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1. Introduction 

One of the basic functions of subsurface agricultural drainage systems is to avoid the 
establishment of a moisture regime adverse to crop development by means of the depletion 
of shallow groundwater and the timely evacuation of water excess stemming from over-
irrigation, rainfall, losses due to infiltration in channels and contributions from 
underground streams. In order to make an efficient water evacuation, it is crucial to know 
the way in which it moves in the soil so as to determine the water flow that can be removed 
from the porous medium by means of drainage with the corresponding variation of the 
aquifer level. 

The determination of the variables of an agricultural drainage system requires the analysis 
of the mass and energy transfers occurring in the soil. The study of these transfers, despite it 
being highly complex - since it is about analysing processes that are basically nonlinear and 
occurring in a medium in which properties vary over time and space - may be executed by 
considering some of the following  analysis scales: 

Microscopic scale: In this analysis scale, and corresponding to each soil pore, the mean 
velocity or microscopic water flow is estimated with the Poiseuille law, which comes from 
the Navier-Stokes equations, and the pressure in each pore is estimated with a Laplace 
equation. This analysis scale is recommended for a fine understanding of the fundamental 
mechanisms of water transfer processes in the soil. 

Macroscopic scale: The complexity outlined by the specific definition of the geometric shape 
of the pore space means that the microscopic description cannot be implemented without a 
change of the scale, whose essential stage consists in the introduction of the concept of the 
representative volume element (RVE) which allows for the establishment of an equivalence 
between the real porous medium (dispersed) and a fictitious porous medium (continuous). 
In this analysis scale, which concurs with a set of pores of a size’s range, the mean velocity 
in the pores filled with water or macroscopic flow is estimated with the Darcy-Buckingham 
law (1907), and the water pressure associated to the set is estimated with their own Laplace 
law applied to a larger pore size. The corresponding transfer equation is known as Richards 
equation (1931). 
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Megascopic Scale: In this analysis scale, which corresponds to a set of soils, the mean velocity 
- or megascopic flow - is estimated with the Darcy law and averaged through consideration 
of the Dupuit–Forcheimer hypothesis, relevant to a hydrostatic pressure distribution; 
moreover, water pressure is provided by the piezometers. The relevant transfer equation is 
known as the Boussinesq equation of agriculture drainage. 

As a practical matter, the analysis of agricultural drainage is made either with the Richards 

equation (Zaradny & Feddes, 1979; Fipps & Skaags, 1986; Saucedo et al. 2002) or else with 

the Boussinesq equation of agriculture drainage (Dumm, 1954; Pandey, et al., 1992; Gupta et 

al., 1994; Samani et al., 2007). The Richards equation allows the executing of descriptions of 

the transfer processes occurring in the saturated and unsaturated zones of the soil; however, 

its application to the scale of an irrigation district and even that of the a farm field, is limited 

due to the difficulty and cost of the experimental work required to depict the soil’s 

hydrodynamic characteristics (the moisture retention curve and the hydraulic conductivity 

curve) as well as the necessary effort of calculating a three-dimensional water movement in 

the soil. These limitations have led to the analysis of agricultural drainage being mainly 

performed with the Boussinesq equation, an approach that considers in a simplified manner 

the transfers occurring in the soil’s unsaturated zone, but with a smaller amount of data 

requirements than the Richards equation, adequately describes water dynamics in the 

saturated layer of the soil. 

Recently, two mechanistic models have been developed for agricultural drainage that 

improve the traditional hypotheses of the models reported in the literature. On the one 

hand, Zavala et al. (2005) have developed a model for agricultural subsurface drainage 

based on the two-dimensional Richards equation. This differential equation is subjected in 

the drains boundary to a nonlinear radiation condition, and in this form the mass and 

energy transfers in a drainage system are better represented. On the other hand, Zavala et al. 

(2004) and Fuentes et al. (2009) have studied agricultural drainage with the Boussinesq 

equation and have deduced, respectively, the boundary condition to be used in agricultural 

drains by this equation and the relation between the moisture retention curve and the 

storage coefficient in shallow unconfined aquifers. 

The aim of this chapter is to present the two models just described to develop their 

numerical solutions and compare the mass and energy transfers obtained with the Richards 

equation and the Boussinesq equation, both of which are subject to nonlinear radiation 

conditions in the drains. 

2. Materials and methods 

2.1 Macroscopic scale 

Soil water movement in a subsurface drainage system is a three-dimensional phenomenon, 

for which reason its description should be made using the Richards equation in three 

dimensions; nonetheless, due to the effort of calculation that the resolution of this form of 

Richards equation entails, it is convenient to accept the hypothesis that the phenomenon is 

basically two-dimensional (that is to say, it is made according to planes perpendicular to the 

direction of the drain). If, in addition, it is assumed that the water uptake by plant roots is 

negligible, the two-dimensional form of the Richards equation may be written as follows: 
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where   is the pressure head  L ;    C d d      is the specific water capacity 1L 
  ; 

    is the volumetric water content 3 3L L 
  ;  K   is the hydraulic conductivity 

1LT 
  ; x and z are, respectively, the horizontal and vertical coordinates  L ; and t is time 

 T . 

If a drainage system with equidistant parallel pipes installed at the same depth is 
considered, it is possible to define a domain for equation (1) as with the one shown in Fig. 1. 
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Fig. 1. Domain for the Richards equation. 

The description of agricultural subsurface drainage by equation (1) requires the definition of 
the initial status of the pressure head in the porous media as well as its boundary 
conditions. The initial condition of the water pressure in the soil is specified as a known 
space function: 

  i x,z    (2) 

By the flow symmetry, it is known that the Darcy flow in a perpendicular direction to 
segments AF, DE and BC is null (Neumann boundary condition), and a similar situation 
occurs in the boundary segment CD due to the impervious layer. 
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where EP  is the depth of the impervious layer, measured as from the soil surface; and L is 

the space between drains. 

In the soil surface (segment AB) when the rain or evaporation intensity (i) is known, a 
Neumann type boundary condition can be implemented: 

    z
K i

z

  
  


   x AB ,   z 0 ;  t 0  (6) 

Consistent with Zavala et al. (2005), the soil water transfer to the drain shall be described 
with the following nonlinear radiation condition: 

     t
o

z h
K q 1

n P P

                 
  x ,z EF;    t 0  (7) 

where n   is the normal derivative; oq  is a particular value of the water flow in the soil 
1LT 

  ;   and   are dimensionless shape parameters; P is the depth of the drain  L ; and 

th  is the pressure inside the drain  L , equal to the atmospheric pressure  th 0  in the 

segment of the drain’s internal perimeter in contact with the air and equal to the water 

depth had at every point of the drain’s internal perimeter in contact with water (Fig. 2). 
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Fig. 2. Scheme of the water flow in a drain. 

The application of relation (7) requires knowledge of the evolution of mean depth of the 
water in the drain. If the variations in the longitudinal direction are negligible, the depth of 
the water in the drain may be supposed to be uniform in space but variable in time. In this 
situation, the evolution in time of the depth of water may be calculated as from an equation 
that relates the flow velocity with the energy loss in the movement direction. Because of its 
generality, the fractal resistance law proposed by Fuentes et al. (2004) is used in this work: 

 
d

3d 1 d
H2d 1

g
V R J

 


 (8) 
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where V is the water’s mean velocity in the drain 1LT 
  ; d is a dimensionless parameter 

that varies between 1 2 d 1   in terms of the type of flow (turbulent or laminar);   is a 

dimensionless coefficient; g is the gravitational acceleration 2L T 
  ;   is the water 

kinematic viscosity 2 1L T 
  ; HR  is the hydraulic radius  L ; and J is the friction slope 

1LL 
  . 

The combination of relation (8) and the continuity equation for steady flow - which indicates 

that the flow Q is the product of the hydraulic area and the mean velocity ( Q VA ) - allows 

the obtaining of the relation between the mean depth of the water in the drain and the water 

flow that leads to d 3d 1 d 2d 1
HQ g AR J    . However, the application of this relation 

displays a limitation: there are two unknown variables (flow and water depth) and only one 
equation. This problem is resolved by outlining a second equation that is obtained when the 
nonlinear radiation condition is integrated with (7): 

 t
o

h
Q 2 q 1 d

P P
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

         
     (9) 

where    is the perimeter of the drain semi-circumference and    is its length. 

In order to model agricultural drainage with the system of equations (1-9), it is crucial to 

have the analytical representations of the soil hydrodynamic characteristics     and 

 K  . In field and in laboratory applications, Fuentes et al. (1992) recommend using the van 

Genuchten model for the moisture retention curve (van Genuchten, 1980), subject to the 

Burdine restriction (Burdine, 1953): 
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where s  is the saturated volumetric water content; r  is the residual volumetric water 

content; 
 d 0    is a pressure scale parameter; m and n are the shape parameters.  

As for the hydraulic conductivity curve, they suggest using the Brooks & Corey model 
(1964): 

   r
s

s r

K K
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   

   
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 (11) 

where sK  is the saturated hydraulic conductivity 1LT 
  ; and   is a positive 

dimensionless shape parameter. 

2.2 Megascopic scale 

Rough descriptions of the mass and energy transfers of subsurface agricultural drainage 
systems can be obtained with the Boussinesq equation for unconfined aquifers. As per the 
hypothesis that variations in the direction of the drain are negligible and that the null 
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recharge - the dynamic of the water in the saturated thickness of the soil - can be described 
with the Boussinesq equation of agricultural drainage: 

    s i

H H
H K H H

t x x

         
 (12) 

where H and iH  are, respectively, elevations of the free surface or hydraulic head and of 

the impervious layer, measured from the same reference level  L , when the impervious 

layer is approximately horizontal it may be supposed as the marker level and take iH 0 ; 

 H  is the storage coefficient 3 3L L 
  , which, in a shallow unconfined aquifer is a 

function of the hydraulic head (Hilberts et al., 2005; Fuentes et al., 2009). 

Taking into account the van Genuchten model for the moisture retention curve, subject to 
the Burdine restriction and the hydrostatic pressure distribution hypothesis, this allows the 
obtaining of the following analytical representation for the storage coefficient (Fuentes et al., 
2009): 

        mn

s r s dH 1 1 H H
 

           
 

  with  m 1 2 n   (13) 

where Hs is the soil surface elevation. 

To resolve equation (12) on the domain shown in Fig. 3, it is necessary to define the initial 
conditions and the boundary conditions. The specification of these limit conditions is more 
convenient if the free surface position is counted as from the impervious layer: 
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Fig. 3. Domain to the Boussinesq equation. 

    oH x,t D h x, t   (14) 

where  h x,t  is the hydraulic head counted as from the position of the drains; and oD  is 

the depth of the impervious layer measured as from the drain’s position (see Fig. 3). 
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In general terms, the pressure’s initial condition shall be specified as the elevation of the free 
surface throughout the horizontal coordinate x: 

    h x,0 h x  (15) 

Zavala et al. (2004) have shown that the relation that will subject the Boussinesq equation in 
the boundary of the drains is the following fractal radiation condition: 

 
2s 1

ss

h h h
K K 0

x P L

              
 (16) 

where   is a dimensionless conductance coefficient; s is the quotient of the soil fractal 

dimension fD  and the dimensional Euclidean space ( fs D 3 ); sK  is the hydraulic 

conductivity of the soil-drain interface. The positive sign in equation (16) is taken for the 

drain located in coordinate x 0  and the negative sign for x L . As per Zavala et al. (2007), 

it is convenient to express equation (16) as follows: 

 
2s

s s

h h
K q 0

x P

       
 (16.1) 

where ssq K P L  . 

The quotient dimension s is implicitly defined in terms of the total volumetric porosity (  ) 

as: 

  s 2s1 1      (17) 

If a  represents the total areal porosity, and considering that 2s
a   , the equation that 

defines the relationship between s and a  is: 

  
1 1

s 2s
a a1 1      (18) 

3. Application 

The comparison of the mass and energy transfers provided by the systems of equations (1-

11) and (12-18) is executed considering the drainage experimental information of Zavala et 

al. (2004). The experiment was carried out in a drainage module made with acrylic sheets in 

which two PVC drains were installed (Fig. 4). The drain length and diameter are 0.30 m  

and dD 0.05 m ; the total number of circular openings in the drain-wall is No = 233 and the 

opening diameter 1.58 mm; and the drains’ slope is J 0.001 . Other features of the drainage 

module are: L 1.0 m , P 1.20 m  and oD 0.25m . The module was filled with an altered 

sample of sandy soil of the Mexican region of Tezoyuca, Morelos, passed through a 2 mm 

sieve; the soil was disposed at 0.20 m thick layers, seeking to maintain a constant bulk 

density. The soil was saturated by applying a constant water head on its surface until the 

entrapped air was virtually removed. Once the drains were closed, the water head was 
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removed from the soil surface; the surface of the module was then covered with a plastic in 

order to avoid evaporation. Finally, the drains were opened to measure the drained water 

volume (ten days); it is worth noticing that the initial condition corresponded to a 

hydrostatic pressure distribution and the recharge was null (R = 0) during the drainage 

phase. 

The hydrodynamic characterisation of the soil, executed independently of the transient 

drainage test, allowed the determination of the parameters of the van Genuchten model and 

the Brooks & Corey model (Zavala et al., 2004): 3 3
s 0.539 cm cm    , 3 3

r 0 cm cm  , 

m 0.373 , 3.767  , sK 0.183 m h  and d 0.418 m   . To estimate the dimensionless 

coefficient of the fractal resistance law (equation 8), Zavala et al. (2005) compare this law 

with the Hazen-Williams relation, considering d 0.54  and determining  9.83   (smooth 

PVC drains). 
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Fig. 4. Scheme of the drainage module. 

The experimental conditions allow the identification of all the domain boundary segments, 

except the one associated with the drain, as impermeable (Neumann boundary condition). 

When the porosity 3 30.539 cm cm   is introduced in equation (17) and this function is 

resolved, the exponent of the fractal radiation condition (equation 16.1) for the Boussinesq 

equation is obtained ( s 0.636 ). Eventually, the parameters  ,   and oq  intervening in 

the nonlinear radiation condition (equation 7), as well as scale parameter sq  (equation 16.1), 

are determined as from the evolution in time of the experimental drained depth. To save the 

problem of estimating three parameters from one test only, Zavala et al. (2005) assume     

and obtain 1.88     and o sq 300K ; in the case of the Boussinesq equation, Zavala et al. 

(2004) report s sq 0.913K . 
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To compare the transfers described, with two flow models, it is necessary to resolve the 
systems (1-11) and (12-18). Both systems of equations are numerically solved following the 
process employed by Zavala et al. (2004) & (2005). The spatial discretisation is carried out by 
using the Galerkin finite-element method; temporal discretisation is performed with a finite-
difference implicit method. The resulting system becomes lineal using the Picard iterative 
method; the algebraic equation system is solved using a preconditioned conjugated gradient 
method. These methods are well documented, for example in Zienkiewicz et al. (2005). 

The solution domain discretisation of the two-dimensional Richards equation is carried out 

by applying the Argus-One program, with which a finite element mesh of 10,795 nodes was 

generated and distributed in 21,082 elements (Fig. 5) - this being the minimum spaces 

min minx z 0.2 cm     and the maximum ones min minx z 2.0 cm    -. The solution 

domain of the one-dimension Boussinesq equation was discretised generating a mesh of 201 

nodes and 200 finite elements of a uniform size ( x 0.5 cm  ). 

 

 

Fig. 5. Finite element mesh (Richards equation domain). 

By applying the numerical solutions of the systems (1-11) and (12-18), the drainage 
experiment is simulated to determine and to compare the evolution in time of the water 
depth evacuated by the drain and the corresponding variation of the free surface to half of 
the space between the drains. The results obtained for the mass transfer are presented in Fig. 
6a and 6b and, for the energy transfer, the results are presented in Fig. 7a and 7b; in each 
case, as the drainage time increases, the calculated evolutions trend to a limit value because 
the recharge is null. 

A good agreement between the evolution of the drained depth described with the Richards 

equation and the evolution obtained with the Boussinesq equation ( 2R 0.9847 ) can be 

appreciated in Fig. 6a and 6b; this is a logical result because both evolutions are the direct  
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Fig. 6a. Comparison of the drained depth evolutions calculated with the Richards model (1-
11) and the Boussinesq model (12-18). Twelve hours of the drainage experiment. 
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Fig. 6b. Comparison of the drained depth evolutions calculated with the Richards model (1-
11) and the Boussinesq model (12-18). Ten days of the drainage experiment. 
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Fig. 7a. Comparison of the evolutions of the free surface to half of the space between the 
drains calculated with the Richards model (1-11) and the Boussinesq model (12-18). Twelve 
hours of the drainage experiment. 
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Fig. 7b. Comparison of the evolutions of the free surface to half of the space between drains 
calculated with the Richards model (1-11) and the Boussinesq model (12-18). Ten days of the 
drainage experiment. 
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product of the estimation of the radiation conditions’ parameters (7) and (16.1), as from the 
experimental data of the drained depth. However, the evolution of the water table was not 
considered to optimise parameters, for which reason this variable is a good comparison 
element. When observing the results shown in Fig. 7a and 7b, an important discrepancy can 
be appreciated between the evolution described by the model based on the Richards 
equation as to the evolution obtained with the Boussinesq model; during all the drainage 
time, the water table drawdown calculated with the Boussinesq model is slower than the 
one obtained with the Richards model. 

Taking into account that the Boussinesq equation may be obtained by integrating the 
Richards equation in the vertical with the hypothesis of a hydrostatic pressure distribution 
(Bear, 1972) - circumstances that are not met in the regions closer to the drain - we have the 
most accurate description of the hydraulic variables in a subsurface drainage system 
corresponding to the one provided by the Richards equation. Considering, in addition, the 
simulation results, it can be seen that the model based on the Boussinesq equation 
(equations 12-18) cannot simultaneously reproduce the evolutions of the mass and energy 
transfers that are described by the model based on the Richards equation; that is to say, if it 
reproduces the evolution of the mass, it is not feasible that it reproduces the energy 
evolution or, if it reproduces the energy evolution, it cannot reproduce the mass evolution. 

The limitations of an accurate simultaneous description of mass and energy transfers with 

the Boussinesq equation should be had in mind when it is used to estimate soil’s hydraulic 

properties or when it is applied to the design of drainage systems. On one hand, it is 

traditional to consider this equation in estimating the saturated hydraulic conductivity as 

with the lowering or recovery measurements of the groundwater; if this were the case, the 

determined value would be higher than the real value of the hydraulic conductivity of the 

porous medium, because - as per the results of this work - the Boussinesq equation describes 

a minor lowering of the free surface than the one occurring in the drainage system. On the 

other hand, if the saturated hydraulic conductivity has been estimated according to field or 

laboratory tests that consider relations that are more accurate than the Boussinesq equation, 

and this value is used together with the Boussinesq equation to calculate the space between 

drains, it is possible to obtain separations shorter than that which is really needed to satisfy 

the water-table drawdown. 

To illustrate both situations, the drainage results obtained with the Richards model are 
regarded as benchmarks, and numerical simulations with the Boussinesq model are carried 
out. The first case involves determining the saturated hydraulic conductivity value which 
allows for approaching with the Boussinesq model, with the water-table drawdown to half 
of space between drains as described with the Richards equation. In the second case, the 
saturated hydraulic conductivity value determined in the laboratory by Zavala et al. (2004) is 
taken up again, and the space between drains required by the Boussinesq model is 
calculated in order to approximate the water-table drawdown obtained with the Richards 
model. 

The results obtained for the first case are shown in Fig. 8a and 8b. The first Figure shows the 

better approach of the Boussinesq equation compared to the Richards model, as to the 

evolution of the free surface to half of the space between drains ( 2R 0.9761 ), obtained with 

a saturated hydraulic conductivity value for the Boussinesq model of sK 0.500 m h ; this 
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value is 2.78 times higher than the value determined in the laboratory by Zavala et al. (2004). 

With this, it is shown that the hypotheses considered in the derivation of the Boussinesq 

equation noticeably affect their sK  estimation capacity. The overestimation of the sK value 

necessarily results in an overestimation of the evolution of the drained depth, as shown in 

Fig. 8b.  
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Fig. 8a. Comparison of the free surface evolution obtained by the application the Richards 

model with sK 0.183 m h , and the evolution obtained by application the Boussinesq 

model with  sK 0.500 m h  (best fit). 
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Fig. 8b. Comparison of the drained depth evolution obtained by the application the Richards 

model with sK 0.183 m h , and the evolution obtained by the application the Boussinesq 

model with sK 0.500 m h . 
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For case of the space between drains, it was calculated that the best approach when 

considering the water-table drawdown between Boussinesq model (equations 12-18) and the 

Richards model (equations 1-11) is obtained when the space between drains for the first 

model is 0.41 m ( 2R 0.9899 ). The difference between the real separation of the 

experimental drainage system considered by the Richards model and the theoretical 

separation required by the Boussinesq model to reproduce the lowering settled is 143%.  

4. Conclusions 

Two mechanistic models to simulate the mass and energy transfers in agricultural 
subsurface drainage systems have been analysed: the first model resolves the Richards 
equation on a two-dimensional domain by using a nonlinear radiation boundary condition 
in the drain’s perimeter; the second model considers the Boussinesq equation with a 
variable storage coefficient on a one-dimensional domain using a fractal radiation condition 
in the drain’s. 

Drawing upon experimental drainage information in an unconfined aquifer with null 
vertical recharge, the description capacity of both simulation models has been evaluated,  
obtaining that the Boussinesq equation cannot simultaneously reproduce the mass and 
energy transfers that the Richards equation provides. On one hand, if the Boussinesq 
equation is used to reproduce the mass evolution described with the Richards equation, the 
Boussinesq necessarily describes an energy evolution slower than the one provided by 
Richards. On the other hand, if the energy evolution that is described by the Richards 
equation is reproduced with the Boussinesq equation, it over-predicts the mass evolution 
associated with the Richards equation. 

It has been shown that the description limits of the Boussinesq equation give rise to the 
overestimation of the saturated hydraulic conductivity when this equation is considered in 
the hydrodynamic characterisation of the soils, or else the overestimation of the space 
between drains if the saturated hydraulic conductivity is a value estimated as by the 
Richards equation. 

The problem in the simultaneous description the mass and energy transfers with the 
Boussinesq equation is attributable to the hypothesis of a hydrostatic pressure distribution 
considered in its derivation; this hypothesis is not satisfied in the vicinity of the drains since, 
in this zone, the stream lines show an important curvature. 

Once the usefulness and advantages the use of the Boussinesq equation in the study of the 
agricultural drainage has been informed and its description limits have become known, it is 
recommended that the determination of the parameters of a drainage system and the 
estimation of the hydraulic properties of the porous media with the Boussinesq equation be 
executed simultaneously (considering the optimisation procedure, the drained depth 
evolution as well as the water table variations) in order to proportionally distribute in the 
adjustment parameters the effect of the hypothesis considered in its derivation and so obtain 
a more appropriate description of the transferences of mass and energy in a subsurface 
drainage system. 

The numerical models have been applied by considering one laboratory drainage test. 
However, both models can be applied equally to the description of drainage systems 
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installed in the field (a real farm environment), the only requirement being to carry out an 
adequate hydrodynamic characterisation of the soil, using either direct methods or indirect 
methods (inverse problems). If the hydrodynamic characteristics of the soil (moisture 
retention curve and hydraulic conductivity curve) are well-identified in the field and the 
application of both models is performed as described in this study, the results will be similar 
to those presented in this paper. 

If the soil hydrodynamic characterisation is carried out by an inverse method, it is 
recommended that the procedure developed by Fuentes is applied (see Saucedo et al., 2002; 
Zavala et al., 2003), based on the volumetric porosity of the soil, the granulometric curve and 
the drainage test (local or global). This methodology takes into account the Laplace law, 
Stoke’s law and concepts of fractal geometry. The methodology is very precise for the 
representation of laboratory conditions and field conditions. 

The two numerical models presented in this study considers the classical hypothesis of a 
deterministic model, accordingly a good description of real farm conditions can be to carry 
out with an adequately represented of the spatial variability of the hydrodynamic properties 
of the soil. 
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