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1. Introduction 

A crucial component of Assisted Reproductive Technologies (ART) is the assessment of 
oocyte developmental potential, to allow selection of those oocytes most likely to result in 
fertilization and pregnancy. Currently, oocyte quality assessment is largely based on the 
morphological appearance of the cumulus-oocyte complex, however the accuracy of 
morphological methods, as predictive of oocyte competence, is still suboptimal. Therefore, 
the development of objective, accurate, fast and reliable tests for assessing oocyte 
developmental potential remains an important aim of human and veterinary reproductive 
medicine. The process of oocyte meiotic maturation, which is central to the developmental 
competence of the oocyte, is regulated by numerous genes (Matzuk & Lamb, 2008; Fauser et 
al., 2011) and protein pathways (Kubiak, 2011) and is accompanied by significant changes 
within the oocyte at many levels. Better understanding of oocyte meiotic maturation would 
allow better support of this process to increase the success of reproductive biotechnologies, 
and thus overcome some forms of infertility. Recently, global assessment strategies, namely 
OMICS, investigating genomic, transcriptomic, proteomic, lipidomic, and glycomic profiles 
of oocytes, cumulus or granulosa cells have become increasingly applied to the study of 
oocyte physiology and pathology. Also being investigated is the oocyte-cumulus 
metabolome, via measurements of metabolites in biological fluids, such as follicular or tubal 
fluid, or in culture media. The establishment of these technologies, which are in their initial 
stages of application to reproductive biology, can require large sample numbers; only 
animal models can meet this requirement. Because of their wide availability and the body of 
existing knowledge regarding their biology, oocytes of large animals provide useful models 
for investigating the relationship between oocyte developmental competence and OMICS 
biomarkers. This review summarizes recent literature on the application of OMICS 
strategies to evaluating developmental competence of human oocytes and oocytes of large 

www.intechopen.com



 
Meiosis - Molecular Mechanisms and Cytogenetic Diversity 

 

258 

animals. Among the available animal models, the mare is uniquely applicable to 
investigation of oocyte developmental competence. Horses represent the most economically 
valuable domestic animal, with progeny from specific mares worth hundreds of thousands 
of euros. Thus, there is obvious practical interest in the use of assisted reproduction in this 
species. In addition, similarities between equine and human follicle growth and oocyte 
maturation make the mare a particularly valuable model for topics at the interface between 
animal breeding and biomedical research, such as age-related and obesity-related oocyte 
dysfunction and the effects of exposure to environmental toxicants, as well as for 
fundamental research on factors involved in meiotic maturation. For these reasons, 
particular attention will be dedicated in this review to recent OMICS results obtained in the 
equine species and to discussion of the potential application of this animal model in future 
investigations. 

2. OMICS as innovative strategies for evaluating oocyte quality  

Systems biology is a new and rapidly developing research area in which, by quantitatively 

describing the interactions among the components of a cell, a systems-level understanding 

of a biological response can be achieved. Therefore, it requires high-throughput 

measurement technologies, that is, technologies that can investigate a large number of 

biological molecules at once. OMICS technologies -- in which aspects of cellular structure or 

function, such as proteins or RNA transcripts, are studied in their totality (global assessment 

strategies) -- are opening wider and wider doors into the understanding of all branches of 

the biology, physiology, and pathology of living organisms. It is likely that information 

obtained using OMICS will change our concept of "normal" and "pathological," and will 

enable the efficient evaluation of the effects of extrinsic factors on the status of living 

systems. Initial studies on the application of OMICS strategies to the oocyte have appeared 

in the past decade, starting with genomics and transcriptomics, and progressing to the 

newer fields of glycomics and metabolomics. As noted above, a major concern in the 

production of viable and competent embryos in vitro is the evaluation of initial oocyte 

quality and the support of optimal nuclear and cytoplasmic maturation. OMICS approaches 

to the oocyte will significantly contribute not only to accurate assessment of oocyte quality, 

but also to the clarification of the mechanisms involved in cell cycle regulation and cell 

differentiation, thus contributing to the effective utilization of recovered oocytes. Because 

meiotic maturation and early embryo development involve regulation of the cell cycle and 

evolution from differentiated, to pluripotent, back to differentiated cells, data generated 

from study of these processes may also relate to the establishment of innovative targeted 

cancer treatments and stem cell-based therapies. To introduce the sequential phases of the 

meiotic process, changes occurring within the oocyte and some of their fundamental 

regulating factors are briefly described. Upon the luteinizing hormone (LH) surge, M-phase 

promoting factor (MPF) and the mitogen-activated protein (MAP) kinase ERK 2 

(extracellularly-regulated kinase 2) are activated within the oocyte. The oocyte, which at this 

time is in prophase of meiosis, has replicated chomosomes contained within a nucleus 

(termed the germinal vesicle, GV). Activation of MPF and ERK 2 trigger nuclear envelope 

breakdown and chromatin condensation. The condensed chromosomes are subsequently 

aligned on the spindle of the first meiotic division, forming the metaphase I plate. At this 

time MPF levels decrease, while ERK 2 levels remain high. The homologous chromosomes 

www.intechopen.com



OMICS for the Identification of Biomarkers for Oocyte Competence,  
with Special Reference to the Mare as a Prospective Model for Human Reproductive Medicine  

 

259 

separate: one set of sister chromatids is discarded as the polar body; the other set, in 

response to a recrudescence of MPF, lines up on a spindle, forming the second metaphase 

plate (MII). Fertilization causes inactivation of MPF and ERK 2, and the second meiotic 

division occurs, separating the sister chromatids. One set of chromatids is discarded, as the 

second polar body; the other set becomes the female pronucleus. For a comprehensive 

description of major pathways involved in oocyte M-phase entry, see Kubiak et al., 2011 and 

Tosti & Boni, 2011. Detailed descriptions of OMICS techniques go beyond the intent of this 

article; corresponding references are provided in the text. We instead focus on the most 

significant results obtained using these techniques, the role of large animal models in 

experimental designs that cannot be performed in humans, and on actual and potential 

contributions of different animal models to understanding of oocyte biology, with particular 

interest in the equine species.  

2.1 The mare as a model for human oocyte biology 

Large animal models allow the establishment of a wide variety of experimental designs that 

can not be applied in humans for obvious ethical reasons, or due to the limited and highly 

regulated availability of human biological samples. Among large animals, the mare has 

many attributes that make her a good model for reproduction in women (Carnevale, 2008). 

These include a long follicular phase, a long interovulatory interval (22 days), presence of a 

single dominant follicle, formation a large diameter follicle (~40 mm) with a large volume of 

follicular fluid -- the same volume:body weight ratio as in women; a relatively long time 

from LH stimulation to ovulation (36 h for both human and horse) and, like the human 

oocyte, formation of a markedly dense chromatin mass within the germinal vesicle as the 

oocyte gains meiotic competence or undergoes atresia (Parfenov et al, 1989; Hinrichs et al., 

1993). Although seasonality does not occur in women, the equine characteristic of seasonal 

reproductive activity provides the potential to examine the influence of applied factors 

when cyclic hormonal patterns are not occurring (Carnevale, 2008). Horses are the best 

animal model for studies on age-related infertility. Because mares can be of great value, 

many mares continue to be bred until they experience subfertility, thus animals with 

naturally-occuring age-related subfertility are available for study. Horses have a long 

lifespan, thus age-related subfertility occurs at an age (~20-25 years) much closer to that 

observed in women than is seen in other animal models. In addition, horses, unlike other 

large domestic species, are selected for attributes other than fertility, such as conformation, 

athletic prowess, or behavior. Individuals showing subfertility may be worked with 

intensively to try to obtain foals, thus, they provide an excellent naturally-occurring model 

for many intrinsic causes of subfertility. Horses have similar metabolic responses to nutrient 

intake to that in humans, and are used for a wide variety of athletic purposes, thus they can 

serve to model important physiological or pathological situations affecting reproduction in 

humans (such as stress, life-style, sports activity, obesity or metabolic syndrome) as well as 

to examine the effects of external factors such as acute or long-term exposure to drugs or 

environmental toxicants. In addition to mimicking the situation in humans, the 

development of particularly large follicles allows the possibility of collecting large amounts 

of mural granulosa cells (GC) issuing from the follicular wall as well as large amounts of 

follicular fluid (30 to 50 ml/follicle) that may be used for OMICS studies in a 1:1 comparison 

with the developmental status of the enclosed oocyte. The cumulus-oocyte complex (COC) 
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of the mare is particularly large, thus allowing a 1:1 evaluation of biological parameters of 

cumulus cells (CCs) predictive of oocyte meiotic and developmental competence. Moreover, 

follicular COCs in the mare can be recovered from immature follicles, with initial COC 

morphological features indicating viability (compact cumulus) or atresia (apoptosis, 

expanded cumulus) of their surrounding follicle, thus supporting study of the effects of 

follicle immaturity and early or late atresia on oocyte competence (Hinrichs and Williams, 

1997; Dell’Aquila et al., 2003). The equine oocyte is approximately 200 microns in diameter, 

with good visibility of the perivitelline space and the first polar body (PB), so that mature 

oocytes are easily identified on morphological examination. The horse oocyte possesses a 

unique distribution of cytoplasmic lipid droplets, which assume polar aggregation in 

metaphase II (MII) oocytes, and whose biological meaning is under investigation (Ambruosi 

et al., 2009). Horses make a valuable model for oocyte assessments associated with 

penetration of the zona pellucida (e.g. PB biopsy) because, in contrast to species such as 

cattle and sheep, methods for fertilization via intracytoplasmic sperm injection (ICSI) are 

well established in the horse (Hinrichs et al., 2005; Choi et al., 2006). Sperm injection is 

necessary to achieve fertilization after penetration of the zona pellucida for investigative 

purposes, as the defect in the zona would lead to polyspermy if standard in vitro 

fertilization (IVF) were to be performed. These features make the equine oocyte a 

particularly useful model for the establishment of OMICS strategies that could be not only 

applied to better understanding of human assisted reproductive medicine, but also directly 

applicable to the horse industry. 

2.2 Oocyte genomics – The polar body biopsy and genomic analysis for predicting 
half of the DNA constitution of an embryo: from FISH to CGH/CNV/SNP-based arrays 

The genomic DNA constitution of the oocyte determines the sequence of produced 

transcripts and proteins, and constitutes half of the early embryo phenotype. The most 

widely used diagnostic tool for oocyte and embryo genomic investigation to date has been 

Fluorescent In Situ Hybridization (FISH), a cytogenetic technique which identifies specific 

DNA sequences on chromosomes by means of fluorescent probes that bind to those parts of 

the chromosome with which they show a high degree of sequence similarity. 

Since the first report in humans (Griffin et al., 1992), several studies have been published 
reporting the evaluation of human day 3 embryos (4-8 cell stage) for up to 8 pairs of 
chromosomes (chromosomes 13, 15, 16, 17, 18, 21, 22, and X/Y; review by Seli et al., 2010). 
However, in recent meta-analysis studies, reported from 2008 to 2010, it has become clear 
that preimplantation genetic screening by using FISH is not justified. This is because it 
causes damage to the embryo, it requires embryo cryopreservation and transfer in a 
subsequent cycle, and it does not significantly contribute to the identification and exclusion 
of aneuploid embryos. Use of FISH has been reported to be associated with lower 
implantation rates and it shows errors such as false positives due to mosaicism or false 
negatives due to the limited number of chromosomes analyzed and the limited targeted 
regions. Therefore, authoritative scientific committees, including the European Society of 
Human Reproduction and Embryology (ESHRE) and the American Society of Reproductive 
Medicine (ASRM), decided to conduct a study to determine whether biopsy of the first and 
second polar bodies (PBs) of the oocyte would enable the timely identification of the 
chromosomal status of an oocyte. This aim could be reached by analyzing the complete 
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chromosome complement of the two PBs by Comparative Genomic Hybridization (CGH; 
reviews by Seli et al., 2010; Geraedts et al., 2010).  

Conventional CGH, initially developed by cancer biologists, was applied to human early 
embryos around 10 years ago (Voullaire et al., 2000 reviewed by Geraedts et al., 2010). These 
authors performed CGH in association with whole genome amplification by degenerate 
oligonucleotide-primed polymerase chain reaction. CGH is a competitive hybridization of 
two fragmented genomes (test and reference genomes) to the chromosomes of a metaphase 
plate of a normal subject. The tested and subject genomes are labeled with different (red and 
green) fluorescent dyes so that an increase of red staining will indicate the presence of 
duplicated regions, an increase of green staining will indicate the presence of deleted 
regions, whereas the lack of predominance of one of the two colors will indicate normal 
chromosome structure. This technique allows examination of the whole chromosomal 
complement, but requires extensive time to get the results. In recent years, CGH-microarray 
tools have been developed in which the labeled DNAs are affixed to DNA on a microscope 
slide rather than to metaphase chromosomes. A variety of microarray-CGH platforms are 
available. As an example, the Cambridge-based company BlueGnome offers an array-based 
CGH protocol which allows analysis of biopsied PBs within 11 hrs (SurePlex amplification 
protocol; 24sure analysis, BlueGnome;  "http://www.bluegnome.co.uk/"; Geraedts et al., 
2010). As regard, Geraedts et al., (2011) and Magli et al., (2011) reported clinical results and 
technical aspects of a proof-of-principle study performed in associated ART centers in which 
all mature metaphase II oocytes from patients who consented to the study, fertilized by ICSI, 
were analyzed. The first and second PBs were biopsied and analysed separately for 
chromosome copy number by array CGH. If either or both of the PBs were found to be 
aneuploid, the corresponding zygote was then also processed by array CGH for 
concordance analysis. It was concluded that the ploidy of a zygote can be predicted with 
acceptable accuracy by array CGH analysis on both PBs. Interestingly, on the male side, the 
application of CGH arrays to single human sperm cells has been recently reported 
(Antonello et al., 2011). 

In the aim to move from chromosomal structure to single mutation analysis, SNP (Single 
Nucleotide Polymorphism) arrays have been developed. A single-nucleotide polymorphism 
(SNP, pronounced snip) is a DNA sequence variation occurring when a single nucleotide — 
Adenine (A), Thymine (T), Cytosine (C), or Guanine (G) — differs in a sequence between 
members of a species or paired chromosomes in an individual. Many common SNPs have 
only two alleles. Within a population, SNPs can be assigned a minor allele frequency — the 
lesser of the two allele frequencies for a population. There are variations among human 
populations, so a SNP allele that is common in one geographical or ethnic group may be 
rare in another. Unlike the CGH-microarray platforms which involve simultaneous 
hybridization of differentially labeled DNAs to the same microarray, SNP-microarrays 
assess test and reference samples, separately, in parallel. From 10.000 to 500.000 SNPs may 
be evaluated simultaneously. For example, using the Affymetrix platform, analysis of 
250.000 SNPs in first PB biopsies (Treff et al., 2010a) and in Day-3 embryos (Treff et al., 
2010b) have been reported (review by Seli et al., 2010). The Illumina platform allows the 
analysis of 370.000 human SNPs. 

Because of their utility in recognizing variations associated with disease, recent genetic 

epidemiology studies have been dominated by genome-wide association studies using 
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SNPs. However, another form of structural genomic variation, termed copy number 

variation (CNV), is also widespread throughout the genome. These genomic structural 

variations range from 1 to 5 Mb and can be highly polymorphic between individuals, and 

thus can be used for epidemiological study. CNVs in the form of large-scale insertions and 

deletions, as well as inversions and translocations, may have important roles in meiotic 

recombination, human genome evolution and gene expression. Many genetic diseases are 

based on CNVs. However, because they consist of quantitative rather than qualitative 

changes, show variability in copy numbers and are confounded by the diploidy of the 

human genome, the detailed genetic structure of CNVs cannot be readily studied by 

available techniques. Thus, the establishment CNV-microarrays is currently under 

investigation. New microarray-based technologies will enable more accurate mapping of 

CNVs, and CNV maps of the human genome are being refined with increasing resolution. 

The study of CNVs and their effects on human health and disease therefore present a 

dynamic and exciting challenge for researchers in the field of genetic epidemiology (Wain 

and Tobin, 2011). The importance of CNVs in human preimplantation genetic screening, or 

to animal oocyte and embryo testing, has not been reported to date.  

Although there is potential economic interest for the application of PB biopsy and 

subsequent analysis of the chromosomal complement or genome by CGH-, CNV- or SNP 

arrays in animal husbandry and breeding, to the best of our knowledge no studies have 

been published to date in large animals. The field is therefore open to future investigations, 

pending the establishment of the different genomic arrays in these species. A recent report 

(Le Bourhis et al., 2011) presented for the first time bovine embryo biopsy and genotyping 

using a 50K SNP Illumina chip. In this study, biopsies of 5 to 10 cells were obtained from in 

vitro-cultured morulae and blastocysts and kept frozen or at room temperature. The 

genomic DNA of each biopsy was amplified by using a whole-genome amplification kit and 

was genotyped using a custom CRV 50K Illumina chip. Call rates were calculated from 

50.905 SNPs. Percentage of allele drop-out was estimated from the number of heterozygous 

markers present [% allele drop-out = (calculated heterozygous–observed heterozygous) 

/calculated heterozygous]. Parentage error was estimated by using the genotypes of the 

parents of the embryos. A greater quantity of DNA was obtained after amplification of 

biopsies that were sent frozen to the laboratory than from those at room temperature 

(P<0.05). However, the SNP call rate, % allele drop-out, and parentage error did not differ 

between groups. These results indicate that genotyping from embryo biopsies following 

whole genome amplification can be achieved with good efficiency when using high-density 

marker chips. To the best of our knowledge no studies have been reported to date on 

genomic analysis in the equine oocyte. A recent paper in the horse by Choi et al., (2010) 

reports the identification of disease-causing mutations in trophoblastic biopsies from equine 

in vivo-recovered pre-implantation embryos. These authors demonstrated for the first time 

the correct identification, by embryo biopsy and whole genome amplification, of sex and 

genotype at the causative mutation sites for two disease-linked genes (SCN4A and PPIB). 

The biopsies were performed on Day-6 and Day-7 equine embryos, and after biopsy these 

embryos were able to produce pregnancies leading to term delivered, normal foals. These 

two recent studies demonstrate that OMICS technologies have the potential in animal 

breeding for both marker-assisted selection and for preimplantation diagnosis of genetic 

diseases.  
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Another promising genomic investigation area is Epigenetics, the study of changes in gene 
expression and thus cellular phenotype caused by mechanisms other than changes in the 
underlying DNA sequence – hence the name epi- (Greek: επί- over, above, outer) genetics. 
Examples of such changes are DNA methylation and deacetylation of the histones, the 
proteins around which DNA are wrapped. Both of these changes serve to suppress gene 
expression without altering the sequence of the silenced genes. These changes may remain 
through cell divisions for the remainder of the cell's life, and some epigenetic changes in 
germ cells may potentially last for multiple generations. Epigenetic changes in eukaryotic 
biology are the basis of the process of cell differentiation. During embryonic morphogenesis, 
the totipotent cells of the zygote become the various pluripotent cell lines of the embryo, 
which in turn become fully differentiated cells. This is accomplished by activating some 
genes while inhibiting others. Current epigenetic research focuses on chromatin 
modifications occurring during sequential phases of fertilization (sperm chromatin 
decondensation, pronuclear formation with DNA duplication and syngamy) and early 
development (chromosome condensation and assembly in the first metaphase plate of the 
first mitotic division and the subsequent series of mitotic divisions to the blastocyst stage; 
Burton & Torres Padilla, 2011). These events may be studied by comparing embryos 
produced in vivo with those obtained using different technologies, such as IVF, ICSI, 
parthenogenesis or somatic cell nuclear transfer (Cremer & Zakhartchenko, 2011). Soon, the 
emergence of quantitative high-throughput microarray technology should allow the 
development of epigenomic arrays for the evaluation of embryo whole-genome epigenetic 
status, thus opening the new field of epigenomics (Callinan & Feinberg, 2006) to the study of 
oocyte and embryo competence.  

The methylation pattern of DNA in oocytes may be a key factor for the improvement of 
efficiency of in vitro embryo production, because it is related to oocyte competence. A recent 
study (Simarro Fagundes et al., 2011) reported on a differentially-methylated region located 
in exon 10 of the imprinted gene IGF2 This study evaluated immature vs in vitro-matured 
bovine oocytes from small (1–3 mm in diameter) and large follicles (≥ 8.1 mm in diameter). It 
was observed that after IVM, oocytes from ≥ 8.1 mm follicles were less methylated (18.51%) 
than were those from 1- to 3-mm follicles (49.62%). As oocytes from the larger follicles are 
more developmentally competent, the less methylated pattern appears to be associated with 
higher oocyte quality. It was concluded that the methylation pattern of specific genes could 
be used as a molecular marker for epigenetic reprogramming status in oocytes, helping the 
development of new in vitro embryo production protocols. A broader study on this wave 
(Smallwood et al., 2011) reported the first integrated epigenomic analysis of mammalian 
oocytes (GV vs MII oocytes) and preimplantation embryos (blastocyst stage) identifying 
over a thousand CG islands methylated in matured oocytes. The authors observed that CG 
islands were preferentially located within active transcription units, supporting a general 
transcription-dependent mechanism of methylation, and that very few CG islands were 
protected from post-fertilization reprogramming, the majority showing incomplete 
demethylation in Day-3 blastocysts. This study revealed the extent and dynamics of CG 
island methylation in oocytes, which is a prerequisite for defining the full repertoire of 
imprinted genes and the mechanistic basis of parent-of-origin expression effects in somatic 
tissues.   

Epigenomic studies have not been reported to date in equine oocytes; however, in the 
promising field of genomic investigations, the equine oocyte would serve as an excellent 
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model for the comparison of oocyte (metaphase plate) and polar body genomes and 
epigenomic modifications, due to the ability to investigate the developmental competence of  
biopsied equine oocytes after fertilization via ICSI.  

2.3 Oocyte transcriptomics – The global analysis of oocyte mRNA transcripts 

In addition to the genomic constitution of the embryo, it is necessary to know its 

phenotype: which genes are being utilized at this particular stage of development?  

Initially, embryonic phenotype is determined by those mRNAs already transcribed and 

present in the oocyte cytoplasm at the time of fertilization (maternal mRNAs). Evaluation 

of maternal mRNA content is particularly attractive in the study of developmental 

biology and for diagnostic and applied purposes in ART (e.g. nuclear reprogramming in 

cloning, and stem cell research). However, transcriptome analysis of mammalian oocytes 

and embryos faces three main challenges: 1) the small amount of material available; 2) 

differing total RNA content in the subsequently-occurring developmental stages, making 

comparison among stages difficult; 3) existence of oocyte-specific genes often absent from 

commercially available microarrays (Dalbies-Tran and Mermillod, 2003; Thelie et al., 

2009).  

Via transcriptomics, it is possible to thoroughly investigate the functional status of a cell 

line or tissue. Rapidly developing methods consist of RNA extraction, reverse 

transcription (RT), amplification and labeling, array hybridization, chip scanning, and 

data interpretation by bioinformatic analysis with subsequent validation by Real Time 

RT-PCR. Detailed reviews of microarray analysis strategies and interpretation of 

transcriptomic profiles have been presented by White and Salamonsen, 2005 and 

Rodriguez-Zas et al., 2008. Some of the public or commercially available software 

commonly used for trascriptome analysis are:  

Public: 

- GENE ONTOLOGY: http://www.geneontology.org;  
- NCBI Entrez Gene: http://www.ncbi.nlm.nih.gov.sites/entrez?db=gene);  
- NCBI Gene Expression Omnibus GEO: http://www.ncbi.nlm.nih.gov/geo;  
- KEGG pathway database: http://www.genome.jp/kegg/pathway.html; 

Commercially available: 

- INGENUITY pathway analysis http://www.ingenuity.com;  
- PANTHER Applied Biosystem http://www.pantherdb.org);  
- AFFYMETRIX (http://www.affymetrix.com/products/arrays/specific/bovine.affx).  

A major aim in oocyte transcriptomics is the analysis of differences among maturation 

stages, especially between the germinal vesicle (GV) and the metaphase II (MII) stage, as 

well as differential expression between in vivo- (in vivo-MII) and in vitro- (IVM-MII) 

matured oocytes. The correct molecular control of meiotic maturation is a fundamental 

prerequisite for successful development of an early embryo (Tosti & Boni, 2011). 

Transcriptome microarray technologies have been developed, first in the mouse and more 

recently in large animals (review by Thelie et al., 2009). At the moment, cattle take center 

stage in the cast of large animals used as models for human reproductive medicine. 
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2.3.1 Studies in bovine oocytes  

GV vs MII oocyte A pioneering study on oocyte gene expression was conducted at INRA 
(France) by Dalbies-Tran and Mermillod, in 2003. These authors analyzed gene expression in 
bovine oocytes before and after IVM, using heterologous hybridization onto a cDNA array. 
Total RNA was purified from pools of over 200 oocytes either immediately after aspiration 
from follicles of slaughterhouse cow ovaries, or following IVM. Radiolabeled cDNA probes 
were generated by RT followed by linear PCR amplification and were hybridized to Atlas 
human cDNA arrays. To the best of our knowledge, this was the first report of gene 
expression profiling by this technology in the bovine oocyte. The results demonstrated that 
cDNA array screening is a suitable method for analyzing the transcription pattern in 
oocytes, as about 300 identified genes were reproducibly shown to be expressed in the 
bovine oocyte. The relative abundance of most messenger RNAs appeared stable during 
IVM; however, it was observed that 70 transcripts underwent a significant differential 
regulation between meiotic stages (by a factor of at least two). Information obtained in this 
study constituted the first molecular signature of oocyte cytoplasmic maturation. 

GV oocyte vs embryo In a subsequent study at INRA (Thelie et al., 2009) results of an RNA-
amplification protocol for bovine oocytes and blastocysts was reported. Using RT-PCR, 
these authors confirmed that the profiles of both abundant and scarce polyadenylated 
transcripts were conserved after RNA amplification. Next, amplified probes generated from 
immature oocytes, in vitro-matured oocytes, and in vitro-produced hatched blastocysts 
were hybridized onto an in-house cDNA macroarray that included oocyte-specific genes 
(934 expressed sequence tags of interest including markers of oocyte maturation; Thelie et 
al., 2009). Following an original approach, two normalization procedures, based on either 
the median signal or an exogenous standard, were compared and the expected difference in 
sets of differential genes, depending on the normalization procedure, were calculated. Using 
a 1.5-fold threshold, no transcript was found to be up-regulated when data were normalized 
to an exogenous standard, which reflects the absence of transcription during oocyte IVM. In 
blastocysts, the majority of genes found to be preferentially expressed in oocytes (after 
normalization) were not activated. This study shed new light on and complemented 
previous transcriptomic analyses of the bovine oocyte-to-embryo transition using 
commercial platforms (i.e.: Misirlioglu et al., 2006; Fair et al., 2007; reviewed by Thelie et al., 
2009).  

In vivo-MII vs IVM-MII oocyte The differences in the MII oocyte transcriptome between 
oocytes matured in vivo and in vitro were investigated in cattle by Katz-Jaffe et al., (2009). In 
this study, the Affymetrix Gene Chip Bovine Genome Array, a platform containing over 
23.000 bovine transcripts, was used. Transcripts identified as being differentially expressed 
between the two groups were classified according to gene ontology. Statistical analysis of 
microarray data identified several processes affected by IVM, including metabolism, energy 
pathways, cell biogenesis and organization, and cell growth and maintenance. In particular, 
it was found that 4 genes of the tricarboxylic acid cycle and 14 genes of oxidative 
phosphorylation were down-regulated in IVM-MII compared with in vivo-MII. 

GV vs MII oocyte Mamo et al., (2011) used the Affymetrix GeneChip Bovine Genome Array 
to perform global mRNA expression analysis of immature (GV) and in-vitro matured (IVM) 
bovine oocytes. They then used a variety of approaches, including the analysis of transcript 
abundance in oocytes matured in the presence of alpha-amanitin (a transcription inhibitor), 
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to determine whether the transcriptional changes observed during IVM were real or were 
artifacts of the techniques used during analysis. It was found that 8489 transcripts were 
detected across the two oocyte groups, of which ~25.0% (2117 transcripts) were 
differentially expressed (p<0.001); corresponding to 589 over-expressed and 1528 under-
expressed transcripts in the IVM oocytes compared to their immature counterparts. Subsets 
of the differentially expressed genes were validated by quantitative RT-PCR and the gene 
expression data was classified according to gene ontology and pathway enrichment. 
Numerous cell-cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular 
transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were 
found to be among the over-expressed transcripts in GV oocytes compared to their mature 
counterparts, while other genes (ANXA1, PLAU, STC1and LUM) were among the over-
expressed genes after maturation. This data set provided a unique reference resource for 
studies of the molecular mechanisms controlling oocyte meiotic maturation in cattle, and by 

extension to other species, and through use of the alpha-amanitin, addressed the existing 
conflicting issue of transcription during meiotic maturation. 

Adult vs prepubertal oocyte (Romar et al., 2011) This study, rather than applying global 
OMICS strategies, analyzed the differential expression profile of adult vs prepubertal bovine 
oocytes by using a specialized panel for genes involved in the maturation process, such as 
genes known to specifically affect early development after fertilization (maternal-effect 
genes, shown via mouse knock-outs), biomarkers of oocyte competence or redox 
metabolism, or genes involved in the regulation of meiotic progression. It was found that 
some genes (particularly redox genes) are significantly underexpressed in oocytes from 
prepubertal subjects. This kind of comparison would benefit greatly by using OMICS 
technologies and underscores the value of animal models, as it would be difficult to perform 
in humans due to low availability of oocytes from young girls and women.  

2.3.2 Studies in human oocytes  

Transcriptomic studies have been reported in human oocytes. Kocabas et al., 2006 reported 
the use of a comprehensive human microarray platform (Affymetrix Human Genome U133 
Plus 2.0 GeneChips) to identify the gene transcripts present in early MII oocytes, tested 
within minutes after isolation from the ovary.  

In the study by Wells and Patrizio (2008), unfertilized GV, in vivo-MII and IVM-MII 
oocytes were analyzed. The study used the Applied Biosystem Human Genome Survey 
Microarray with 32.878 60mer oligonucleotide probes for the interrogation of 29.098 genes, 
including 8000 genes not previously included in any commercial array. By bioinformatic 
analysis, a Venn diagram can be obtained in which each circle represents the transcriptome 
of a specific cell type, and overlapping areas indicate commonly-expressed genes. The three 
oocyte categories expressed 12.219, 9.735 and 8.510 genes, respectively. There were extensive 
overlaps among the three groups, but also some significant differences. In particular, in 
vivo-MII and IVM-MII oocytes shared similar patterns of gene expression. However, some 
immature patterns of expression, reminiscent of GVs, persisted in IVM-MIIs. In humans, in-
vitro maturation is an attractive strategy for IVF treatment; however, currently IVM oocytes 
perform poorly after IVF. Data from the this study indicates that although IVM-MII oocytes 
closely resemble in vivo-MII oocytes in cellular pathways related to nuclear maturity, 
several pathways associated with cytoplasmic functions continue to be expressed in an 
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immature manner. Additionally, it was shown that IVM-MII oocytes differ in the expression 
of genes related to cellular storage and homeostasis. Such differentially expressed genes and 
their pathways provide clues for the optimization of IVM techniques, and, importantly, a 
method to assess the effects of those techniques on oocyte competence without having to 
evaluate development after fertilization, which could raise ethical issues in humans.  

In vivo-MII vs IVM-MII In the study by Jones et al., (2008), more than 2000 genes were 
identified as expressed at more than 2-fold higher levels in oocytes recovered from 
gonadotropin-stimulated cycles and matured in vitro than those matured in vivo, and 162 of 
these were expressed at 10-fold or greater levels (this study used Codelink Whole Human 
Genome Bioarrays, GE Healthcare Biosciences). It was concluded that the overabundance of 
transcripts in immature oocytes recovered from gonadotropin stimulated cycles, then 
matured in vitro could be due to dysregulation of either gene transcription or post-
transcriptional modifications, resulting in incorrect temporal utilization of genes, 
culminating in developmental oocyte incompetence.  

GV vs IVM-MII vs embryo Zhang et al., 2009a followed the transcriptome changes 
occurring in human preimplantation development by applying microarray analysis 
(Affymetrix two-cycle GeneChip Eukaryotic small sample target labeling assay version II; 
HG-U133 Plus 2.0 array) to human oocytes and embryos at six developmental stages. They 
observed a dramatic reprogramming of transcription and translation during 
preimplantation development in a stage-specific manner, with two main transitions (MII to 
Day 2 and Day 3 to Day 5). Over 47.000 transcripts expressed in oocytes and early embryos 
were reported, thus providing a fundamental resource for understanding the genetic control 
of human early development. There was a significant underrepresentation of transcripts 
responsible for cell signaling and communication (genes associated with the G protein 
coupled receptor - GPCR - protein signaling pathway, cell communication, immune 
response, response to external stimuli, cell adhesion, sensory perception and cell-surface 
receptor-linked signal transduction pathways) in both oocytes and embryos, when 
compared to adult tissue; the authors concluded that human preimplantation development 
is almost self-directed -- i.e., oocytes and embryos apparently do not need to communicate 
with the “external world” to the same degree as adult tissues do. This paper also performed 
evolutionary comparisons between humans and mice, dogs and chimpanzees. Genes that 
were highly expressed in human oocytes and embryos varied less from those of other 
species than did genes of adult tissues: the conclusion was that these “pre-implantation 
genes” are highly conserved. 

Microarray analysis of human oocytes has been subsequently applied to a variety of 
reproductive issues. Wood et al., (2007) found differences in gene expression between 
normal and PCOS (polycystic ovarian syndrome) oocytes for 8123 transcripts, 374 of which 
were genes related to meiotic spindle dynamics. Grondahl et al., (2010), evaulated 15 
independent replicates of single in vivo-MII oocytes using the Affymetrix HG-U133 Plus 2.0 
gene chip array, which tests around 48.000 well identified genes by using around 56.000 
probe sets, and the Affymetrix gene array 2500 scanner. These authors identified 7.470 genes 
(10.428 transcripts) as present in human in vivo-MII oocytes. Of these, 342 genes showed a 
significantly different expression level between young and aged women; notably, genes 
annotated to be involved in cell cycle regulation, chromosome alignment (e.g. MAD2L1 
binding protein), sister chromatid separation (e.g. separase), oxidative stress and 
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ubiquitination. The top signaling network affected by age was 'cell cycle and organism 
development' (e.g. SMAD2 and activin B1 receptor). Thus, this study provided information 
on processes that may be associated with lowered oocyte developmental competence due to 
ageing.  

2.3.3 The common gene expression signatures of oocytes and embryonic stem cells 

Another interesting research area for transcriptomic investigations is the comparison of the 

transcriptomic profile between MII oocytes and stem cells. Data have been published on the 

comparison between human MII oocytes and human embryonic stem cells (ESC). Both of 

these cells types are able to reprogram differentiated nuclei towards pluripotency, either by 

somatic cell nuclear transfer or by cell fusion, respectively. Comparison of the transcriptome 

of these two cell types may highlight genes that are involved in induction of pluripotency. 

Based on a microarray compendium of 205 samples, Assou et al., 2009 compared the gene 

expression profile of MII oocytes and human ESC to that of somatic tissues. A common 

oocyte/hESC gene expression profile was identified, which included a strong cell cycle 

signature, genes associated with pluripotency such as LIN28 and TDGF1, a large chromatin 

remodelling network (TOP2A, DNMT3B, JARID2, SMARCA5, CBX1, CBX5), 18 different zinc 

finger transcription factors, including ZNF84, and several still-poorly annotated genes such 

as KLHL7, MRS2, and Selenophosphate synthetase 1 (SEPHS1). Interestingly, a large set of 

genes in both cell types was found to code for proteins involved in the ubiquitination-

proteasome pathway. Upon ESC differentiation into embryoid bodies, the transcription of 

genes in this pathway declined. In vitro, a selective sensitivity of human ESC to inhibition of 

proteasome activity was observed. These results shed light on the gene networks that are 

concurrently overexpressed by the two cell types with somatic cell reprogramming 

properties. 

2.3.4 Prediction of oocyte competence based on analysis of accessory cells (polar 
bodies, cumulus cells or granulosa cells) 

A major problem of reproductive biotechnologies is predicting which oocytes are destined 

to develop into viable embryos. Analysis of accessory cells, such as PBs, CCs and GCs, 

allows oocyte quality assessment without interfering with use of the oocyte in ART.   

Polar Body Klatsky et al., (2010) reported detection and quantification of mRNA from single 

human polar bodies, a minimally invasive test of the oocyte gene-expression profile. Gene 

expression of 12 candidate genes was investigated in PB biopsies and the oocytes from 

which they originated, and polar-body mRNA was detected for 11 out of 12 genes. This 

method would allow detection and comparison of individual differences in oocyte gene 

expression without harming the oocyte. 

Granulosa cells The comparative evaluation of the effects of FSH vs human menopausal 
gonadotrophin on GCs has been reported (Grondahl et al., 2009). These authors found that 
the drugs used for controlled ovarian hyperstimulation have a significant impact on the 
gene expression profile of human granulosa cells. Interesting differences were observed for 
genes involved in the regulation of preovulatory events. For GC in the mare, see the work 
by Fahiminiya et al., 2010 in section 2.3.5 
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Cumulus cells The bi-directional communication between the oocyte and its companion 
CCs is crucial for the development and function of both cell types. Regassa et al. (2001) 
investigated the transcripts that are exclusively expressed either in oocytes or in CCs, and 
the molecular mechanisms affected when communication between the two cell types is 
removed. The transcriptomic profile of different oocyte and CC samples was analyzed by 
using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 
13162 genes detected in GV oocytes and their companion CCs, 1516 and 2727 were 
exclusively expressed in oocytes and in CCs, respectively, while 8919 were expressed in 
both. Similarly, of 13602 genes detected in MII oocytes and CCs, 1423 and 3100 were 
exclusively expressed in oocytes and in CCs, respectively, while 9079 were expressed in 
both. A total of 265 transcripts were differentially expressed between oocytes cultured with 
(OO+CCs) and without (OO-CCs) CCs, of which 217 and 48 were over-expressed in the 
former and the latter groups, respectively. Similarly, 566 transcripts were differentially 
expressed when CCs were cultured with (CCs+OO) or without (CCs-OO) their enclosed 
oocytes. Of these, 320 and 246 were over-expressed in CCs+OO and CCs-OO, respectively. 
While oocyte-specific transcripts include those involved in transcription (IRF6, POU5F1, 
MYF5, MED18) and translation (EIF2AK1, EIF4ENIF1), CC-specific transcripts include those 
involved in carbohydrate metabolism (HYAL1, PFKL, PYGL, MPI), protein metabolic 
processes (IHH, APOA1, PLOD1) and steroid biosynthetic process (APOA1, CYP11A1, 
HSD3B1, HSD3B7). Similarly, while transcripts over expressed in OO+CCs were involved in 
carbohydrate metabolism (ACO1, 2), molecular transport (GAPDH, GFPT1) and nucleic acid 
metabolism (CBS, NOS2), those over expressed in CCs+OO were involved in cellular 
growth and proliferation (FOS, GADD45A), cell cycle (HAS2, VEGFA), cellular 
development (AMD1, AURKA, DPP4) and gene expression (FOSB, TGFB2). This study 
generated large-scale gene expression data that provide insights into gene function and 
interactions within and across different pathways that are involved in the maturation of 
bovine oocytes. Moreover, the presence or absence of oocyte and CC factors during bovine 
oocyte maturation has a profound effect on transcript abundance in the different cell types, 
showing the important molecular cross-talk between oocytes and their CCs. This kind of 
study has not yet been performed in humans. 

A more recent study reported the transcriptomic analysis, by using the Affymetrix Bovine 
Expression Array, of granulosa cells and oocytes from newborn sheep ovaries (primordial, 
primary, secondary and small antral follicles) isolated by Laser Capture Microdissection 
(Bonnet et al., 2011). This study will significantly support clinical programs for rescue of 
fertility (oocyte production potential) in young women affected by ovarian pathologies or 
undergoing cancer therapy. 

2.3.5 Preliminary data and prospective use of equine oocytes  

The equine oocyte would make a valid animal model for transcriptomic studies of 

predictive markers of oocyte quality via analysis of PBs, CCs and GCs. Its peculiarly large 

PB size and the unique opportunity, due to large follicle size, to perform 1:1 oocyte:somatic 

cell ratios could allow reliable identification of predictive parameters of oocyte competence 

by analyzing the PB, CC or GC transcriptome.  

Recently, molecular studies preliminary to OMICS applications have been performed in 
equine embryos. Paris et al., (2011) identified and validated a set of reference genes suitable 
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for studying gene expression during equine embryo development. The expression of four 
carefully-selected reference genes and one developmentally-regulated gene was examined 
by quantitative PCR in equine in vivo-produced embryos, from the morula to the expanded 
blastocyst stage. SRP14, RPL4 and PGK1 were identified by geNorm analysis as stably-
expressed reference genes suitable for data normalisation. RPL13A expression was less 
stable and changed significantly during the period of development examined, rendering it 
unsuitable as a reference gene. As anticipated, CDX2 expression increased significantly 
during embryo development, supporting its possible role in trophoectoderm specification in 
the horse. In summary, it was demonstrated that evidence-based selection of potential 
reference genes aids in validation of stable gene expression in an experimental system, 
which is particularly useful when dealing with tissues that yield small amounts of mRNA.  

Smits et al., (2011) evaluated the difference between in vivo- and in vitro-produced (IVP) 

equine blastocysts at the genetic level. Suppression subtractive hybridization (SSH) was 

used to construct a cDNA library enriched for transcripts preferentially expressed in in vivo-

derived equine blastocysts compared with IVP blastocysts. Of the 62 different genes 

identified in this way, six genes involved in embryonic development (BEX2, FABP3, 

HSP90AA1, MOBKL3, MCM7 and ODC) were selected to confirm this differential 

expression by RT-quantitative PCR. Five genes were confirmed to be significantly 

upregulated in in vivo-derived blastocysts (FABP3, HSP90AA1, ODC, MOBKL3 and BEX2), 

confirming the results of the SSH, however, there was no significant difference in MCM7 

expression. Because of their possible importance in embryonic development, the expression 

of these genes can be used as a marker to evaluate in vitro embryo production systems in 

the horse, and can be used to compare their roles in embryo development of other species. 

Previous studies of functional transcriptomics of individual or associated gene sequences in 

the equine oocyte have been reported by our laboratory (Dell’Aquila et al., 2004 for 

connexin 43, cyclooxygenase-2 and FSH receptor; Caillaud et al., 2009 for interleukin 1β and 

its receptors; Dell’Aquila et al., 2008 for the mu opioid receptor; De Santis et al., 2009 for the 

extracellular calcium-sensing receptor; Lange Consiglio/Cremonesi et al., 2009 for leptin 

and its ObR receptor) and other groups (Lindbloom et al., 2008 for EGF-like growth factors; 

Lupole et al., 2010 for ZP genes). To the best of our knowledge, few studies have been 

performed to date with OMICS technologies in equine reproductive cells or tissues. 

Fahiminiya et al., (2010) investigated the transcriptome of granulosa and theca cells from 

equine follicles at different developmental stages. An equine gene-expression microarray 

(Agilent technologies Inc., CA, USA) with 44.000 probes was used. Cells were examined 

from early dominant vs late dominant follicles, and from preovulatory follicles 34 h after 

injection of crude equine gonadotrophin. It was found that 8349 transcripts were 

differentially expressed in GC and 2338 in theca cells between preovulatory and late 

dominant follicles, and that 1602 transcripts were differentially expressed in GC and 8 in 

theca cells in late dominant vs. early dominant follicles. Thus, it appears that the GC have a 

highly dynamic nature during the development of dominant follicles. In additional work, 

Das et al. (2010) analyzed sperm and testis transcriptomes using the Texas A&M equine 

whole genome 21351-element oligoarray. Bruemmer et al. (2010) analyzed the endometrium 

transcriptome using the Horse gene expression Agilent microrray for 43000 transcripts. 

Slough et al., (2011) studied the gene expression (StAR, 3β-HSD, cox, and caspase-3) profile 

of equine corpus luteum tissue recovered by in vivo biopsy.  
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2.4 Oocyte proteome: The direct representation of the oocyte phenotype 

Oocyte mRNA is not a direct representation of the factors that drive oocyte phenotype. The 

identified mRNA represent potential proteins, but the degree to which the mRNA are being 

translated is unknown. Thus, an OMICs goal is the identification and measurement of all 

proteins expressed in the oocyte or embryo. There are two main protein-containing oocyte 

compartments, the cytoplasm and the zona pellucida. The protein makeup of the oocyte is 

important for more than simply evaluating oocyte viability; as noted above, the mammalian 

oocyte cytoplasm possesses factors which can reprogram terminally-differentiated germ 

cells (sperm) or somatic cells within a few cell cycles. Moreover, it has been suggested that 

use of oocyte-derived transcripts may enhance the generation of induced pluripotent stem 

cells. The zona pellucida is composed of glycoproteins involved in the sperm-oocyte 

interactions which modulate sperm penetration and the fertilization process. Thus, 

improving our knowledge of oocyte global protein composition is of great interest.  

The main phases of proteomic analysis consist of protein extraction, digestion, separation of 

proteins by gel- or non gel-based methods, mass spectrometry evaluation of digested and 

separated or electrosprayed peptides, and bioinformatic data analysis (for detailed 

proteomic methods, see Seli et al., 2010; Wang et al., 2010 and Arnold & Frohlich, 2011). A 

major problem in oocyte proteome analysis is the requirement of large numbers (thousands) 

of oocytes. This problem has limited the possibility of performing studies in the human; 

studies performed to date have been conducted in the mouse and in large animals.  

2.4.1 Proteomic studies in the mouse oocyte 

Studies in the mouse have incorporated qualitative proteomic approaches, with the 

intention of generating a protein database to be used for the molecular characterization of 

the oocyte and developing embryo.  

In a pioneering study by Meng et al. (2007), proteomic profiling of mouse mature COCs was 

performed, using two-dimensional electrophoresis and mass spectrometry. A total of 259 

protein spots were identified, corresponding to 156 individual proteins. Functional 

classification of the identified proteins, performed manually according to the biological 

function of their coding genes, indicated that 12% were involved in cell 

signaling/communication, 7% in cell division, 31% in gene/protein expression, 24% in cell 

metabolism, 10% in cell structure and motility, 12% in cell/organism defense, and 4% were 

unknown.  

In a subsequent study by Ma et al., (2008), two-dimensional electrophoresis of mouse 

metaphase-II (MII) ooplasmic proteins (the ZP was removed by digestion before protein 

extraction) was performed to describe the proteome and phosphoproteome of  oocytes 

derived from ICR mice. A total of 869 selected protein spots, corresponding to 380 unique 

proteins, were identified successfully by mass spectrometry. Of these, 90 protein spots, 

representing 53 unique proteins, were stained by Pro-Q Diamond dye, indicating that, 

within the MII oocyte cytoplasm, they are in phosphorylated forms. All identified proteins 

were bioinformatically annotated and compared to the embryonic stem-cell proteome. A 

proteome reference database for the mouse oocyte was established from the protein data 

generated in this study (http://reprod.njmu.edu.cn/2d).  
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A subsequent study (Zhang et al., 2009b) applied one-dimensional sodium dodecyl sulfate 
polyacrylamide gel electrophoresis and reverse-phase liquid chromatography tandem 
mass spectrometry to analyze the mature oocyte proteome of the mouse in depth. Using 
this high-performance proteomic approach, the authors successfully identified 625 
different proteins from 2700 mature mouse oocytes denuded of their zonae pellucidae. 
They identified 76 maternal proteins having high levels of mRNA expression both in 
oocytes and fertilized eggs. Many well-known maternal-effect proteins were included in 
this subset, including MATER and NPM2. In addition, the observed mouse oocyte 
proteome was compared with a recently published mouse embryonic stem cell (ESC) 

proteome (Van Hoof et al., 2006, see ref. in Zhang et al., 2009), and 371 overlapping 
proteins were identified.  

In a more recent study by Wang et al. (2010), 7,000 mouse oocytes at different 
developmental stages, including the GV stage, the MII stage, and fertilized oocytes 
(zygotes), were evaluated. The authors successfully identified 2,781 proteins present in GV-
stage oocytes, 2,973 proteins in MII oocytes, and 2,082 proteins in zygotes, through 
semiquantitative mass spectrometry. The results of the bioinformatics analysis indicated 
that different protein compositions were correlated with oocyte characteristics at different 
developmental stages. For example, specific transcription factors and chromatin remodeling 
factors were more abundant in MII oocytes, which may be crucial for the epigenetic 
reprogramming of sperm or somatic nuclei. These results provided important knowledge 
for better understanding of the molecular mechanisms associated with early development, 
and may improve the generation of induced pluripotent stem cells.  

A more recent study (Pfeiffer et al., 2011) reported the proteome of MII mouse oocytes to a 
depth of 3699 proteins, which extends the number of proteins identified to date in mouse 
oocytes to a comparable size to that of the proteome of undifferentiated mouse ES cells. 
Twenty-eight oocyte proteins, also detected in ES cells, matched the criteria of the multilevel 
approach reported in this study to screen for reprogramming factors, namely nuclear 
localization, chromatin modification, and catalytic activity, thus advancing the definition of 
“reprogrammome”, the set of molecules (proteins, RNAs, lipids, and small molecules) that 
enable nuclear reprogramming.  

2.4.2 Proteomic studies in farm animal oocytes 

Studies in farm animals, such as cattle and pigs, have been performed for both qualitative 

database generation and for quantification of proteome changes during oocyte IVM (bovine: 

Coenen et al., 2004; Bhojwani et al., 2006; Massicotte et al., 2006; Memili et al., 2007; Berendt 

et al., 2009; pig: Ellederova et al., 2004; Susor et al., 2007, reviewed by Ma et al., 2008; Zhang 

et al., 2009; Arnold & Frohlich, 2011).  

Berendt et al. (2009) performed two-dimensional gel electrophoresis saturation labeling to 

detect quantitative differences in the proteomes of immature versus IVM-MII bovine 

oocytes. From 250 ng of sample analyzed per gel, quantitative analysis revealed an 

average of 2244 spots in pH 4–7 images and 1291 spots in pH 6–9 images. Focusing on the 

pH 4-7 images, 38 spots with different intensities between oocyte stages were detected. 

Spots on a gel from 2200 immature oocytes were identified by nano-LC-MS/MS analysis. 

The ten spots which could be unambiguously identified include the translationally 

www.intechopen.com



OMICS for the Identification of Biomarkers for Oocyte Competence,  
with Special Reference to the Mare as a Prospective Model for Human Reproductive Medicine  

 

273 

controlled tumor protein, enzymes of the Krebs and pentose phosphate cycles, clusterin, 

14-3-3 ε protein and redox enzymes. In addition, the cellular distribution of two 

differentially-expressed proteins (14-3-3 ε protein, a mediator of Cdc25 phosphatase 

inhibition, and TCTP, translationally controlled tumor protein) was determined by 

confocal laser-scanning microscopy. The quantitative and cellular distribution differences 

of proteins identified in this study may help to identify attractive candidate proteins for 

oocyte quality evaluation.  

To the best of our knowledge, no proteomics studies have been performed to date in the 

equine oocyte. In our group, the functional role of individual proteins involved in the 

regulation of meiotic maturation has been investigated by means of western blot or 

immunostaining and confocal microscopy (Dell’Aquila et al., 2008, De Santis et al., 2009; 

Lange Consiglio et al., 2009). Equine oocytes could be excellent models for oocyte proteomic 

studies due to the high abundance of maternal proteins accumulated in their large 

cytoplasm (160 to 180 microns in diameter) during oogenesis. The relatively large 

cytoplasmic volume is an important feature as it reduces the number of oocytes needed for 

effective protein extraction, thus increasing the specificity of the proteome analysis. A recent 

study performed in Xenopus laevis oocytes, chosen due to their abundant ooplasm, 

identified a number of proteins involved in the regulation of M-phase entry (Kubiak et al., 

2011). The equilibrium among activites of these proteins is responsible for the quality of 

oocytes and the extent of embryo development, via their participation in decision whether 

to resume meiosis. Identification of cell-cycle control protein activities in mammalian 

oocytes may have a great impact on the study not only of oocyte quality but also of cancer 

growth regulation, and thus establishment of targeted therapies. 

On the male side, the global proteome of sperm and seminal plasma of fertile stallions 

has been investigated (Novak et al., 2010) to determine whether associations exist between 

the observed proteome and in vivo fertility. Semen was collected throughout the breeding 

season from 7 stallions at stud in a commercial breeding station. The stallions were bred 

to a total of 164 mares to determine conception rates. On three occasions during the 

breeding season, raw semen was obtained from a regular collection and subjected to 

proteomic analysis using two-dimensional electrophoresis. The semen sample was also 

assessed for routine semen-quality end points. The first cycle conception rate was 

negatively related to ejaculate volume (r = -0.43, P = 0.05) and total IGF1 content (ng) per 

ejaculate (r = -0.58, P=0.006), whereas the overall pregnancy rate was positively related to 

sperm concentration (r = 0.56, P = 0.01). The abundance of three proteins known to be 

involved in carbohydrate metabolism in sperm was positively related to fertility. 

Abundance of cysteine-rich secretory protein 3 (CRISP3) was positively related to first 

cycle conception rate (r = 0.495, P = 0.027) and may provide a good marker of fertility. The 

abundance of four seminal plasma proteins was negatively related to fertility; these were 

identified as kallikrein-1E2 (KLK2), clusterin, and seminal plasma proteins 1 (SP1) and 2 

(SP2). Based on stepwise regression analysis, low levels of clusterin and SP1 in seminal 

plasma together with abundance of sperm citrate synthase were predictive of fertility 

(r=0.77, P< 0.0001). This study identified proteins within sperm and seminal plasma that 

could serve as biomarkers of semen quality and fertility in stallions, and may present 

valid models for sperm fertility biomarkers in humans. 
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2.5 Oocyte lipid fingerprint – Investigating the biological role of structural and reserve 
lipids  

Recently, a new OMIC strategy, namely lipidomics, which utilizes mass spectrometry (MS), 

chromatography and computer-assisted data analysis, has been proposed. In this approach, 

lipid molecules are extracted from cells and analyzed by matrix-assisted laser desorption 

ionization-time of flight (MALDI-TOF) MS (Huang et al., 2005). Like other OMICS, 

lipidomics is a subject which is both technology-driven and technology-driving, allowing 

changes in lipid metabolism, including the appearance of new species and the 

disappearance of others, and compartimentalization of specific lipid species, to be 

investigated. The underlying fundamentals of different lipidomic experimental approaches 

and the application of these approaches to the identification of inborn errors of metabolism 

were reported by Griffiths et al. (2011). Maturing mammalian oocytes, particularly those of 

farm animals, contain large numbers of cytoplasmic lipid droplets (LDs) whose functional 

role is still under investigation (Ambruosi et al., 2009). Lipid droplets are discrete organelles 

present in most cell types and in organisms including bacteria, yeast, plants, insects and 

animals. Long considered as passive storage deposits, recent proteomic and lipidomic 

analyses show that LDs are dynamic organelles involved in multiple cellular functions. They 

serve not only as main reservoirs of neutral lipids such as triglycerides and cholesterol but 

also contain structural proteins, proteins involved in lipid synthesis and transmembrane 

proteins (review by Kalantari et al., 2010). A recent study (Ferreira et al., 2010) reported the 

direct lipid analysis by MALDI-MS of single and intact human, bovine, sheep and fish 

oocytes. Characteristic lipid profiles, mainly represented by phosphatidylcholines, 

sphingomyelins and triacylglycerols, were obtained. This study demonstrated that MALDI-

MS is capable of providing a reproducible lipid fingerprint from a single oocyte and can be 

used to investigate developmental modifications or the effects of culture conditions. To our 

knowledge, no lipidomic studies have been reported to date in the equine oocyte. The 

equine oocyte, being characterized by polar aggregation of cytoplasmic LDs during 

maturation, could help to significantly clarify the role of LDs in the maturation and 

fertilization processes, and in early embryonic development.  

2.6 Oocyte glycomic analysis – Post-translational protein-carbohydrate modifications 

Glycomics deals with the structure and function of glycans or carbohydrates. Lectin-based 
diagnostics are the main tool aimed at the detection of diseases associated with alterations of 
the glycosylation profiles of cells. Lectins are proteins that specifically bind to 
carbohydrates, of either mono- or oligosaccaridic structure. Certain lectins even recognize 
cell determinants which are not detected by available antibodies. The increasing use of 
lectins in biomedical diagnostics is leading rapidly to the development of lectin/glycan 

microarrays which could provide efficient, rapid screening tools to detect normal or altered 
glycosylation patterns in biological samples. Information on glycomics, concerning methods 
for use of recombinant and artificial lectins and a recently-launched detection platform 
using lectin microarrays, as well as their application, were reported by Mislovicova et al., 
2009 and Gemeiner et al., 2009. A Glycomics DataBase – a data integration platform for 
glycans and their structures has been recently created (http://www.glycomics.bcf.ku.edu). 
To our knowledge no studies have been performed to date using large lectin arrays to 
evaluate oocyte quality. A recent paper by our research unit (Desantis et al., 2009) reported 

www.intechopen.com



OMICS for the Identification of Biomarkers for Oocyte Competence,  
with Special Reference to the Mare as a Prospective Model for Human Reproductive Medicine  

 

275 

the use of a 13-lectin panel to evaluate differences of the glycoconjugate pattern between 
equine oocytes surrounded by compact (viable) or expanded (early atretic) cumulus 
oophorus. It was found that: 1) equine COCs have a species-specific carbohydrate 
composition; 2) biosynthesis of glycosylated ZP proteins occurs in both CCs and oocytes; 3) 
viable (compact) and atretic (expanded) COCs express different lectin-binding patterns in 
their CCs, ZP and ooplasm. This paper also reviewed numerous studies published on the 
glycoconjugate pattern of cumulus cells, ZP and ooplasm in several species, including 
humans. These data confirm that the mare is a good model for evaluation the glycome of 
oocytes of different quality, developmental stage or functional status, and that the 
application of lectin arrays could be of great value in evaluating oocyte pathology or the 
effects of culture conditions. 

2.7 Oocyte metabolic profiling – The instantaneous snapshot of oocyte physiology 

Following in the wake of OMICS revolutions, new fields of research are emerging. Among 

them is metabolomics, a field that holds great promise for the study of oocyte and embryo 

physiology. The metabolome, that is, the compounds produced by the oocyte, provides 

the natural complement to the genome and proteome. The physicochemical diversity of 

the metabolome leads to a subdivision of metabolites into compounds soluble in aqueous 

solutions or those soluble in organic solvents. A complete molecular and quantitative 

investigation of the latter when isolated from tissue, fluid or cells is a subset of lipidomics 

(see Section 2.5). A high-priority aim in evaluating oocyte quality is to establish a non-

invasive quantification method. Analysis of oocyte metabolism, by evaluating the 

follicular fluid (FF) or culture media metabolome could be a useful predictor of pregnancy 

outcome (Sing & Sinclair, 2007; Nel-Themaat & Nagy, 2011). An important aspect limiting 

this kind of study in humans is the availability of FF aspirated from individual follicles or 

availability of culture media of individual oocytes. To correlate FF substances with oocyte 

quality, it is imperative that each follicle is aspirated individually. The procedure of single 

follicle aspiration is problematic, both for the patient and for the physician, because it 

requires multiple vaginal punctures (Revelli et al., 2009). Moreover, needle flushing with 

culture medium after every puncture must be performed, with a standard volume of 

flushing medium, in order to avoid cross-contamination and to control the dilution of FF 

substances. In this context, the availability of animal models from which large numbers of 

individual specimens may be obtained is of great help. A recent review by Revelli et al. 

(2009) provides an overview on the current knowledge of biochemical predictors of oocyte 

quality in FF, starting from studies on single biochemical markers and concluding with 

the most recent studies on metabolomics. Another study (Nagy et al., 2009) evaluated 

whether near-infrared spectroscopy-generated metabolomic data, obtained from 

individual oocyte culture media samples, would correlate with nuclear maturity status 

and subsequent embryo development. Drops (15-20 µl) of in vitro culture media from 3 h 

culture of individual oocytes recovered from patients undergoing controlled ovarian 

hyperstimulation were used to obtain a "viability index" of near-infrared spectroscopy 

metabolomic profiles. Oocytes at different meiotic stages showed significantly different 

indices, with a higher viability index related to nuclear maturity (MII stage), embryo 

grade at Day 3 and Day 5 (grade A) and pregnancy rate (human chorionic gonadotropin-

positive).  
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3. Conclusions 

OMICS are promising strategies for oocyte quality evaluation in the field of ART, and will 
lead to a greater understanding of the mechanisms involved in normal oocyte maturation, 
fertilization and embryo development. It is increasingly clear that large animal models, 
particularly those species such as horses, whose reproductive management is aimed not 
only to productivity but also to overcoming infertility, can provide a clinical and biological 
model for human reproductive phenomena. In addition to their value related to the 
understanding of human and animal reproduction, “oocyte OMICS” will undoubtedly 
reveal unexpected and invaluable information that will significantly contribute to the study 
of stem cell and cancer biology.  
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