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1. Introduction 

Reliability engineering is known to have been first applied to communication and 
transportation systems in the late 1940's and early 1950's. Reliability is the probability that an 
item will perform a required function without failure under stated conditions for a stated 
period of time. Therefore a system with high reliability can be likened to a system which has a 
superior quality. Reliability is one of the most important design factors in the successful and 
effective operation of complex technological systems. As explained by Tzafestas (1980), one of 
the essential steps in the design of multiple component systems is the problem of using the 
available resources in the most effective way so as to maximize the system reliability, or so as 
to minimize the consumption of resources while achieving specific reliability goals. The 
improvement of system reliability can be accomplished using the following methods: 
reduction of the system complexity, the allocation highly reliable components, and the 
allocation of component redundancy alone or combined with high component reliability, and 
the practice of a planned maintenance and repair schedule. This study deals with reliability 
optimization that maximizes the system reliability subject to resource constraints. 

This study suggests mathematical programming models and a hybrid parallel genetic 
algorithm (HPGA). The suggested algorithm includes different heuristics such as swap, 2-
opt, and interchange (except for reliability allocation problem with component choices 
(RAPCC)) for an improvement solution. The component structure, reliability, cost, and 
weight were computed by using HPGA and the experimental results of HPGA were 
compared with the results of existing meta-heuristics and CPLEX. 

2. Literature review 

The goal of reliability optimization is to maximize the reliability of a system considering 
some constraints such as cost, weight, and so on. In general, reliability optimization divides 
into two categories: the reliability-redundancy allocation problem (RRAP) and the reliability 
allocation problem with component choices (RAPCC). 

2.1 The reliability-redundancy allocation problem (RRAP) 

The RRAP is the determination of both optimal component reliability and the number of 
component redundancy allowing mixed components to maximize the system reliability 
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under cost and weight constraints. It is known as the NP-hard problem suggested by Chern 
(1992). 

A variety of algorithms, as summarized in Tillman et al. (1977), and more recently by Kuo & 
Prasad (2000), Kuo & Wan (2007), including exact methods, heuristics and meta-heuristics 
have already been proposed for the RRAP. An exact optimal solution is obtained by exact 
methods such as cutting plane method (Tillman, 1969), branch-and-bound algorithm (Chern 
& Jan, 1986; Ghare & Taylor, 1969), dynamic programming (Bellman & Dreyfus, 1958; Fyffe 
et al., 1968; Nakagawa & Miyazaki, 1981; Yalaoui et al., 2005), and goal programming (Gen 
et al., 1989). However, as the size of problem gets larger, such methods are difficult to apply 
to get a solution and require more computational effort. Therefore, heuristics and meta-
heuristics are used to find a near-optimal solution in recent research. 

The research using heuristics is as follows. Kuo et al. (1987) present a heuristic method 
based on a branch-and-bound strategy and lagrangian multipliers. Jianping (1996) has 
developed a method called a bounded heuristic method. You & Chen (2005) proposed an 
efficient heuristic method. Meta-heuristics such as genetic algorithm (Coit & Smith, 1996; 
Ida et al., 1994; Painton & Campbell, 1995), tabu search (Kulturel-Konak et al., 2003), ant 
colony optimization (Liang & Smith, 2004), and immune algorithm (Chen & You, 2005) have 
been introduced to solve the RRAP. 

2.2 The reliability allocation problem with component choices (RAPCC) 

The RAPCC is the determination of optimal component reliability to maximize the system 

reliability under cost constraint. A problem is formulated as a binary integer programming 

model with a nonlinear objective function (Ait-Kadi & Nourelfath, 2001), which is 

equivalent to a knapsack problem with multiple-choice constraint, so that it is the NP-hard 

problem (Garey & Johnson, 1979). Some algorithms for such knapsack problems with 

multiple-choice constraint have been suggested in the literature (Nauss, 1978; Sinha & 

Zoltners, 1979; Sung & Lee, 1994). 

A variety of algorithms including exact methods, heuristics, and meta-heuristics have 

already been proposed for the RAPCC. An exact optimal solution is obtained by branch-

and-bound algorithm (Djerdjour & Rekab, 2001; Sung & Cho, 1999). Meta-heuristics such as 

neural network (Nourelfath & Nahas, 2003), simulated annealing (Kim et al., 2004; Kim et 

al., 2008), tabu search (Kim et al., 2008), and ant colony optimization (Nahas & Nourelfath, 

2005) have been introduced to solve the RAPCC. Also, Kim et al. (2008) solved the large-

scale examples by using a reoptimization procedure with tabu search and simulated 

annealing. 

3. Mathematical programming models 

Notations and decision variables in the mathematical programming model are as follows. 

n : the number of subsystems 

m : the number of components 

i : index for subsystems ( 1,2, ,i n=  ) 

j : index for components ( 1,2, ,j m=  ) 
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SR : system reliability 

iR : reliability of subsystem i  

SC : system-level constraint limits for cost 

SW : system-level constraint limits for weight 

ijr : reliability of component j  available for subsystem i  

ijc : cost of component j  available for subsystem i  

ijw : weight of component j  available for subsystem i  

iu : maximum number of components used in subsystem i  

ijx : quantity of component j  used in subsystem i    (for RRAP) 

( )
1, if component usedinsubsystem

for RAPCC
0, otherwise


= 


ij

j i
x  

3.1 Reliability-redundancy allocation problem (RRAP) 

This study deals with the reliability-redundancy allocation problem in a series-parallel 
system as shown in Fig. 1. 

 

Fig. 1. Series-parallel system 

The relationship between the system reliability ( SR ) and the reliability of subsystem i  ( iR ), 

in a series system, is shown in Eq. (1). 

 
1

n

S i
i

R R
=

= ∏  (1) 

The relationship between the reliability of subsystem i  ( iR ) and the reliability of 

component j  available for subsystem i  ( ijr ), in a parallel system, is shown in Eq. (2). 

 
1

1 1
ij

m x

i ij
j

R r
=

 = − − ∏  (2) 
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Using Eqs. (1) and (2), the mathematical programming model of the RRAP in a series-
parallel system is as follows. 

 Maximize   
1 1 1

1 1
ijxn n m

S i ij
i i j

R R r
= = =

   = = − −  
  

∏ ∏ ∏  (3) 

 Subject to   
1 1

n m

ij ij S
i j

c x C
= =

⋅ ≤  (4) 

 
1 1

n m

ij ij S
i j

w x W
= =

⋅ ≤  (5) 

   
1

1
m

ij i
j

x u
=

≤ ≤ , 1,2, ,i n=   (6) 

 0ijx ≥ , 1,2, ,i n=  , 1,2, ,j m=  , Integer (7) 

The objective function is to maximize the system reliability in a series-parallel system. Eqs. 
(4) and (5) show the resource constraints with cost and weight. Eq. (6) shows the maximum 
and minimum number of components that can be used for each subsystem. Eq. (7) shows 
the integer decision variables. 

3.2 Reliability allocation problem with component choices (RAPCC) 

As shown in Fig. 2, a series system consisting of n subsystems where each subsystem has 

several component alternatives which can perform same functions with different 

characteristics is considered in this study. The problem is proposed to select the optimal 

combination of component alternatives to maximize the system reliability given the cost. 

Only one component will be adopted for each subsystem. 

 

Fig. 2. Series system 

Using Eq. (1), the mathematical programming model of the RAPCC in a series system is as 
follows. 

 Maximize   
11

n m

S ij ij
ji

R r x
==

 
 = ⋅
 
 
∏  (8) 

 Subject to   
1 1

n m

ij ij S
i j

c x C
= =

⋅ ≤  (9) 
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1

1
m

ij
j

x
=

= , 1,2, ,i n=   (10) 

 { }0,1ijx = , 1,2, ,i n=  , 1,2, ,j m=   (11) 

The objective function is to maximize the system reliability in a series system. Eq. (9) shows 
the cost constraint, Eq. (10) represents the multiple-choice constraint which is that the 
problem prohibits component redundancy, and Eq. (11) defines the decision variables. 

4. Hybrid parallel genetic algorithm 

The genetic algorithm is a stochastic search method based on the natural selection, 
reproduction, and evolution theory proposed by Holland (1975). The parallel genetic 
algorithm paratactically evolves by operating several sub-populations. This study suggests a 
hybrid parallel genetic algorithm for reliability optimization with resource constraints. The 
suggested algorithm includes different heuristics such as swap, 2-opt, and interchange 
(except for RAPCC) for an improvement solution. The suggested process of a hybrid parallel 
genetic algorithm is shown in Fig. 3. 

4.1 Gene representation 

The gene representation has to reflect the properties of the system structure. The suggested 
algorithm for the RRAP represents a gene by one string as shown in Table 1. 
 

Subsystem(Component Alternatives) 1(4) 2(3) 3(4) 

Redundancy & Component 2 1 1 0 1 0 2 0 1 3 0 

Table 1. Gene representation (RRAP) 

The subsystem in Table 1 indicate the nominal number of subsystem. However, it is not 
necessary for this number to be one for the composition of a substantial objective function. 
The “Redundancy & Component” row represents the number of components available for 
each subsystem. For example, as shown Table 1, subsystem 1 consists of two components of 
C1, one component of C2, one component of C3. Table 1 can be expressed as shown in Fig. 4. 

The suggested algorithm for the RAPCC represents a gene by one string as shown in Table 2. 

The subsystem in Table 2 indicates the nominal number of subsystems. However, it is not 
necessary for the composition of a substantial objective function. The “Component” row 
represents the available component number for each subsystem. For example, as shown 
Table 2, a series system uses component No.3 in subsystem 1, component No.2 in subsystem 
2, …, and component No.5 in subsystem 6. 

4.2 Population 

The population of a parallel genetic algorithm consists of an initial population and several 
sub-populations. The initial population is usually generated by the random and the heuristic 
generation method. The heuristic generation method tends to interrupt global search. 

www.intechopen.com



 
Real-World Applications of Genetic Algorithms 

 

132 

Therefore, the initial population is generated by the random generation method in this 
study. The initial population is composed 500 individuals with 100 individuals allocated for 
each sub-population. 

 

Fig. 3. Hybrid parallel genetic algorithm 

 

Fig. 4. System structure of Table 1 
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Subsystem 1 2 3 4 5 6 

Component 3 2 4 1 3 5 

Table 2. Gene representation (RAPCC) 

4.3 Fitness 

The fitness function to evaluate the solutions is commonly obtained from the objective 
function. Penalty functions were used for infeasible solutions by the random generation 
method in this study. Eqs. (12) and (13) show cost and weight penalty functions, respectively. 

 

1, total cost

1
, otherwise

cos

≤


= 



s

C

C

P

total t

 (12) 

 

1, total weight

1
, otherwise

≤


= 



s

W

W

P

total weight

 (13) 

The multiplication of system reliability and penalty functions related to its cost and weight 

(except for RAPCC) were used to calculate the fitness of the solutions in the suggested 

algorithm as shown in Eq. (14). 

 S C Wfitness R P P= ⋅ ⋅  (14) 

4.4 Selection 

The selection method to choose the pairs of parents is applied by the roulette wheel method 

in the suggested algorithm. The roulette wheel method is one of the most common 

proportionate selection schemes. In this scheme, the probability to select an individual is 

proportional to its fitness. It is also stochastically possible for infeasible solutions to survive. 

The suggested algorithm applies the elitism strategy for the survival of an optimum solution 

by generation in order to avoid the disappearance of an excellent solution. 

4.5 Crossover 

The crossover is the main genetic operator. It operates on two individuals at a time and 

generates offspring by combining both individuals' features. The crossover operator applies 

a uniform crossover in the suggested algorithm as shown in Fig. 5. The steps of the uniform 

crossover are as follows. 

Step 1. Random numbers were generated for individuals and the individual for crossover 
was selected by comparing the crossover rate for each individual. 

Step 2. The selected individuals were mated between themselves. 
Step 3. For each bit of the mated individuals was generated a random number of either 0 or 1. 
Step 4. The two offspring bits were generated through a crossover of the two parents' bits 

when the random number associated with those bits was 1. 
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Fig. 5. Uniform crossover 

4.6 Mutation 

The mutation is a background operator which produces spontaneous random changes in 

various individuals. The mutation operator applies the uniform mutation in the suggested 

algorithm as shown in Fig. 6. The steps of the uniform mutation are as follows. 

Step 1. The mutation bits were selected by comparing a random number with the mutation 
rate after Generating a random number between 0~1 for all individual bits. 

Step 2. The value of the selected bits were substituted with a new value between 0 and the 
maximum number of components in each subsystem. 

 

 

Fig. 6. Uniform mutation 

4.7 Migration 

The migration is an exchange operator to change useful information between neighbor sub-

populations. Periodically, each sub-population sends its best individuals to its neighbors. 

When dealing with the migration, the main issues to be considered are migration 

parameters such as neighborhood structure, the individuals’ selection for exchanging, sub-

population size, migration period, and migration rate. In the suggested algorithm, the 

neighborhood structure uses a ring topology as shown in Fig. 7 and the individuals’ 

selection for exchanging is determined by the application of the fitness function. Other 

migration parameters are shown in Table 3. 
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Fig. 7. Neighborhood structure (ring topology) 

 

Migration parameter Sub-population size Migration period Migration rate 

Value 100 50 0.2 

Table 3. Migration parameters 

4.8 Genetic parameters 

The genetic parameters include the population size, crossover rate (Pc), mutation rate (Pm), 

and the number of generations. It is hard to find the best parametric values, so the following 

parameters were obtained by repeated experiments. The genetic parameters are shown in 

Table 4. 

 

Genetic 
parameter 

Population 
size 

Crossover 
rate(Pc) 

Mutation 
rate(Pm) 

The number of 
generations 

Value 500 0.8 0.02 1,000~3,000 

Table 4. Genetic parameters 

4.9 Improvement solution 

The suggested algorithm includes different heuristics such as swap, 2-opt, and interchange 

(except for RAPCC) for improvement of the solution. The swap heuristic was used to 

exchange each bit which selected two solutions among the five solutions generated by the 

parallel genetic algorithm. After applying the swap heuristic, a solution of the parallel 

genetic algorithm was selected by using best fitness. In a selected solution, the 2-opt 

heuristic performed the exchanging of two bits to enable improvement. The interchange 

heuristic was applied to each subsystem to exchanging sequences of bits. Finally, a solution 

of a hybrid parallel genetic algorithm was produced using best fitness after the application 

of the interchange heuristic. 

5. Numerical experiments 

5.1 The reliability-redundancy allocation problem (RRAP) 

In order to evaluate the performance of the suggested algorithm for the integer nonlinear 

RRAP, this study performed experiments on 33 variations of Fyffe et. al. (1968), as suggested 

by Nakagawa & Miyazaki (1981). In this problem, the series–parallel system is connected by 
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14 parallel subsystems and each has three or four components of choice. The objective is to 

maximize the reliability of the series–parallel system subject to the cost constraint of 130 and 

weight constraint ranging from 159 to 190. The maximum number of components is 6 in 

each subsystem. The component data for testing problems are listed in Table 5. 

 

Subsystem 
No. 

Component choices 

Choice 1 Choice 2 Choice 3 Choice 4 

R C W R C W R C W R C W 

1 0.90 1 3 0.93 1 4 0.91 2 2 0.95 2 5 

2 0.95 2 8 0.94 1 10 0.93 1 9 ＊ ＊ ＊ 

3 0.85 2 7 0.90 3 5 0.87 1 6 0.92 4 4 

4 0.83 3 5 0.87 4 6 0.85 5 4 ＊ ＊ ＊ 

5 0.94 2 4 0.93 2 3 0.95 3 5 ＊ ＊ ＊ 

6 0.99 3 5 0.98 3 4 0.97 2 5 0.96 2 4 

7 0.91 4 7 0.92 4 8 0.94 5 9 ＊ ＊ ＊ 

8 0.81 3 4 0.90 5 7 0.91 6 6 ＊ ＊ ＊ 

9 0.97 2 8 0.99 3 9 0.96 4 7 0.91 3 8 

10 0.83 4 6 0.85 4 5 0.90 5 6 ＊ ＊ ＊ 

11 0.94 3 5 0.95 4 6 0.96 5 6 ＊ ＊ ＊ 

12 0.79 2 4 0.82 3 5 0.85 4 6 0.90 5 7 

13 0.98 2 5 0.99 3 5 0.97 2 6 ＊ ＊ ＊ 

14 0.90 4 6 0.92 4 7 0.95 5 6 0.99 6 9 

Table 5. Component data for testing problems 

To use CPLEX, this study performed additional steps for transforming the integer nonlinear 
RRAP into an equivalent binary knapsack problem(Bae et al., 2007; Coit, 2003) as shown in 
Eqs. (15) to (21). 

 Maximize   
1 1

11 0

ln
i i

i im i im

i im

u un

S ix x ix x
i x x

R r y
= =

= ⋅      (15) 

 Subject to   
1

11 0 1

i i

i im

i im

u un m

ij ij ix x S
i x x j

x c y C
= = =

 
 ⋅ ⋅ ≤
 
 

      (16) 

 
1

11 0 1

i i

i im

i im

u un m

ij ij ix x S
i x x j

x w y W
= = =

 
 ⋅ ⋅ ≤
 
 

      (17) 
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1

1 0

1
i i

i im

i im

u u

ix x
x x

y
=

=   , 1,2, ,i n=   (18) 

 
1

1
m

ij i
j

x u
=

≤ ≤ , 1,2, ,i n=   (19) 

 0ijx ≥ , 1,2, ,i n=  , 1,2, ,j m=  , Integer (20) 

 
1

1, if of the th component are used for subsystem 

0, otherwisei im

ij
ix x

x j i
y


= 


  (21) 

 where, ( )1 2

1 1 2ln 1 i i im

i im

x x x
ix x i i imr q q q= −  , ( )1 imim

xx
imimq r= − , 1,2, ,i n=   

The experimental results including component structure, reliability, cost, and weight by 
using a hybrid parallel genetic algorithm are shown in Table 6. 
 

No. W Components structure Reliability Cost Weight 

1 191 333, 11, 444, 3333, 222, 22, 111, 1111, 12, 233, 33, 1111, 11, 34 0.9868110 130 191 

2 190 333, 11, 444, 3333, 222, 22, 111, 1111, 11, 233, 33, 1111, 12, 34 0.9864161 130 190 

3 189 333, 11, 444, 3333, 222, 22, 111, 1111, 23, 233, 13, 1111, 11, 34 0.9859217 130 189 

4 188 333, 11, 444, 3333, 222, 22, 111, 1111, 23, 223, 13, 1111, 12, 34 0.9853782 130 188 

5 187 333, 11, 444, 3333, 222, 22, 111, 1111, 13, 223, 13, 1111, 22, 34 0.9846881 130 187 

6 186 333, 11, 444, 333, 222, 22, 111, 1111, 23, 233, 33, 1111, 22, 34 0.9841755 129 186 

7 185 333, 11, 444, 3333, 222, 22, 111, 1111, 23, 223, 13, 1111, 22, 33 0.9835049 130 185 

8 184 333, 11, 444, 333, 222, 22, 111, 1111, 33, 233, 33, 1111, 22, 34 0.9829940 130 184 

9 183 333, 11, 444, 333, 222, 22, 111, 1111, 33, 223, 33, 1111, 22, 34 0.9822557 129 183 

10 182 333, 11, 444, 333, 222, 22, 111, 1111, 33, 333, 33, 1111, 22, 33 0.9815183 130 182 

11 181 333, 11, 444, 333, 222, 22, 111, 1111, 33, 233, 33, 1111, 22, 33 0.9810271 129 181 

12 180 333, 11, 444, 333, 222, 22, 111, 1111, 33, 223, 33, 1111, 22, 33 0.9802902 128 180 

13 179 333, 11, 444, 333, 222, 22, 111, 1111, 33, 223, 13, 1111, 22, 33 0.9795047 126 179 

14 178 333, 11, 444, 333, 222, 22, 111, 1111, 33, 222, 13, 1111, 22, 33 0.9784003 125 178 

15 177 333, 11, 444, 333, 222, 22, 111, 113, 33, 223, 13, 1111, 22, 33 0.9775953 126 177 

16 176 333, 11, 444, 333, 222, 22, 33, 1111, 33, 223, 13, 1111, 22, 33 0.9766905 124 176 

17 175 333, 11, 444, 333, 222, 22, 13, 1111, 33, 223, 33, 1111, 22, 33 0.9757079 125 175 

18 174 333, 11, 444, 333, 222, 22, 13, 1111, 33, 223, 13, 1111, 22, 33 0.9749261 123 174 

19 173 333, 11, 444, 333, 222, 22, 13, 1111, 33, 222, 13, 1111, 22, 33 0.9738268 122 173 

20 172 333, 11, 444, 333, 222, 22, 13, 113, 33, 223, 13, 1111, 22, 33 0.9730266 123 172 

21 171 333, 11, 444, 333, 222, 22, 13, 113, 33, 222, 13, 1111, 22, 33 0.9719295 122 171 

22 170 333, 11, 444, 333, 222, 22, 13, 113, 33, 222, 11, 1111, 22, 33 0.9707604 120 170 

23 169 333, 11, 444, 333, 222, 22, 11, 113, 33, 222, 13, 1111, 22, 33 0.9692910 121 169 

24 168 333, 11, 444, 333, 222, 22, 11, 113, 33, 222, 11, 1111, 22, 33 0.9681251 119 168 

25 167 333, 11, 444, 333, 22, 22, 13, 113, 33, 222, 11, 1111, 22, 33 0.9663351 118 167 

26 166 333, 11, 44, 333, 222, 22, 13, 113, 33, 222, 11, 1111, 22, 33 0.9650416 116 166 
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27 165 333, 11, 444, 333, 22, 22, 11, 113, 33, 222, 11, 1111, 22, 33 0.9637118 117 165 

28 164 333, 11, 44, 333, 222, 22, 11, 113, 33, 222, 11, 1111, 22, 33 0.9624219 115 164 

29 163 333, 11, 44, 333, 22, 22, 13, 113, 33, 222, 11, 1111, 22, 33 0.9606424 114 163 

30 162 333, 11, 44, 333, 22, 22, 11, 113, 33, 222, 13, 1111, 22, 33 0.9591884 115 162 

31 161 333, 11, 44, 333, 22, 22, 11, 113, 33, 222, 11, 1111, 22, 33 0.9580346 113 161 

32 160 333, 11, 44, 333, 22, 22, 11, 111, 33, 222, 13, 1111, 22, 33 0.9557144 112 160 

33 159 333, 11, 44, 333, 22, 22, 11, 111, 33, 222, 11, 1111, 22, 33 0.9545648 110 159 

Table 6. Experimental results by using HPGA (C=130) 

The experimental results compared to the results of CPLEX and existing meta-heuristics, 
such as GA (Coit & Smith, 1996), TS (Kulturel-Konak et al., 2003), ACO (Liang & Smith, 
2004), and IA (Chen & You, 2005) are shown in Table 6. The comparison of CPLEX, meta-
heuristics, and the suggested algorithm is shown in Table 7. 

The suggested algorithm in all problems showed the optimal solution 6~9 times out 0f 10 
runs and obtained same or superior solutions compared to the meta-heuristics. Of the 
results in Table 7, when compared with the meta-heuristics, 25 solutions are superior to GA, 
7 solutions are superior to TS and ACO, and 9 solutions are superior to IA, respectively. The 
other solutions are the same. The suggested algorithm could paratactically evolve by 
operating several sub-populations and improve on the solution through swap, 2-opt, and 
interchange heuristics. 

 

No. W 

Reliability Number 
of 

optimal 
by HPGA 
(10 runs) 

CPLEX GA TS ACO IA 
HPGA 
(This 

study) 

1 191 0.9868110 0.9867 0.986811 0.9868 0.9868110 0.9868110 8 / 10 

2 190 0.9864161 0.9857 0.986416 0.9859 0.9864161 0.9864161 7 / 10 

3 189 0.9859217 0.9856 0.985922 0.9858 0.9859217 0.9859217 9 / 10 

4 188 0.9853782 0.9850 0.985378 0.9853 0.9853297 0.9853782 8 / 10 

5 187 0.9846881 0.9844 0.984688 0.9847 0.9844495 0.9846881 8 / 10 

6 186 0.9841755 0.9836 0.984176 0.9838 0.9841755 0.9841755 9 / 10 

7 185 0.9835049 0.9831 0.983505 0.9835 0.9834363 0.9835049 8 / 10 

8 184 0.9829940 0.9823 0.982994 0.9830 0.9826980 0.9829940 9 / 10 

9 183 0.9822557 0.9819 0.982256 0.9822 0.9822062 0.9822557 7 / 10 

10 182 0.9815183 0.9811 0.981518 0.9815 0.9815183 0.9815183 9 / 10 

11 181 0.9810271 0.9802 0.981027 0.9807 0.9810271 0.9810271 8 / 10 

12 180 0.9802902 0.9797 0.980290 0.9803 0.9802902 0.9802902 9 / 10 

13 179 0.9795047 0.9791 0.979505 0.9795 0.9795047 0.9795047 9 / 10 

14 178 0.9784003 0.9783 0.978400 0.9784 0.9782085 0.9784003 7 / 10 

15 177 0.9775953 0.9772 0.977474 0.9776 0.9772429 0.9775953 8 / 10 

www.intechopen.com



 
A Hybrid Parallel Genetic Algorithm for Reliability Optimization 

 

139 

16 176 0.9766905 0.9764 0.976690 0.9765 0.9766905 0.9766905 7 / 10 

17 175 0.9757079 0.9753 0.975708 0.9757 0.9757079 0.9757079 9 / 10 

18 174 0.9749261 0.9744 0.974788 0.9749 0.9746901 0.9749261 6 / 10 

19 173 0.9738268 0.9738 0.973827 0.9738 0.9737580 0.9738268 8 / 10 

20 172 0.9730266 0.9727 0.973027 0.9730 0.9730266 0.9730266 9 / 10 

21 171 0.9719295 0.9719 0.971929 0.9719 0.9719295 0.9719295 7 / 10 

22 170 0.9707604 0.9708 0.970760 0.9708 0.9707604 0.9707604 9 / 10 

23 169 0.9692910 0.9692 0.969291 0.9693 0.9692910 0.9692910 8 / 10 

24 168 0.9681251 0.9681 0.968125 0.9681 0.9681251 0.9681251 8 / 10 

25 167 0.9663351 0.9663 0.966335 0.9663 0.9663351 0.9663351 8 / 10 

26 166 0.9650416 0.9650 0.965042 0.9650 0.9650416 0.9650416 9 / 10 

27 165 0.9637118 0.9637 0.963712 0.9637 0.9637118 0.9637118 7 / 10 

28 164 0.9624219 0.9624 0.962422 0.9624 0.9624219 0.9624219 7 / 10 

29 163 0.9606424 0.9606 0.959980 0.9606 0.9606424 0.9606424 8 / 10 

30 162 0.9591884 0.9591 0.958205 0.9592 0.9591884 0.9591884 6 / 10 

31 161 0.9580346 0.9580 0.956922 0.9580 0.9580346 0.9580346 7 / 10 

32 160 0.9557144 0.9557 0.955604 0.9557 0.9557144 0.9557144 6 / 10 

33 159 0.9545648 0.9546 0.954325 0.9546 0.9545648 0.9545648 8 / 10 

Table 7. Comparison of CPLEX, meta-heuristics and HPGA (C=130) 

In order to calculate the improvement of reliability for existing studies and the suggested 

algorithm, a maximum possible improvement (MPI) was obtained by Eqs. from (22) to (25) 

and is shown in Fig. 8. 

 

 1( ) 100
1

HPGA GA

GA

R R
L GA

R

−
= ×

−
 (22) 

 2( ) 100
1

HPGA TS

TS

R R
L TS

R

−
= ×

−
 (23) 

 3( ) 100
1

HPGA ACO

ACO

R R
L ACO

R

−
= ×

−
 (24) 

 4( ) 100
1

HPGA IA

IA

R R
L IA

R

−
= ×

−
 (25) 

1( )L GA : MPI(%) of GA results 

2( )L TS : MPI(%) of TS results 

3( )L ACO : MPI(%) of ACO results 
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4( )L IA : MPI(%) of IA results 

HPGAR : system reliability by HPGA 

GAR : system reliability by GA 

TSR : system reliability by TS 

ACOR : system reliability by ACO 

IAR : system reliability by IA 

 

Fig. 8. MPI 

The suggested algorithm improved system reliability better than existing studies except for 
TS in the 1st~20th test problems in which the weight was heavy. In addition, HPGA found 
superior system reliability compared to TS in the 29th~32th test problems in which the 
weight was light. The other solutions are almost the same. 

Through the experiment, this study found that the performance of HPGA is superior to the 
existing meta-heuristics. In order to evaluate the performance of HPGA in large-scale 
problems, 5 more problems are presented through connecting the system data of testing 
problem 1 (C=190, W=191) in series systems. The large-scale problems consist of 28 
subsystems (C=260, W=382), 42 subsystems (C=390, W=573), 56 subsystems (C=520, 
W=764), 70 subsystems (C=650, W=955) in series systems. After 10 runs using HPGA, the 
results compared with the optimal solution by CPLEX are shown in Table 8. 
 

No. 
Number of 
subsystems 

C W CPLEX 
HPGA (10 runs) 

Max S.D. Number of optimal 

1 14 130 191 0.9868110 0.9868110 0.000021 8 / 10 

2 28 260 382 0.9740720 0.9740720 0.000147 6 / 10 

3 42 390 573 0.9612374 0.9612374 0.000564 4 / 10 

4 56 520 764 0.9488162 0.9488162 0.001095 1 / 10 

5 70 650 955 0.9370413 0.9370413 0.001732 1 / 10 

Table 8. Experimental results of the large-scale problems 
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The suggested algorithm presented optimal solutions in all large-scale problems. For the 
experimental results of large-scale problems 1~4, the suggested algorithm showed the 
optimal solutions 4~8 times out of 10 runs. The optimal solution to large-scale problem 5 
was obtained by HPGA in 1 out of 10 runs. 

5.2 The reliability allocation problem with component choices (RAPCC) 

In order to evaluate the performance of the suggested algorithm for the reliability allocation 

problem with multiple-choice, this study performed experiments by using the Nahas & 

Nourelfath (2005) and the Kim et al. (2008) examples in series. The Nahas & Nourelfath 

(2005) examples consist of four examples: examples 1, 2, and 3 consist of 15 subsystems with 

60, 80, and 100 components, respectively, and example 4 consists of 25 subsystems with 166 

components. The budgets are $1,000, $900, $1,000, and $1,400, respectively. Examples by the 

Kim et al. (2008) consist of two large-scale examples (examples 5 and 6). Large-scale 

examples are presented through connecting the system data of example 4. Examples 5 and 6 

consist of 100 and 200 subsystems with budgets of $7,200~$7,650 and $14,400~$15,100, 

respectively. 

To use CPLEX, this study performed an additional step for transforming the nonlinear 

objective function into the linear function as shown in Eq. (26). 

 Maximize  
1 1 11

ln ln ln
n m n m

S ij ij ij ij
j i ji

R r x x r
= = ==

    = ⋅ = ⋅     
 ∏  (26) 

The experimental results of examples 1~4 including component structure, reliability, and 
cost by using CPLEX and a hybrid parallel genetic algorithm are shown in Table 9. 

 

No. 
Number of 
subsystems 

Number of 
components 

budget 
CPLEX HPGA 

Reliability Component structure Reliability Cost 

1 15 60 1,000 0.857054 
3-4-5-2-3-3-2-3- 

2-2-2-3-4-3-2 
0.857054 990 

2 15 80 900 0.915042 
3-3-3-4-2-3-3-2- 

4-1-2-3-4-3-1 
0.915042 900 

3 15 100 1,000 0.965134 
3-3-4-4-3-3-2-2- 

3-2-2-4-4-4-2 
0.965134 995 

4 25 166 1,400 0.865439 

3-3-3-5-2-3-2-2-3-1-2-3-4- 
4-1-2-3-3-4-2-3-2-2-3-1 

0.865439 1,395 

3-3-3-5-2-3-2-2-3-1-2-3-4- 
3-1-3-3-3-4-2-3-2-2-3-1 

0.865439 1,395 

2-3-3-4-2-3-2-2-3-1-2-3-3- 
4-1-3-3-3-5-3-3-2-2-3-1 

0.865439 1,400 

Table 9. Experimental results of examples 1~4 by using CPLEX and HPGA 

As found in Table 9, the suggested algorithm presented the optimal solutions in examples 14 

and obtained a new optimal solution (3-3-3-5-2-3-2-2-3-1-2-3-4-3-1-3-3-3-4-2-3-2-2-3-1) in 

example 4. 
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After 10 runs using HPGA in examples 14, the experimental results including maximum, 
average and standard deviation values were compared with existing meta-heuristics such as 
ACO (Nahas & Nourelfath, 2005), SA (Kim et al., 2004), and TS (Kim et al., 2008). The 
comparison of meta-heuristics and the suggested algorithm is shown in Table 10. 
 

No. 
ACO SA TS 

HPGA 
(This study) 

Max Ave. S.D. Max Ave. S.D. Max Ave. S.D. Max Ave. S.D. 

1 0.85705 0.85705 0 0.85705 0.85705 0 0.857054 0.857054 0 0.857054 0.857054 0 

2 0.91504 0.91504 0 0.91504 0.91504 0 0.915042 0.915042 0 0.915042 0.915042 0 

3 0.96512 0.96439 0.00050 0.96513 0.96503 0.00033 0.965134 0.965134 0 0.965134 0.965134 0 

4 0.86543 0.86491 0.00038 0.86543 0.86536 0.00025 0.865439 0.865439 0 0.865439 0.865439 0 

Table 10. Experimental results of examples 1~4 by using CPLEX and HPGA 

The suggested algorithm in examples 14 generated the optimal solutions without standard 
deviation and showed the same or superior solution compared to meta-heuristics. 

In order to evaluate the performance of HPGA in large-scale problems, this study performed 
experiments by using examples in series as suggested by the Kim et al. (2008). After 10 runs 
using CPLEX and HPGA in examples 5 and 6, experimental results including maximum, 
standard deviation values, and maximum possible improvement (MPI) compared with 
existing meta-heuristics such as simulated annealing, tabu search, and reoptimization 
procedure by the Kim et al. (2008) are shown in Tables 11 and 12. The MPI was obtained by 
Eq. (27). 

 
( )

% 100
(1 )

Max CPLEX
MPI

CPLEX

−
= ×

−
 (27) 

 

Budget CPLEX 
SA TS HPGA (This Study) 

Max S.D. %MPI Max S.D. %MPI Max S.D. %MPI 

7,200 0.895758 0.895575 0.001342 -0.1756 0.895758 0.000312 0 0.895758 0.001017 0 

7,250 0.900167 0.899438 0.001050 -0.7302 0.899984 0.000305 -0.1833 0.899984 0.000236 -0.1833 

7,300 0.904599 0.903866 0.001027 -0.7683 0.904414 0.000390 -0.1939 0.904599 0.000529 0 

7,350 0.908866 0.908405 0.001202 -0.5058 0.908866 0.000480 0 0.908866 0.000424 0 

7,400 0.913154 0.912601 0.000499 -0.6368 0.913064 0.000337 -0.1036 0.913114 0.000107 -0.0461 

7,450 0.917184 0.916815 0.000510 -0.4456 0.917093 0.000494 -0.1099 0.917184 0.000229 0 

7,500 0.921141 0.920770 0.000743 -0.4705 0.921141 0.000365 0 0.921141 0.000156 0 

7,550 0.925023 0.925023 0.000590 0 0.925023 0.000502 0 0.925023 0.000172 0 

7,600 0.929013 0.928269 0.000696 -1.0481 0.929013 0.000445 0 0.929013 0 0 

7,650 0.931526 0.931526 0.000388 0 0.931526 0 0 0.931526 0 0 

Table 11. Experimental results of example 5 by using CPLEX and HPGA (10 runs) 

www.intechopen.com



 
A Hybrid Parallel Genetic Algorithm for Reliability Optimization 

 

143 

Budget CPLEX 
TS TS+SA Reoptimization HPGA (This Study) 

Max S.D. %MPI Max S.D. %MPI Max S.D. %MPI 

14,400 0.802546 0.802218 0.000425 -0.1661 0.802218 0 -0.1661 0.802364 0.000110 -0.0922 

14,450 0.806496 0.806167 0.000396 -0.1700 0.806167 0 -0.1700 0.806251 0.000076 -0.1266 

14,500 0.810301 0.809890 0.000519 -0.2167 0.809970 0 -0.1745 0.810301 0.000094 0 

14,550 0.814290 0.813792 0.000352 -0.2682 0.813792 0 -0.2682 0.813792 0.000182 -0.2682 

14,600 0.818299 0.817388 0.000391 -0.5014 0.817798 0.000053 -0.2757 0.817984 0.000003 -0.1734 

14,650 0.822160 0.821656 0.000891 -0.2834 0.821656 0 -0.2834 0.822160 0 0 

14,700 0.826207 0.824787 0.000709 -0.8171 0.825364 0.000142 -0.4851 0.825774 0.000325 -0.2491 

14,750 0.830105 0.829263 0.000815 -0.4956 0.829427 0.000026 -0.3991 0.830105 0.000407 0 

14,800 0.833851 0.833428 0.000891 -0.2546 0.833510 0.000026 -0.2052 0.833604 0.000450 -0.1487 

14,850 0.837614 0.837448 0.000824 -0.1022 0.837614 0 0 0.837614 0 0 

14,900 0.841310 0.840805 0.000786 -0.3182 0.841310 0.000107 0 0.841310 0 0 

14,950 0.844856 0.844009 0.000506 -0.5459 0.844856 0.000215 0 0.844856 0 0 

15,000 0.848500 0.848332 0.000610 -0.1109 0.848500 0.000027 0 0.848500 0 0 

15,050 0.852076 0.851991 0.000722 -0.0575 0.852076 0 0 0.852076 0 0 

15,100 0.855751 0.855582 0.000679 -0.1172 0.855751 0 0 0.855751 0 0 

Table 12. Experimental results of example 6 by using CPLEX and HPGA (10 runs) 

As shown in Table 11, the result of SA and TS gave the optimal solution 2 and 6 times out of 
the 10 cases, respectively. The suggested algorithm found the optimal solution 8 times for 
the same cases and it showed the same or superior MPI compared to that of SA and TS. As 
the results in Table 12 show that, when compared with TS and the reoptimization procedure 
(TS+SA), the suggested algorithm gave the optimal solution 9 times out of the 15 cases and 
showed the same or superior MPI than TS and the reoptimization procedure (TS+SA). This 
is because the suggested algorithm could parallelly evolve by operating several sub-
populations and improve the solution through swap and 2-opt heuristics. 

Throughout the experiment, this study found that performance of HPGA is superior to 
existing meta-heuristics. This study has generated one more example, example 7, which is 
presented through connecting the system data of example 4 in series. Example 7 consists of 
1,000 subsystems with $90,000$99,000 budgets. After 10 runs using CPLEX and HPGA in 
example 7, the experimental results including the maximum, standard deviation values, and 
maximum possible improvement (MPI) are shown in Table 13. 
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Budget CPLEX 
HPGA 

Max S.D. %MPI 

90,000 0.831082 0.830757 0.000681 -0.1924 

91,000 0.847706 0.846918 0.000594 -0.5174 

92,000 0.860003 0.859647 0.000317 -0.2543 

93,000 0.871659 0.871516 0.000183 -0.2228 

94,000 0.883369 0.883275 0.000262 -0.0806 

95,000 0.895226 0.895185 0.000208 -0.0391 

96,000 0.904832 0.904832 0.000079 0 

97,000 0.913836 0.913791 0.000055 -0.0522 

98,000 0.920716 0.920716 0.000016 0 

99,000 0.924869 0.924869 0 0 

Table 13. Experimental results of example 7 by using CPLEX and HPGA (10 runs) 

As shown in Table 13, the suggested algorithm presented the optimal solution in 3 times out 
of 10 cases. While the budget increased, the suggested algorithm found the near-optimal 
solution. 

6. Conclusions 

This study suggested mathematical programming models and a hybrid parallel genetic 
algorithm for reliability optimization with resource constraints. The experimental results 
compared HPGA with existing meta-heuristics and CPLEX, and evaluated the performance 
of the suggested algorithm. 

The suggested algorithm presented superior solutions to all problems (including large-scale 
problems) and found that the performance is superior to existing meta-heuristics. This is 
because the suggested algorithm could paratactically evolve by operating several sub-
populations and improve the solution through swap, 2-opt, and interchange (except for 
RAPCC) heuristics. 

The suggested algorithm would be able to be applied to system design with a reliability goal 
with resource constraints for large scale reliability optimization problems. 
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