijper, M., 
Heck, A.J.R., Daran, J.M., de Winde, J.H., Westerhoff, H.V., Pronk, J.T. & Bakker, 
B.M. (2007). The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are 
predominantly regulated at posttranscriptional levels. Proceedings of the National 
Academy of Science of the USA, Vol.104, No.40, (October 2007) pp. 15753-15758, ISSN 
0027-8424 

Duwat, P., Sourice, S., Cesselin, B., Lamberet, G., Vido, K., Gaudu, P., Le Loir, Y., Violet, F., 
Loubiere, P. & Gruss, A. (2001). Respiration capacity of the fermenting bacterium 
Lactococcus lactis and its positive effect on growth and survival. Journal of 
Bacteriology, Vol.183 No.15 (August 2001) pp. 4509-4516, ISSN 0021-9193 

Even, S., Lindley, N.D. & Cocaign-Busquet, M. (2001). Molecular physiology of sugar 
catabolism in Lactococcus lactis IL1403. Journal of Bacteriology, Vol.183, No.13 (July 
2001) pp. 3817-3824, ISSN 0021-9193 

Even, S., Lindley, N.D. & Cocaign-Busquet, M. (2003). Transcriptional, translational and 
metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 
grown in continuous acidic cultures. Microbiology, Vol.149, No.7 (July 2003) pp. 
1935-1944, ISSN 1350-0872 

Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie Van 
Leeuwenhoek, Vol.49, No.3 (May 1983), pp. 209-224 

Fay, J.C. & Benavides, J.A. (2005). Evidence for domesticated and wild populations of 
Saccharomyces cerevisiae. Plos Genetic, DOI: 10.1371/journal.pgen.0010005 

van de Guchte, M. (2006). The complete genome sequence of Lactobacillus bulgaricus reveals 
extensive and ongoing reductive evolution. Proceedings of the National Academy of 
Science of the USA, Vol.103, No.24, (April 2011) pp. 9274-9279, ISSN 0027-8424 

Gerosa, L. & Sauer, U. (2011). Regulation and control of metabolic fluxes in microbes. 
Current Opinion in Biotechnology, Vol.22, No.4 (August 2011) pp. 566-575, ISSN 0958-
1669 

Gaudu, P., Lamberet, G., Poncet, S. & Gruss, A. (2003). CcpA regulation of aerobic and 
respiration growth in Lactococcus lactis. Molecular Microbiology, Vol.50, No.1 
(October 2003) pp. 183-192, ISSN 0950-382X 

Hutkins, R.W. & Nannen, N.L. (1993). pH homeostasis in lactic acid bacteria. Journal of Dairy 
Science, Vol.76, No.8 (August 1993) pp. 2354-2365, ISSN 0022-0302 

Lechardeur, D. et al. (2011). Using heme as an energy boost for lactic acid bacteria. Current 
Opinion in Biotechnology, Vol.22, No.2 (April 2011) pp. 143-149, ISSN 0958-1669 

Luesink, E.J., van Herpen, R.E.M., Grossiord, B.P., Kuipers, O.P. & de Vos, W.M. (1998). 
Transcriptional activation of the glycolytic las operon and catabolite repression of 
the gal operon in Lactococcus lactis are mediated by the catabolite control protein 

www.intechopen.com



 
Bioenergetics 

 

234 

CcpA. Molecular Microbiology, Vol.30, No.4 (November 1998) pp.789-798, ISSN 0950-
382X 

Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, 
N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, Y., Rohksar, 
D., Lucas, S., Huang, K., Goodstein, D.M., Hawkins, T., Plengvidhya, V., Welker, 
D., Hughes, J., Goh, Y., Benson, A., Baldwin, K., Lee, J.-H., Diaz-Muniz, I., Dosti, B., 
Smeianov, V., Wechter, W., Barabote, R., Lorca, G., Altermann, E., Barrangou, R., 
Ganesan, B., Xie, Y., Rawsthorne, H., Tamir, D., Parker, C., Breidt, F., Broadbent, J., 
Hutkins, R., O'Sullivan, D., Steele, J., Unlu, G., Saier, M., Klaenhammer, T., 
Richardson, P., Kozyavkin, S.,  Weimer, B. & Mills, D. (2006). Comparative 
genomics of the lactic acid bacteria. Proceedings of the National Academy of Science of 
the USA, Vol.103, No.42 (October 2006), pp. 15611-15616 

Magni, C., Mendoza, D., Konings, W.N. & Lolkema, J.S. (1999). Mechanism of citrate 
metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH. Journal 
of Bacteriology, Vol.181, No.5 ( March 1999) pp. 1451-1457, ISSN 0021-9193 

Martini, A. (1993). Origin and domestication of the wine yeast Saccharomyces cerevisiae. 
Journal of Wine Research, Vol.4, No.3 (September 1993) pp. 165-176, ISSN 0957-1264 

Mitchell, A., Romano, G.H., Groisman, B., Yona, A., Dekel, E., Kupiec, M., Dahan, O. & 
Pilpel, Y. (2009). Adaptive prediction of environmental changes by 
microorganisms. Nature, Vol. 460, No.7252 (July 2009) pp. 220-224, ISSN 0028-0836 

Mora, D., Monnet, C., Parini, C., Guglielmetti, S., Mariani, A., Pintus, P., Molinari, F., 
Daffonchio, D. & Manachini, P.L. (2005). Urease biogenesis in Streptococcus 
thermophilus. Research in Microbiology, Vol.156, No.9 (November 2005) pp.897-903, 
ISSN 0923-2508 

Mora, D., Monnet, C., Daffonchio, D. (2005). Balancing the loss and acquisition of 
pathogenic traits in food-associated bacteria. Microbiology, Vol.151, No.12 
(December 2005) pp. 3814-3816, ISSN 1350-0872 

Pasteur, L. (1860). Mémoire sur la fermentation alcoolique. Annales de Chimie et the Physique, 
Vol.58 pp. 323-426 

Pfeiffer, T., Schuster, S. & Bonhoeffer, S. (2001). Cooperation and competition in the 
evolution of ATP-producing pathways. Science, Vol.292, No.5516, (April 2001), pp. 
504-507, ISSN 0036-8075 

Passerini, D. Beltramo, C., coddeville, M., Quentin, Y., Ritzenthaler, P., Daveran-Mingot, M.-
L. & Le Bourgeois, P. (2010). Genes but not genomes reveal bacterial domestication 
of Lactococcus lactis. Plos One, Vol.5, No.12 (December 2010), e15306. 
doi:10.1371/journal.pone.0015306, ISSN 1932-6203 

Rossel, S., Solem, C., Jensen, P.R. & Heijnen, J.J. (2011). Towards a quantitative prediction of 
the fluxome from the proteome. Metabolic Engineering, Vol.13, No.3 (May 2011), pp. 
253-262, ISSN 1096-7176 

Rozpędowska, E., Hellborg, L., Ishchuk, O.P., Orhan, F., Galafassi, S., Merico, A., Woolfit, 
M., Compagno, C. & Piškur, J. (2011). Parallel evolution of the make-accumulate-
consume strategy in Saccharomyces and Dekkera yeast. Nature Communications, Vol.2, 
No.302 (May 2011) DOI: 10.1038/ncomms1305, ISSN 2041-1723 

Voit, E., Neves, A.R. & Santos, H. (2006). The intricate side of systems biology. Proceedings of 
the National Academy of Sciences of the USA, Vol.103, No.25, (June 2006), pp. 9452-
9457, ISSN 0027-8424 

www.intechopen.com



Bioenergetics

Edited by Dr Kevin Clark

ISBN 978-953-51-0090-4

Hard cover, 272 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Cellular life depends upon energy storage, transformation, utilization, and exchange in order to optimally

function and to stay-off death. The over 200-year-old study of how cells transform biological fuels into usable

energy, a process broadly known as bioenergetics, has produced celebrated traditions in explaining origins of

life, metabolism, ecological adaptation, homeostasis, biosynthesis, aging, disease, and numerous other life

processes. InTech's edited volume, Bioenergetics, brings together some of these traditions for readers

through a collection of chapters written by international authorities. Novice and expert will find this book

bridges scientific revolutions in organismic biology, membrane physiology, and molecular biology to advance

the discipline of bioenergetics toward solving contemporary and future problems in metabolic diseases, life

transitions and longevity, and performance optimization.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Diego Mora and Stefania Arioli (2012). Optimisation of Cell Bioenergetics in Food-Associated Microorganisms,

Bioenergetics, Dr Kevin Clark (Ed.), ISBN: 978-953-51-0090-4, InTech, Available from:

http://www.intechopen.com/books/bioenergetics/optimisation-of-cell-bioenergetics-in-food-associated-

microorganisms



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


