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Surrogate-Based Optimization 

Zhong-Hua Han and Ke-Shi Zhang 
School of Aeronautics, Northwestern Polytechnical University, Xi’an, 

P.R. China 

1. Introduction 

Surrogate-based optimization (Queipo et al. 2005, Simpson et al. 2008) represents a class of 
optimization methodologies that make use of surrogate modeling techniques to quickly find 
the local or global optima. It provides us a novel optimization framework in which the 
conventional optimization algorithms, e.g. gradient-based or evolutionary algorithms are 
used for sub-optimization(s). Surrogate modeling techniques are of particular interest for 
engineering design when high-fidelity, thus expensive analysis codes (e.g. Computation 
Fluid Dynamics (CFD) or Computational Structural Dynamics (CSD)) are used. They can be 
used to greatly improve the design efficiency and be very helpful in finding global optima, 
filtering numerical noise, realizing parallel design optimization and integrating simulation 
codes of different disciplines into a process chain. Here the term “surrogate model” has the 
same meaning as “response surface model”, “metamodel”, “approximation model”, 
“emulator” etc. This chapter aims to give an overview of existing surrogate modeling 
techniques and issues about how to use them for optimization.  

2. Overview of surrogate modeling techniques 

For optimization problems, surrogate models can be regarded as approximation models for 
the cost function (s) and state function (s), which are built from sampled data obtained by 
randomly probing the design space (called sampling via Design of Experiment (DoE)). Once 
the surrogate models are built, an optimization algorithm such as Genetic Algorithms (GA) 
can be used to search the new design (based on the surrogate models) that is most likely to 
be the optimum. Since the prediction with a surrogate model is generally much more 
efficient than that with a numerical analysis code, the computational cost associated with 
the search based on the surrogate models is generally negligible.  

Surrogate modeling is referred to as a technique that makes use of the sampled data 
(observed by running the computer code) to build surrogate models, which are sufficient to 
predict the output of an expensive computer code at untried points in the design space. 
Thus, how to choose sample points, how to build surrogate models, and how to evaluate the 
accuracy of surrogate models are key issues for surrogate modeling.    

2.1 Design of experiments  

To build a surrogate model, DoE methods are usually used to determine the locations of 
sample points in the design space. DoE is a procedure with the general goal of maximizing 
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the amount of information gained form a limited number of sample points (Giunta et al., 
2001). Currently, there are different DoE methods which can be classified into two 
categories: “classic” DoE methods and “modern” DoE methods. The classic DoE methods, 
such as full-factorial design, central composite design (CCD), Box-Behnken and D-Optimal 
Design (DOD), were developed for the arrangement of laboratory experiments, with the 
consideration of reducing the effect of random error. In contrast, the modern DoE methods 
such as Latin Hypercube Sampling (LHS), Orthogonal Array Design (OAD) and Uniform 
Design (UD) (Fang et al., 2000) were developed for deterministic computer experiments 
without the random error as arises in laboratory experiments. An overview of the classic 
and modern DoE methods was presented by Giunta et al. (2001). A more detailed 
description of existing DoE methods is beyond the scope of this chapter. 

The schematics of 40 sample points selected by LHS and UD for a two-dimensional problem 
are sketched in Figure 1.  
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Fig. 1. Schematics of 40 sample points selected by Design of Experiments for a two-
dimensional problem (left: Latin Hypercube Sampling; right: Uniform Design). 

2.2 Surrogate models 

There are a number of surrogate models available in the literatures. Here we limit our 

discussion to three popular techniques such as RSM (polynomial Response Surface Model), 

Kriging, RBFs (Radial Basis Functions).  

For an m-dimensional problem, suppose we are concerned with the prediction of the output 

of a high-fidelity, thus expensive computer code, which is correspondent to an unknown 

function m:y → .  By running the computer code, y  is observed at n  sites (determined by 

DoE)  

 ( )(1) T
1[ ,..., ] , { ,.., }n n m m

mx x×= ∈ = ∈S x x x   (1) 

with the corresponding responses  

 (1) ( ) (1) ( )T T
S [ ,..., ] [ ( ),..., ( )]n n ny y y y= = ∈y x x   (2) 
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The pair ( S , Sy ) denotes the sampled data sets in the vector space. 

With the above descriptions and assumptions, our objective here is to build a surrogate 

model for predicting the output of the computer code for any untried site x  (that is, to 

estimate ( )y x ) based on the sampled date sets ( S , Sy ), in an attempt to achieve the desired 

accuracy with the least possible number of sample points.  

2.2.1 Quadratic response surface method 

Here we use “RSM” to denote a polynomial approximation model in which the sampled 
data is fitted by a least-square regression technique. In RSM-based optimization 
applications, the “quadratic” polynomial model usually provides the best compromise 
between the modeling accuracy and computational expense, when compared with the linear 
or higher order polynomial models. An advantage of RSM is that it can smooth out the 
various scales of numerical noise in the data while captures the global trend of the variation, 
which makes it very robust and thus well suited for optimization problems in engineering 
design.  

The true quadratic RSM can be written in the following form: 

 ( ) ( )ˆ , my y ε= + ∈x x x  , (3) 

where ( )ŷ x  is the quadratic polynomial approximation and ε  is the random error which is 

assumed to be normally distributed with mean zero and variance of 2σ . The error iε  at each 

observation is supposed to be independent and identically distributed. The quadratic RSM 

predictor ( )ŷ x  can be defined as: 

 ( ) 2
0

1 1 1

ˆ
m m m m

i i ii i ij i j
i i i j i

y x x x xβ β β β
= = = ≥

= + + +  x ,  (4) 

where 0β , iβ , iiβ  and ijβ  are unknown coefficients to be determined. Since there are 

totally ( 1)( 2) / 2p m m= + +  unknown coefficients in Eq.(4), building a quadratic RSM with 

m variables requires at least p  sample points. Let p∈β   be the column vector contains 

these p  unknown coefficients.  The least square estimator of β  is 

 T 1 T( ) S
−=β U U U y , (5) 

 

where  

 

( ) ( )

( ) ( )

2 2(1) (1) (1) (1) (1)(1) (1) (1)
1 1 2 1 1

2 2( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1 1 2 1 2

1

U .

1

m m mm

n p

n n n n nn n n
m m mm

x x x x x x x x

x x x x x x x x

−

×

−

 
 
 = ∈ 
 
  

  

          

  

 (6) 

After the unknown coefficients in β  are determined, the approximated response ŷ  at any 

untried x  can be efficiently predicted by Eq. (4). 

www.intechopen.com



 
Real-World Applications of Genetic Algorithms 

 

346 

2.2.2 Kriging model 

Different from RSM, Kriging (Krige, 1951) is an interpolating method which features the 
observed data at all sample points. Kriging provides a statistic prediction of an unknown 
function by minimizing its Mean Squared Error (MSE). It can be equivalent to any order of 
polynomials and is thus well suited for a highly-nonlinear function with multi extremes. For the 
derivation of Kriging (Sacks et al., 1989), the output of a deterministic computer experiment is 
treated as a realization of a random function (or stochastic process), which is defined as the sum 

of a global trend function T ( )f x β  and a Gaussian random function ( )Z x  as following 

  T( ) ( ) ( ), my Z= + ∈x f x β x x  ,   (7) 

where T
0 1( ) [ ( ),.., ( )] p

pf f −= ∈f x x x   is defined with a set of the regression basis functions 

and T
0 1[ ,.., ] p

pβ β −= ∈β   denotes the vector of the corresponding coefficients. In general, 
T ( )f x β  is taken as either a constant or low-order polynomials. Practice suggests that the 

constant trend function is sufficient for most of the problems. Thus, T ( )f x β  is taken as a 

constant 0β  in the text hereafter. In Eq.(7), ( )Z ⋅  denotes a stationary random process with  

zero mean, variance 2σ  and nonzero covariance of 

 2[ ( ), ( )] ( , )Cov Z Z Rσ′ ′=x x x x .  (8) 

Here ( , )R ′x x  is the correlation function which is only dependent on the Euclidean distance 

between any two sites x  and ′x  in the design space. In this study, a Gaussian exponential 
correlation function is adopted, and it is of the form 

 
1

( , ) exp[ | | ] ,1 2k

m
p

k k k k
k

R x x pθ
=

′ ′= − − < ≤x x , (9) 

where T
1 2[ , ,..., ]mθ θ θ=θ  and T

1 2[ , ,..., ]mp p p=p  denote the vectors of the unknown model 

parameters (hyper parameters) to be tuned. The schematics of a Gaussian exponential 

correlation function for one-dimensional problem is sketched in Figure 2. 
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Fig. 2. Schematics of Gaussian exponential correlation function for different hyper 

parameters (left: varying θ  with a fixed p ; right: varying p  with a fixed θ  )   

www.intechopen.com



 
Surrogate-Based Optimization 

 

347 

From the derivation by Sacks et al. (1989) the Kriging predictor ( )ŷ x  for any untried x  can 

be written as 

 T 1
0 0

ˆ( ) ( ) ( )Sy β β−= + −x r x R y 1 ,  (10) 

where the generalized least square estimation of 0β  is 

 T 1 1 T 1
0 ( ) Sβ − − −= 1 R 1 1 R y , (11)  

and n∈1   is a vector filled with ones, and , R r  are the correlation matrix and the 

correlation vector, respectively. and R r are defined as 

 

(1) (1) (1) (2) (1) ( ) (1)

(2) (1) (2) (2) (2) ( ) (2)

( ) (1) ( ) (2) ( ) ( ) ( )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
,  

( , ) ( , ) ( , ) ( , )

n

n
n n n

n n n n n

R R R R

R R R R

R R R R

×

   
   
   

= ∈ = ∈   
   
   
   

x x x x x x x x

x x x x x x x x
R r

x x x x x x x x



  
    



, (12) 

where ( )( )( , )jiR x x  denotes the correlation between any two observed points ( )ix and ( )jx  ; 
( )( , )iR x x  denotes the correlation between the i-th observed point ( )ix  and the untried point 

x .  

A unique feature of Kriging model is that it provides an uncertainty estimation (or MSE) for 

the prediction, which is very useful for sample-points refinement. It is of the form 

 2 2 T 1 T 1 2 T 1ˆ ( ) [1.0 ( 1) / ]s σ − − −= − + −x r R r r R 1 1 R 1 . (13) 

Assuming that the sampled data are distributed according to a Gaussian process, the 

responses at sampling sites are considered to be correlated random functions with the 

corresponding likelihood function given by 

 
T 1

2 S 0 S 0
0 22

( ) ( )1 1
( , , , ) exp

22 ( )n
L

β β
β σ

σπ σ

− − −
= −  

 

y 1 R y 1θ p
R

. (14) 

The optimal estimation of 0β  and the process variance  

 

T 1 1 T 1
0 S

2 T 1
0 S 0 S 0

( , ) ( )

1
( , , ) ( ) ( )

n

β

σ β β β

− − −

−

=

= − −

θ p 1 R 1 1 R y

θ p y 1 R y 1
  (15)  

are obtained analytically, yet depends on the remaining hyper-parameters T
1 2[ , ,..., ]mθ θ θ=θ  

and T
1 2[ , ,..., ]mp p p=p . Substituting it into the associated Eq. (14) and taking the logarithm, 

we are left with maximizing  
 

 . 2MLE( , ) ln ( ) ln ( )n σ= − −θ p θ R θ .,   (16)  
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which can be solved by a numerical optimization algorithm such as GA. The 

hyperparamters tuning strategies are discussed by Toal et al. (2008). Note that the above 

Kriging formulation can be extended by including gradient information obtained by Adjoint 

method (Han et al. 2009, Laurenceau et al. 2008) or lower-fidelity data by lower-fidelity 

analysis code (Han et al. 2010, Forrester et al. 2007). 

2.2.3 Radial basis functions 

In additional to Kriging, RBFs model (Hardy, 1971) is known as an alternative interpolation 

method for surrogate modeling. For the RBFs approach by Powell (1987), the approximation 

of the unknown function ( )y x  at an untried x  is formally defined as the linear combination 

of the radial basis functions and a global trend function as 

  
1

ˆ( ) ( ) ( )
n

i
i

y Pω ϕ
=

= +x x x ,  (17) 

where iω  are the i-th unknown weight coefficient, ( )( ) ( )iϕ ϕ= −x x x  are the basis functions 

that depend on the Euclidean distance between the observed point ( )ix  and the untried 

point x  (similar to the correlation function of kriging model); ( )P x  is the global trend 

function which is taken as a constant 0β  here. To ensure the function values at observed 

points are reproduced by the RBFs predictor, the flowing constraints should be satisfied:  

 
( ) ( )ˆ( ) , 1,..,i iy y i n= =x

.  (18) 

Then the additional constraints for ( )P x  should be imposed as 

 
0

0
n

i
i

ω
=

= .  (19) 

Solving the linear equations formed by Eq. (18) and Eq. (19) for iω  and 0β , and substituting 

into Eq.(17) yields the RBFs predictor as 

 T 1
0 S 0

ˆ( ) ( ) ( )y β β−= + −x φ x Ψ y 1 . (20) 

Where T 1 1 T 1
0 S( ) ( )β − − −=θ 1 Ψ 1 1 Ψ y  and Ψ , ( )φ x  are defined as 

 ( )( ) ( ): [ ( )] ,  ( ) : [ ( )]ji in n n
ij iϕ ϕ×= − ∈ = − ∈Ψ x x φ x x x  .  (21) 

When the above RBFs predictor is compared with the Kriging predictor (see Eq. (10)), one 

can observe that they are essentially similar, only with the basis-function matrix Ψ  (also 

called Gram matrix) and the basis function vector ( )φ x  being different from the correlation 

matrix R and the correlation vector ( )r x  of the Kriging predictor, respectively. In addition, 

RBFs differs from Kriging at the following two aspects: 1) RBFs doesn’t provide the 

uncertainty estimation of the prediction; 2) The model parameters can’t be tuned by MLE 

like Kriging. Generally, Kriging can be regarded as a particular form of RBFs. 
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To build a RBFs model, one needs to prescribe the type of basis functions that only depends 

on the Euclidean distance r ′= −x x  between any two sites x  and ′x . Compared to the 

correlation function used for a Kriging model, more choices are available for a RBFs model, 
which are partially listed in Table 1. 

 

Basis  functions Formulations 

Gaussian (GAUSS) 
2 2

/ 2( ) rr e σφ −= (e.g. 2 1σ =  ) 

Power function (POW) ( ) ,1 3r r βφ β= ≤ ≤ (e.g. 1.8β =  ) 

Thin Plate Spline (TPS) 
2( ) ln( )r r rφ =  

Hardy’s Multiquadric (HMQ) 2( ) 1r rφ = +  

Hardy’s Inverse Multiquadric (HIMQ) 2( ) 1/ 1r rφ = +  

Table 1. Basis functions for RBFs surrogate model 

All the basis functions listed in Table 1 can be classified into two categories: decaying 
functions (such as GAUSS and HIMQ) and growing functions (POW, TPS and HMQ). The 
decaying functions can yield positive definite matrix Ψ , which allows for the use of 
Cholesky decomposition for its inversion; the growing functions generally result in a non-
positive definite matrix Ψ  and thus LU decomposition is usually used alternatively. The 
schematics of the basis functions for one-dimensional problem is sketched in Figure 3. 
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Fig. 3. Schematics of basis functions for Radial Basis Functions (left: decaying functions; 
right: growing functions).   

2.2.4 The big (ger) picture 

In addition to what we mentioned above, there are also a few surrogate models available in 
the literatures, such as Artificial Neutral Network (ANN) (Elanayar et al. 1994, Park et al. 
1991), Multiple Adaptive Regression Splines (MARS) and Support Vector Regression (SVR) 
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(Smola & Schoelkopf 2004). Although these methods are coming from different research 
communities, the idea is similar when using them for function prediction in surrogate 
modeling. They are not described in detail here due to the limited space. The readers are 
referred to read the paper by Wang & Shan (2007) and the books written by Keane et al. (2005) 
and by Forrester et al. (2008) for more description about surrogate modeling techniques. 

2.3 Evaluation of approximation models 

An important issue for the surrogate modeling is how to estimate the error of the 
approximation models. Only when the surrogate model with sufficient accuracy is built can 
the reliable optimum be obtained. Here we use two variables  ( e  and eσ ) to evaluate the 

error of the approximation models at test points, which are also chosen by DoE method. The 
average relative error is 

 
( ) ( )

( ) ( )
( )

1

ˆ1
,     

tn i i
i i t t

i
t i t

y y
e e e

n y=

−
= = ,   (22) 

where tn  is number of the test points; ( )i
ty  and ( )ˆ i

ty  are the true value and predicted value 

corresponding to the i-th test point, respectively. The root mean squared error is defined by 

 ( ) 2

1

( )
tn

i

e t

i

e nσ
=

=   . (23) 

2.4 Framework of building surrogate models 

A Generic framework of building a surrogate model is sketched in Figure 4. Note that the 
initial surrogate model can be evaluated by Eqs. (22) and (23) and a branch for resampling is 
denoted by black dashed line in Figure 4. 

3. Use of surrogate models for optimization 

Suppose we are concerned with solving a general optimization problem as 

 

Objective    minimize  y( )

        s.t.    g ( ) 0, 1,...

                  
i c

l u

i n≤ =

≤ ≤

x

x

x x x

 ,  (24) 

where cn  is the number of state functions which is in line with the number of inequality 

constraints (assuming that all the equality constraints have been transformed into inequality 

constraints.); lx  and ux  are the lower and upper bound of design variables, respectively; 

the object function y( )x  and state functions g ( )i x  are evaluated by an expensive analysis 

code. Traditionally, the optimization problem is solved by either a gradient-based algorithm 

or a gradient-free algorithm such as GA. It may become prohibitive due to the large 

computational cost associated running the expensive analysis code. Alternatively, here we 

are concerned with using surrogate modeling techniques to solve the optimization problem, 

in an attempt to dramatically improve the efficiency.  
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Fig. 4. Frameworks of building surrogate models 

3.1 Framework of surrogate-based optimization  

3.1.1 A simple framework 

The basic idea of using surrogate models in optimization can be quite simple. First, the 
surrogate models for the object function(s) and state function(s) with sufficient accuracy are 
built (see Figure 2); second, the optimum is found by an optimizer, with the object 
function(s) or state function(s) evaluated by surrogate models, rather than by the expensive 
analysis code. Since prediction with the surrogate models is much more efficient than that 
by the expensive analysis code, the optimization efficiency can be greatly improved. The 
comparison of the conventional optimization and surrogate-based optimization is sketched 
in Figure 5. In addition to improve optimization efficiency, surrogate models also serve as 
an interface between the analysis code and the optimizer, which makes the establishment of 
an optimization procedure much easier. One of the examples for such a surrogate-based 
optimization framework can be found in paper by Han et al. (2010).  

3.1.2 A bi-level framework 

Although the framework of the surrogate-based optimization sketched in Figure 5. (b) is 
very intuitive and simple, questions may arise: are the surrogate models accurate enough? 
has the true optimum been reached? In fact, the optimum gained by the surrogate models is 
only an approximation to the true optimum (see Figure 5. (a)). One has to refine the 
surrogate models by adding new sample points, which is to be observed by running the 
analysis code. The procedure of augmenting new sample point(s) to the current sampled 
data sets is the so-called “sample-point refinement”. The rules of determining the new 
sample sites towards the true optimum are called “infill criteria”, which will be discussed in 
section 3.2. The flowchart of a surrogate-based optimization with additional process of 
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sample-point refinement is sketched in Figure 6. It can be regarded as a bi-level optimization 
framework, with the process of building and refining the surrogate models (which needs to 
run the expensive analysis code) acting as the main optimization and the process of using 
surrogate models to determine the new sample sites acting as the sub-optimization(s).  

 

Fig. 5. Comparison of frameworks for conventional optimization and surrogate-based 
optimization with a simple framework 

design space

simulate sample

surrogate models 

new
samples

distributed
computing

Main 
optimization

DoE

Converge ?
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Optimum design

sub-
optimizations
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yes
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yes

sampled data set
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Fig. 6. Flowchart of the surrogate-based optimization with a bi-level framework (main 
optimization: building and refining the surrogate models which needs to run the expensive 
analysis code; sub-optimization(s): using surrogate models to determine new sample sites) 

Baseline Analysis code Optimizer Converge?

New design(s) 

Optimum 
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(a) Conventional optimization 

(b) Surrogate-based optimization
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3.2 Infill criteria  

The infill criterion is related to the determination of the new sample sites by solving sub-

optimization problem(s). Three infill criteria are discussed here: Searching Surrogate 

Model(s) (SSM), Expected Improvement (EI) and Lower-Bounding Confidence (LCB). 

3.2.1 Searching surrogate model(s) 

Provided that the initial surrogate models have been built, an optimizer such as GA can be 

used to find the optimum, which in turn can be employed to refine the surrogate models.  

The mathematical model of the sub-optimization for determining the new sample site is of 

the form   

 

ˆObjective    minimize  y( )

ˆ        s.t.    g ( ) 0, 1,

                  
i c

l u

i n≤ =

≤ ≤

x

x

x x x

 ,  (25) 

where ŷ( )x  and ĝ ( )i x  are surrogate models of y( )x  and  g ( )i x , respectively. With the 

optimal design variables optx̂  gained by the surrogate models in hand, one needs to run the 

expensive analysis code to compute the corresponding true function value and compare it 

with what predicted by the surrogate models. If the error between them is blow a threshold, 

the optimization process can be terminated; if not, the new sample point is augmented to the 

sampled data sets and the surrogate models are rebuilt; the process is repeated until the 

optimum solution is approached. 

This criterion applies for all the surrogate models and is very efficient for local exploitation 
of the promising region in the design space.  

3.2.2 Expected improvement  

Surrogate model such as Kriging provides not only an function prediction but also an 
estimation of the mean squared error (MSE). In fact, the prediction by a Kriging model, 
ˆ( )y x , at any point can be regarded as a Gaussian random variable with the mean given by 

the Kriging predictor, and the variance given by the mean squared error, ( )2s x (see section 

2.2.2). Viewed in this way, a probability can be computed that the function value at any 
untried x  would fall below the minimum among the sample points observed so far. Then 
Expected Improvement (EI) function (Jones et al 1998, Jeong et al. 2005) can be calculated to 
account for the improvement of the object function we expect to achieve at any untried x . 
The definition of EI is of the form 

 
min min

min

ˆ ˆ( ) ( )
ˆ ˆ ˆ( ( )) + ( )      if   > 0

ˆ ˆ[ ( )] ( ) ( )

ˆ0                                                                                 if   = 0

y y y y
y y s  s

E I s s

s 

φ
    − −

− Φ    
=     



x x
x x

x x x   (26)  

where ( )Φ   and ( )φ   are the cumulative distribution function and probability density 

function of a standard normal distribution, respectively. (1) (2) ( )
min ( , ,..., )ny Min y y y=  
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denotes the minimum of the observed data so far. The greater the EI, the more improvement 

we expect to achieve. The point with maximum EI is located by a global optimizer such as 

GA then observed by running the analysis code. For this infill criterion, the constraints can 

be accounted by introducing the probability that the constraints are satisfied. The 

corresponding sub-optimization problem can be modeled as 

 
1

Objective    maximize  [ ( )] [ ( ) 0]

         s.t.                    

cn

i
i

l u

E I P G
=

⋅ ≤

≤ ≤

∏x x

x x x

, (27) 

where [ ( ) 0]iP G ≤x  denotes the probability that i-th constraint may be satisfied and ( )iG x  is 

a random function corresponding to i-th state function ( )ig x . [ ( ) 0] 1iP G ≤ →x  when the 

constraint is satisfied and [ ( ) 0] 0iP G ≤ →x  when the constraint is violated. [ ( ) 0]iP G ≤x  can 

be calculated by  

 
2 20 ˆ ˆ[ ( ) ( )] /2 ( ) ˆ ( )1

[ ( ) 0] ( )
ˆˆ ( )( ) 2

i i iG g s i
i i

ii

g
P G e dG

ss π

− −

−∞

 −
≤ = = Φ 

 
 x x x x

x x
xx

  (28) 

where ( )ˆ xis  denotes the estimated standard error corresponding to the surrogate model 

( )ˆ xig .  

The optimum site optx̂  obtained by solving Eq. (27) is observed by running analysis code 

and the new sample point is added to the sampled date sets; the surrogate models are 

rebuilt and the whole process is repeated until the global optimum is approached. 

3.2.3 Lower-bounding confidence (LCB) 

The LCB function is defined as the weighted sum of predicted function value ˆ( )y x  and the 

standard error of the prediction ˆ( )s x . For an optimization problem of finding the minimum 

of the unknown function ( )y x , a simple expression for LCB function is of the form 

 ˆ ˆLCB= ( ) ( )y As−x x ,  (29) 

where A  is a constant which balances the influence of the predicted function and the 
corresponding uncertainty. Best practice suggests 1A =  works well for a number of realistic 
problems. The corresponding sub-optimization problem can be modeled as 

 

ˆ ˆObjective    minimize  ( ) ( )

ˆ         s.t.    ( ) 0, 1,

                   
i c

l u

y As

 g i n

−

≤ =

≤ ≤

x x

x

x x x

 , (30) 

The above optimization problem can be solved via a global optimizer such as GA. Since the 

point with smallest value of LCB indicates the possible minimum of the unknown function, 

the optimum site optx̂  is then observed and added to sampled data sets to refine the 

surrogate models. This procedure is performed iteratively until the global optimum is 

reached.  
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4. Examples for applications to aircraft design 

4.1 Airfoil design 

Using an in-house Navier-Stokes flow solver, the objective of the problem is to minimize the 

drag of an RAE2822 airfoil at the flow condition of  0.73Ma = , o=2.7α , 6Re 6.5 10= × , subject to 

3 constraints: 

 

0

0

0

    :      Minimize     

      .          :     (1) 0.99

                   :     (2) 0.99

                   :     (3) m

d

l l

m

Objective C

st Area

C

C C

Area

C

×

×

≤

≥

≥
, (31) 

where Area0 ,Cl0  , Cm0  are the area, lift coefficient, and moment coefficient of the baseline 
airfoil, respectively. The first constraint is in consideration of the structural design of the 
wing to guarantee the volume of the wing; the second one is to enforce a constant lift of the 
wing in order to balance the weight of the aircraft at cruise condition; the third one is to 
control the pitching moment of the airfoil to avoid large drag penalty of the horizontal tail 
paid for balancing the aircraft. 

The initial number of samples for Kriging is set to 20, selected by the Latin Hypercube 
Sampling (LHS).  The airfoil is parameterized by 10 Hicks-Henne bump functions (Hicks & 

Henne, 1978); and the maximum amplitude of each bump is max / 0.544%A c = . Both of the 
SSM and EI infill strategies are adopted in the surrogate refinement. Table 2 presents the 
optimization results of the two optimization method. The optimized and initial airfoils and 
the corresponding pressure coefficient distributions are compared in Figure 7. Note that the 
aerodynamic coefficients of the initial airfoil RAE2822 are set to 100. Obviously, the Kriging-
based optimization method gives better result, and with higher efficiency, and is more likely 
to find the global optimum. 
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Fig. 7. Aerodynamic shape optimization of a transonic airfoil (RAE 2822) via Kriging and 
quadratic Response Surface Model (left: pressure distribution; right: airfoil shape); by using 
Kriging model with Expected Improvement infill criteria, the drag is reduced by 33.6% with 
only 56 calling of Navier-Stokes flow solver. 
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dC  lC  

m
C  Area NS flow solver calls 

baseline 100 100 100 100 - 

RSM 73.0 
(-27.0%) 

101.1 
(+1.1%) 

99.3 
(-0.7%) 

99.9 
(-0.1%) 

102 

Kriging 70.7 
(-29.3%) 

101.1 
(+1.1%) 

96.5 
(-3.5%) 

100.4 
(+0.4%) 

57 

Table 2. Drag reduction of an RAE 2822 airfoil via Kriging and RSM-based optimizations 

4.2 Wing design 

Here we are concerned with the preliminary design for a high-subsonic transport-aircraft 
wing of a wing/body combination, considering aerodynamic, structure and static 
aeroelastic effect. The calculation of the external flow is carried out by numerical solutions of 
the full potential equation in conservative form (Kovalev & Karas, 1991). The FEM-based 
commercial software ANSYS is used for analyzing the structural performance of the wing 
with double-beams sandwich structure. Weak coupling method is adopted for static 
aeroelastic analysis. 

The optimization objectives are to maximize the aircraft lift-to-drag ratio and minimize the 
weight of wing for a fixed maximum take-off weight of 54 tons and cruise Mach number of 
0.76 at 10,000 meters high. The wing is composed of inner and outer wing. The reference 
area of wing is 105 square meter. The mathematical model for optimization is of the form 

 

wing

3

2
wing

9
max

max

max

min

s.t. 54 /10 kg

100 110 /m

/10 pa

1 /m
b

L D

W

L

S

σ σ

δ

≥

≤ ≤

≤

≤

 (32) 

Eight supercritical airfoils are configured along the span. The optimization is subject to 4 
constraints. The first constraint is to enforce a constant lift of the wing in order to balance 
the weight of the aircraft at cruise condition; the second one is to guarantee a near constant 
wing loading; the third and fourth constraints are to make sure that the strength and rigidity 
requirements are satisfied. The definition for the limits of design variables is listed in Table 
3. The first four design variables define the aerodynamic configuration of the wing. The four 
remain are for structure design. The detail can be found in paper by Zhang et al. (2008). 

The uniform design table, U100(108), is used to creates one hundred candidate wings for 
building surrogate models. The other forty-five candidate wings are created by the uniform 
design table, U45(108), for evaluating the approximation model. For each wing, the static 
aeroelastic analysis is performed to obtain the responses of lift (L), lift-to-drag ratio (L/D), 
wing area (Swing), maximum stress (σmax), maximum deformation (δmax) and wing weight 
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(Wwing). Then the average relative errors and the root mean squared errors are calculated to 
evaluate the approximation models, as listed in Table 4. In this case Kriging and RSM have 
comparative high accuracy.  

 

Design variable Unit Lower limit Upper limit 

Span m 26 34 

Taper ratio  0.2 0.4 

Linear twist angle degree -3 -1 

Sweep angle on leading edge degree 25 35 

Thickness of front-spar web mm 2 6 

Thickness of back-spar web mm 2 6 

Thickness of lower skin mm 3 7 

Thickness of Upper skin mm 3 7 

Table 3. Definition of design variables for preliminary design of a high-subsonic transport-
aircraft wing 

 

Parameter Surrogate 
model 

e  eσ  
Parameter Surrogate 

model 
e  eσ  

L RSM 0.0360 0.0213 σmax RSM 0.0563 0.0535 

Kriging 0.0362 0.0213 Kriging 0.0515 0.0522 

L/D RSM 0.0122 0.0099 δmax RSM 0.0227 0.0241 

Kriging 0.0123 0.0097 Kriging 0.0227 0.0241 

Swing RSM 0.0071 0.0051 Wwing RSM 0.0140 0.0104 

Kriging 0.0071 0.0051 Kriging 0.0142 0.0107 

Table 4. Evaluation of modeling accuracy 

Then the multi-objective optimization for the supercritical wing is performed based on RSM 
due to its higher computational efficiency. Weighted sum method is used to transform the 
multi-objective optimization into a single-objective optimization. Sequential quadratic 
programming method is employed to solve the optimization. One of the candidate wings 
with better performance, are selected as the initial point for optimization. The optimal 
design is observed by running the analysis codes and the results are listed in Table 5. Where 

0X  and 0Y  is the initial wing scheme and its response, respectively; *X  and *Y is the 

optimal wing scheme and its actual response, respectively; Ŷ is the response at *X  
calculated by the approximation models. For the optimal wing scheme, the largest relative 
error of approximation models is no more than 3 percent. It again proves the high accuracy 
of the approximation models.  

Figure 8 shows the contour of the equivalent stress of the optimal wing. It shows that the 
stress is larger in the location of intersection of inner wing and outer wing due to the 
inflexion. Figure 9 shows pressure distribution of the optimal wing. It shows that the wing 
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basically meets the design requirements of a supercritical wing. A little bit non-smoothness 
of the pressure distribution may be caused by non-uniform deformation of the skin. Figure 
10 shows the convergence history of aeroelastic deformation, which shows that fast 
convergence of the aeroelastic deformation of the optimal wing. 

The optimization , together with the aeroelastic analysis of all candidate wings, only takes 
about two days on a personal computer of Pentium(R) 4 CPU 2.8GHz. If more computers 
are used to concurrently calculate the performance of different candidate wings, the cost can 
be further greatly reduced.  

 

 B/m λ θ/(o) Λ/(o) TFS/mm TBS/mm TLS/mm TUS/mm 

X 0 34.00 0.244 -1.667 29.444 3.333 3.778 6.556 3.889 

X * 31.69 0.200 -1.563 28.233 2.232 2.000 4.396 4.057 

 L/103kg L/D Swing/m2 σmax/109pa δmax /m
Wwing 

/103kg 
  

0Y  51.50 27.81 111.94 0.311 1.191 3.850   

Y * 53.14 27.40 107.25 0.275 0.991 3.063   

Ŷ  54.00 27.45 106.27 0.267 1.000 3.003   

Modeling error 1.61% 0.16% 0.91% 2.97% 0.87% 1.85%   

Table 5. Optimization results when considering the aeroelastic effect 

 

 
 

Fig. 8. Contour of equivalent stress of the optimal wing 
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Fig. 9. Pressure distribution of the optimal wing (Ma=0.76, Re=0.257E+08, α=0o) 
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Fig. 10. Convergence history of Y-direction deform and torsion deform on wing tip 
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5. Conclusion 

An overview of the existing surrogate models and the techniques about how to use them for 

optimization is presented in this chapter. Among the surrogate models, the regression 

model such as the quadratic response surface model (RSM) is well suited for a local 

optimization problem with relatively simpler design space; interpolation models such as 

Kriging or RBFs can be used for highly-nonlinear, multi-modal functions, and thus well 

suited for a global problem with relatively more complicated design space. From an 

application point of view, the simple framework of surrogate-based optimization is a good 

choice for an engineer design, due to the fact that surrogate model can act as an interface 

between the expensive analysis code and the optimizer and one doesn’t need to change the 

analysis code itself. The drawback of this framework is that the accuracy of optimum only 

depends on the approximation accuracy of surrogate model and we generally get an 

approximation to the true optimum. In contrast, the bi-level framework with different infill 

criteria provides an efficient way to quickly find true optimum without the need of building 

globally accurate surrogate models. Multiple infill criteria seem to be a better way to 

overcome the drawback of the single infill criterion. 

Examples for airfoil and wing designs show that surrogate-based optimization is very 

promising for aerodynamic problem with number of design variables being less than about 

10. For higher-dimensional problem, the computational cost increases very quickly, which 

can be prohibitive. Thus, use of surrogate model for high(er)-dimensional optimization 

problems would become an important issue of future work.   
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