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1. Introduction

The Human Immune System (HIS) is a complex network composed of specialized cells,

tissues, and organs that is responsible for protecting the organism against diseases caused

by distinct pathogenic agents, such as viruses, bacteria and other parasites. The first line

of defence against pathogenic agents consists of physical barriers of skin and the mucous

membranes. If the pathogenic agents breach this first protection barrier, the innate immune

system will be ready for recognize and combat them. The innate immune system is therefore

responsible for powerful non-specific defences that prevent or limit infections by most

pathogenic microorganisms.

The understanding of the innate system is therefore essential, not only because it is the first

line of defence of the body, but also because of its quick response. However, its complexity and

the intense interaction among several components, make this task extremely complex. Some

of its aspects, however, may be better understood if a computational model is used. Modelling

and simulation help to understand large complex processes, in particular processes with

strongly coupled influences and time-dependent interactions as they occur in the HIS. Also, in

silico simulations have the advantage that much less investment in technology, resources and

time is needed compared to in vivo experiments, allowing researchers to test a large number

of hypotheses in a short period of time.

A previous work (Pigozzo et al. (2011)) has developed a mathematical and computational

model to simulate the immune response to Lipopolysaccharide (LPS) in a microscopic section

of a tissue. The LPS endotoxin is a potent immunostimulant that can induce an acute

inflammatory response comparable to that of a bacterial infection. A set of Partial Differential

Equations (PDEs) were employed to reproduce the spatial and temporal behaviour of antigens

(LPS), neutrophils and cytokines during the first phase of the innate response.

Good modelling practices require the evaluation of the confidence in the new proposed

model. An important tool used for this purpose is the sensitivity analysis. The sensitivity

analysis consists of the study of the impact caused by the variation of input values of a model

on the output generated by it. However, this study can be a time consuming task due to

the large number of scenarios that must be evaluated. This prohibitive computational cost

leads us to develop a parallel version of the sensitivity analysis code using General-purpose

Graphics Processing Units (GPGPUs). GPGPUs were chosen because of their ability to

  

Modelling the Innate Immune System 

Pedro Rocha, Alexandre Pigozzo, Bárbara Quintela,  
Gilson Macedo, Rodrigo Santos and Marcelo Lobosco 

Federal University of Juiz de Fora, UFJF 
Brazil 

18

www.intechopen.com



2 Will-be-set-by-IN-TECH

process many streams simultaneously. This chapter describes the GPU-based implementation

of the sensitivity analysis and also presents some of the sensitivity analysis results. Our

experimental results showed that the parallelization was very effective in improving the

sensitivity analysis performance, yielding speedups up to 276.

The remainder of this chapter is organized as follows. Section 2 includes the background

necessary for understanding this chapter. Section 3 describes the mathematical model

implemented. Section 4 describes the implementation of the GPU version of the sensitivity

analysis. Section 5 presents some of the results of the sensitivity analysis and the speedup

obtained. Section 7 presents related works. Our conclusions and plans of future works are

presented in Section 8.

2. Background

2.1 Biological background

The initial response of the body to an acute biological stress, such as a bacterial infection, is

an acute inflammatory response (Janeway et al. (2001)). The strategy of the HIS is to keep

some resident macrophages on guard in the tissues to look for any signal of infection. When

they find such a signal, the macrophages alert the neutrophils that their help is necessary. The

cooperation between macrophages and neutrophils is essential to mount an effective defence,

because without the macrophages to recruit the neutrophils to the location of infection, the

neutrophils would circulate indefinitely in the blood vessels, impairing the control of huge

infections.

The LPS endotoxin is a potent immunostimulant that can induce an acute inflammatory

response comparable to that of a bacterial infection. After the lyse of the bacteria by the action

of cells of the HIS, the LPS can be released in the host, intensifying the inflammatory response

and activating some cells of the innate system, such as neutrophils and macrophages.

The LPS can trigger an inflammatory response through the interaction with receptors on the

surface of some cells. For example, the macrophages that reside in the tissue recognize a

bacterium through the binding of a protein, TLR4, with LPS. The commitment of this receptor

activates the macrophage to phagocyte the bacteria, degrading it internally and secreting

proteins known as cytokines and chemokines, as well as other molecules.

The inflammation of an infectious tissue has many benefits in the control of the infection.

Besides recruiting cells and molecules of innate immunity from blood vessels to the location

of the infected tissue, it increases the lymph flux containing microorganisms and cells that

carry antigens to the neighbours’ lymphoid tissues, where these cells will present the antigens

to the lymphocytes and will initiate the adaptive response. Once the adaptive response is

activated, the inflammation also recruits the effectors cells of the adaptive HIS to the location

of infection.

2.2 General-Purpose computation on Graphics Processing Units - GPGPUS

NVIDIA’s Compute Unified Device Architecture (CUDA)(NVIDIA (2007)) is perhaps the

most popular platform in use for General-Purpose computation on Graphics Processing Units
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Fig. 1. Relationship between the components.

(GPGPUs). CUDA includes C software development tools and libraries to hide the GPGPU

hardware from programmers.

In CUDA, a parallel function is called kernel. A kernel is a function callable from the CPU

and executed on the GPU simultaneously by many threads. Each thread is run by a stream

processor. They are grouped into blocks of threads or just blocks. A set of blocks of threads

form a grid. When the CPU calls a kernel, it must specify how many threads will be created

at runtime. The syntax that specifies the number of threads that will be created to execute a

kernel is formally known as the execution configuration, and is flexible to support CUDA’s

hierarchy of threads, blocks of threads, and grids of blocks.

Some steps must be followed to use the GPU: first, the device must be initialized. Then,

memory must be allocated in the GPU and data transferred to it. The kernel is then called.

After the kernel has finished, results must be copied back to the CPU.

3. Mathematical model

The model proposed in this chapter is based on a set of Partial Differential Equations (PDEs)

originally proposed by Pigozzo et al. (2011). In the original work, a set of PDEs describe the

dynamics of the immune response to LPS in a microscopic section of tissue. In particular,

the interactions among antigens (LPS molecules), neutrophils and cytokines were modelled.

In this chapter, a simplified model of the innate immune system using ODEs is presented to

simulate the temporal behaviour of LPS, neutrophils, macrophages and cytokines during the

first phase of the immune response. The main differences between our model and the original

one (Pigozzo et al. (2011)) are: a) the current model does not consider the spatial dynamics

of the cells and molecules and b) the macrophages in two stages of readiness, resting and

activated, are introduced in the current model.
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Figure 1 presents schematically the relationship between macrophages, neutrophils,

proinflammatory cytokines and LPS. LPS cause a response in both macrophages and

neutrophils, that recognize LPS and phagocyte them. The process of phagocytosis induces,

in a rapid way, the apoptosis of neutrophils. This induction is associated with the generation

of reactive oxygen species (ROS) (Zhang et al. (2003)). The resting macrophages become

activated when they find LPS in the tissue. The pro-inflammatory cytokine is produced by

both active macrophages and neutrophils after they recognize LPS. It induces an increase in

the endothelial permeability allowing more neutrophils to leave the blood vessels and enter

the infected tissue.

Our set of equations is given below, where RM, AM, A, N and CH represent the population

of resting macrophages, activated macrophages, LPS, neutrophils and pro-inflammatory

cytokines, respectively. The dynamics of LPS is modelled with Equation 1.

{

dA
dt = −µA A − (λN|A.N + λAM|A.AM + λRM|A.RM).A

A(0) = 20
(1)

The term µA A models the decay of LPS, where µA is its decay rate. The term

−(λN|A.N + λAM|A.AM + λRM|A.RM).A models the phagocytosis of LPS by macrophages

and neutrophils, where λN|A is the phagocytosis rate of neutrophils, λAM|A is the

phagocytosis rate of active macrophages, and λRM|A is the phagocytosis rate of resting

macrophages.

Neutrophils are modelled with Equation 2.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪



permeabilityN = (Pmax
N − Pmin

N ). CH
CH+keqch + Pmin

N

sourceN = permeabilityN .(Nmax − N)
dN
dt = −µN N − λA|N A.N + sourceN

N(0) = 0

(2)

The term permeabilityN uses a Hill equation (Goutelle et al. (2008)) to model how permeability

of the endothelium of the blood vessels depends on the local concentration of cytokines. Hill

equations are also used, for example, to model drug dose-response relationships (Wagner

(1968)).

The idea is to model the increase in the permeability of the endothelium according to

the concentration of the pro-inflammatory cytokines into the endothelium. In the Hill

equation, Pmax
N represents the maximum rate of increase of endothelium permeability to

neutrophils induced by pro-inflammatory cytokines, Pmin
N represents the minimum rate of

increase of endothelium permeability induced by pro-inflammatory cytokines and keqch is

the concentration of the pro-inflammatory cytokine that exerts 50% of the maximum effect

in the increase of the permeability. The term µN N models the neutrophil apoptosis, where

µN is the rate of apoptosis. The term λA|N A.N models the neutrophil apoptosis induced by

the phagocytosis, where λA|N represent the rate of this induced apoptosis. The term sourceN

represents the source term of neutrophil, that is, the number of neutrophils that is entering

the tissue from the blood vessels. This number depends on the endothelium permeability
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(permeabilityN) and the capacity of the tissue to support the entrance of neutrophils (Nmax),

that can also represent the blood concentration of Neutrophils.

The dynamics of cytokine is presented in Equation 3.

{

dCH
dt = −µCHCH + (βCH|N N + βCH|AM AM).A.(1 − CH

chIn f )

CH(0) = 0
(3)

The term µCHCH models the pro-inflammatory cytokine decay, where µCH is the decay rate.

The term (βCH|N N + βCH|AM AM).A models the production of the pro-inflammatory cytokine

by the neutrophils and activated macrophages, where βCH|N and βCH|AM are the rate of this

production by neutrophils and macrophages, respectively.

Equation 4 presents the dynamics of the resting macrophages.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪



permeabilityRM = (Pmax
RM − Pmin

RM ). CH
CH+keqch + Pmin

RM

sourceRM = permeabilityRM.(Mmax − (RM + AM))
dRM

dt = −µRMRM − λRM|A.RM.A + sourceRM

RM(0) = 1

(4)

The term permeabilityRM models how permeability of the endothelium of the blood vessels to

macrophages depends on the local concentration of cytokines. The term µRMRM models the

resting macrophage apoptosis, where µRM is the rate of apoptosis.

Finally, the dynamics of activate macrophages is presented in Equation 5.

{

dAM
dt = −µAM AM + λRM|A.RM.A

AM(0) = 0
(5)

The term µAMRM models the activated macrophage apoptosis, where µRM is the rate of

apoptosis.

4. Implementation

The sensitivity analysis consists in the analysis of impacts caused by variations of parameters

and initial conditions of the mathematical model against its dependent variables (Saltelli et al.

(2008)). If a parameter causes a drastic change in the output of the problem, after suffering a

minor change in its initial value, it is thought that this parameter is sensitive to the problem

studied. Otherwise, this variable has little impact in the model. The sensitivity analysis is

used to improve the understanding of the mathematical model as it allows us to identify input

parameters that are more relevant for the model, i.e. the values of these parameters should be

carefully estimated. In this chapter we use a brute force approach to exam the influence of the

19 parameters present in the equation and two of the initial conditions. A small change in the

value of each parameter is done, and then the model is solved again for this new parameter

set. This process is done many times, since all combinations of distinct values of parameters

and initial conditions must be considered. We analyse the impact of changing one coefficient

at a time. The parameters and initial conditions were adjusted from -100% to + 100% (in steps

355Modelling the Innate Immune System
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of 2%) of their initial values, except for some parameters, that were also adjusted from -100%

to + 100%, but in steps of 20%. The combination of all different set of parameters and initial

conditions give us a total of 450,000 system of ODEs that must be evaluated in this work.

The sequential code that implements the sensitivity analysis was first implemented in C.

Then the code was parallelized using CUDA. The parallel code is based on the idea that

each combination of distinct values of parameters and initial conditions can be computed

independently by a distinct CUDA thread. The number of threads that will be used during

computation depends on the GPU characteristics. In particular, the number of blocks and

threads per block are chosen taking into account two distinct values defined by the hardware:

a) the warp size and b) the maximum number of threads per block.

The forward Euler method was used for the numerical solution of the systems of ODEs with

a time-step of 0.0001 days. The models were simulated to represent a total period equivalent

to 5 days after the initial infection.

5. Experimental evaluation

In this section the experimental results obtained by the execution of both versions of our

simulator of the innate system, sequential and parallel, are presented. The experiments

were performed on a 2.8 GHz Intel Core i7-860 processor, with 8 GB RAM, 32 KB L1 data

cache, 8 MB L2 cache with a NVIDIA GeForce 285 GTX. The system runs a 64-bits version

of Linux kernel 2.6.31 and version 3.0 of CUDA toolkit. The gcc version 4.4.2 was used to

compile all versions of our code. The NVIDIA GeForce 285 GTX has 240 stream processors,

30 multiprocessors, each one with 16KB of shared memory, and 1GB of global memory. The

number of threads per block are equal to 879, and each block has 512 threads. The codes were

executed 3 times to all versions of our simulator, and the average execution time for each

version of the code is presented in Table 1. The standard deviation obtained was negligible.

The execution times were used to calculate the speedup factor. The speedup were obtained

by dividing the sequential execution time of the simulator by its parallel version.

Sequential 285 GTX Speedup Factor
4,315.47s 15.63s 276.12

Table 1. Serial and parallel execution times. All times are in seconds.

The results reveal that our CUDA version was responsible for a significant improvement

in performance: a speedup of 276 was obtained. This expressive gain was due to the

embarrassingly parallel nature of computation that must be performed. In particular, the same

computation must be performed for a huge amount of data, and there are no dependency

and/or communication between parallel tasks.

6. Simulation

To study the importance of some cells, molecules and processes in the dynamics of the innate

immune response, a set of simulations were performed for distinct values of parameters and

initial conditions. Table 2 presents the initial conditions and the values of the parameters used

in the simulations of all cases. Exceptions to the values presented in Table 2 are highlighted in

the text.

356 Bio-Inspired Computational Algorithms and Their Applications

www.intechopen.com



Modelling the Innate Immune System 7

The complete set of equations that has been simulated, including the initial values used, are

presented by Equation 6:

⎧
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⎪

⎪

⎪

⎪

⎪
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⎪



dA
dt = −µA A − (λN|A.N + λAM|A.AM + λRM|A.RM).A

A(0) = 20|40

permeabilityN = (Pmax
N − Pmin

N ). CH
CH+keqch + Pmin

N

sourceN = permeabilityN .(Nmax − N)
dN
dt = −µN N − λA|N A.N + sourceN

N(0) = 0

permeabilityRM = (Pmax
RM − Pmin

RM ). CH
CH+keqch + Pmin

RM

sourceRM = permeabilityRM.(Mmax − (RM + AM))
dRM

dt = −µRMRM − λRM|A.RM.A + sourceRM

RM(0) = 1

dAM
dt = −µAM AM + λRM|A.RM.A

AM(0) = 0

dCH
dt = −µCHCH + (βCH|N N + βCH|AM AM).A.(1 − CH

chIn f )

CH(0) = 0

(6)

It should be noticed that in this case two distinct initial values for A(0) will be used: A(0) =
20 and A(0) = 40.

The sensitivity analysis has shown that two parameters are relevant to the model: the capacity

of the tissue to support the entrance of new neutrophils (Nmax) and the phagocytosis rate of

LPS by neutrophils (λN|A).

Nmax is the most sensitive parameter in the model. The capacity of the tissue to support

the entrance of new neutrophils is directed related to the permeability of the endothelial

cells, which form the linings of the blood vessels. If a positive adjustment is made in the

parameter related to the permeability, then there are more neutrophils entering into the tissue.

This larger amount of neutrophils into the tissue has many consequences: first, more cells

are phagocyting, so the amount of LPS reduces faster. Second, a smaller amount of resting

macrophages becomes active, because there is less LPS into the tissue. Third, a larger amount

of cytokines are produced, since neutrophils are the main responsible for this production. If

a negative adjustment is made, the inverse effect can be observed: with a smaller amount of

neutrophils in the tissue, more resting macrophages become active. Also, a smaller amount of

cytokines are produced.

Figures 2 to 6 illustrate this situation. It can be observed that the LPS decays faster when Nmax

achieves its maximum value.

357Modelling the Innate Immune System
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Parameter Value Unit Reference

N0 0 cell estimated

CH0 0 cell estimated

A0 20 cell estimated

RM0 1 cell estimated

AM0 0 cell estimated

µCH 7 1/day estimated

µN 3.43 1/day estimated

µA 0 1/day Su et al. (2009)

µRM 0.033 1/day Su et al. (2009)

µAM 0.07 1/day Su et al. (2009)

λN|A 0.55 1
cell.day Su et al. (2009)

λA|N 0.55 1
cell.day Su et al. (2009)

λAM|A 0.8 1
cell.day Su et al. (2009)

βCH|N 1 1
cell.day estimated

βCH|AM 0.8 1
cell.day estimated

Nmax 8 cell estimated

MRmax 6 cell estimated

Pmax
N 11.4 1

day based on Price et al. (1994)

Pmin
N 0.0001 1

day estimated

Pmax
RM 0.1 1

day estimated

Pmin
RM 0.01 1

day estimated

chIn f 3.6 cell based on de Waal Malefyt et al. (1991)

keqch 1 cell estimated

λRM|A 0.1 1
cell.day estimated

Table 2. Initial conditions, parameters and units.

Fig. 2. Temporal evolution of cytokines with A(0) = 20 and for distinct values of Nmax.
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Fig. 3. Temporal evolution of neutrophils with A(0) = 20 and for distinct values of Nmax.

Fig. 4. Temporal evolution of LPS with A(0) = 20 and for distinct values of Nmax.

In the second scenario, with the double of LPS and starting with just one resting macrophage,

it can be observed that bringing more neutrophils into the tissue do not reduce the number of

resting macrophages that become active. This happens due to the larger amount of LPS in this

scenario when compared to the previous one. The larger amount of activated macrophages

also explains why the amount of cytokines in this scenario is larger than in the previous one.

Figures 7 to 11 present the complete scenario.

The third scenario presents the results obtained when the initial amount of LPS is again

equal to 20. This scenario revels that the second most sensitive parameter is λN|A. λN|A is

responsible for determining how effective is the phagocitosis of the neutrophils in tissue. It

can be observed in Figures 12 to 16 that a negative adjustment in this tax makes the neutrophil

response to be less effective against LPS, while a positive adjustment in the tax makes the

neutrophil response to be more effective. Resting macrophages and activated macrophages

are also affected by distinct values of λN|A. Increasing the value of λN|A causes the neutrophils

359Modelling the Innate Immune System
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Fig. 5. Temporal evolution of resting macrophages with A(0) = 20 and for distinct values of
Nmax.

Fig. 6. Temporal evolution of activate macrophages with A(0) = 20 and for distinct values of
Nmax.

to produced more cytokines, so more macrophages can migrate into the tissue through blood

vessel, and also there are more cells into the tissue that can phagocyte LPS.

The last scenario is presented by Figures 17 to 21. In this scenario, the amount of LPS is

doubled when compared to the previous one. It can be observed that distinct values used as

initial conditions for LPS only changes how long it takes to the complete elimination of LPS.

It can also be observed that both macrophages populations are affected by the larger amount

of LPS. In particular, the amount of macrophages is slightly higher in this scenario due to the

larger amount of LPS.

7. Related works

This section presents some models and simulators of the HIS found in the literature. Basically

two distinct approaches are used: ODEs and PDEs.

360 Bio-Inspired Computational Algorithms and Their Applications

www.intechopen.com



Modelling the Innate Immune System 11

Fig. 7. Temporal evolution of cytokines with A(0) = 40 and for distinct values of Nmax.

Fig. 8. Temporal evolution of neutrophils with A(0) = 40 and for distinct values of Nmax.

7.1 ODEs models

A model of inflammation composed by ODEs in a three-dimensional domain considering

three types of cells/molecules has been proposed by Kumar et al. (2004): the pathogen and

two inflammatory mediators. The model was able to reproduce some experimental results

depending on the values used for initial conditions and parameters. The authors described

the results of the sensitivity analysis and some therapeutic strategies were suggested from this

analysis. The work was then extended (Reynolds et al. (2006)) to investigate the advantages of

an anti-inflammatory response dependent on time. In this extension, the mathematical model

was built from simpler models, called reduced models. The mathematical model (Reynolds

et al. (2006)) consists of a system of ODEs with four equations to model: a) the pathogen; b)

the active phagocytes; c) tissue damage; and d) anti-inflammatory mediators.

A new adaptation of the first model (Kumar et al. (2004)) was proposed to simulate many

scenarios involving repeated doses of endotoxin (Day et al. (2006)). In this work the results

361Modelling the Innate Immune System
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Fig. 9. Temporal evolution of LPS with A(0) = 40 and for distinct values of Nmax.

Fig. 10. Temporal evolution of resting macrophages with A(0) = 40 and for distinct values of
Nmax.

obtained through experiments with mouse are used to guide the in silico experiments seeking

to recreate these results qualitatively.

A one-dimensional model to show if and when leukocytes successfully defend the body

against a bacterial infection is presented in Keener & Sneyd (1998). A phase-plane method

is then used to study the influence of two parameters, the enhanced leukocyte emigration

from bloodstream and the chemotactic response of the leukocytes to the attractant.

Finally, one last work (Vodovotz et al. (2006)) developed a more complete system of ODEs of

acute inflammation, including macrophages, neutrophils, dendritic cells, Th1 cells, the blood

pressure, tissue trauma, effector elements such as iNOS, NO−
2 and NO−

3 , pro-inflammatory

and anti-inflammatory cytokines, and coagulation factors. The model has proven to be useful

in simulating the inflammatory response induced in mice by endotoxin, trauma and surgery

or surgical bleeding, being able to predict to some extent the levels of TNF, IL-10, IL-6 and

reactive products of NO (NO−
2 and NO−

3 ).

362 Bio-Inspired Computational Algorithms and Their Applications

www.intechopen.com



Modelling the Innate Immune System 13

Fig. 11. Temporal evolution of activate macrophages with A(0) = 40 and for distinct values
of Nmax.

Fig. 12. Temporal evolution of cytokines with A(0) = 20 and for distinct values of λN|A.

7.2 PDEs models

The model proposed by Su et al. (2009) uses a system of partial differential equations (PDEs) to

model not only the functioning of the innate immune system, as well as the adaptive immune

system. The model considers the simplest form of antigen, the molecular constituents of

pathogens patterns, taking into account all the basic factors of an immune response: antigen,

cells of the immune system, cytokines and chemokines. This model captures the following

stages of the immune response: recognition, initiation, effector response and resolution of

infection or change to a new equilibrium state (steady state). The model can reproduce

important phenomena of the HIS such as a) temporal order of arrival of cells at the site of

infection, b) antigen presentation by dendritic cells, macrophages to regulatory T cells d)

production of pro-inflammatory and anti-inflammatory cytokines and e) the phenomenon of

chemotaxis.

363Modelling the Innate Immune System
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Fig. 13. Temporal evolution of neutrophils with A(0) = 20 and for distinct values of λN|A.

Fig. 14. Temporal evolution of LPS with A(0) = 20 and for distinct values of λN|A.

Pigozzo et al. (2011) present a PDE model to simulate the immune response to

lipopolysaccharide (LPS) in a microscopic section of a tissue, reproducing, for this purpose,

the initiation, maintenance and resolution of immune response.

7.3 Other works

Several proposals which attempt to model both the innate and the adaptive HIS can be found

in the literature. An ODE model is used to describe the interaction of HIV and tuberculosis

with the immune system (Denise & Kirschner (1999)). Other work focus on models of HIV

and T-lymphocyte dynamics, and includes more limited discussions of hepatitis C virus

(HCV), hepatitis B virus (HBV), cytomegalovirus (CMV) and lymphocytic choriomeningitis

virus (LCMV) dynamics and interactions with the immune system (Perelson (2002)). An ODE

model of cell-free viral spread of HIV in a compartment was proposed by Perelson et al. (1993).

Another interesting work tries to integrate the immune system in the general physiology

of the host and considers the interaction between the immune and neuroendocrine system
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Fig. 15. Temporal evolution of resting macrophages with A(0) = 20 and for distinct values of
λN|A.

Fig. 16. Temporal evolution of activate macrophages with A(0) = 20 and for distinct values
of λN|A.

(Muraille et al. (1996)). Klein (1980) presents and compares three mathematical models of B

cell differentiation and proliferation.

ImmSim (Bezzi et al. (1997); Celada & Seiden (1992)) is a simulator of the HIS that

implements the following mechanisms: immunological memory, affinity maturation, effects

of hypermutation, autoimmune response, among others. CAFISS (a Complex Adaptive

Framework for Immune System Simulation) (Tay & Jhavar (2005)) is a framework used for

modelling the immune system, particularly HIV attack. SIMMUNE (Meier-Schellersheim

& Mack (1999)) allows users to model cell biological systems based on data that describes

cellular behaviour on distinct scales. Although it was developed to simulate immunological

phenomena, it can be used in distinct domains. A similar tool is CyCells (Warrender (2004)),

designed to study intercellular relationships.
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Fig. 17. Temporal evolution of cytokines with A(0) = 40 for distinct values of λN|A.

Fig. 18. Temporal evolution of neutrophils with A(0) = 40 for distinct values of λN|A.

Fig. 19. Temporal evolution of LPS with A(0) = 40 for distinct values of λN|A.
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Fig. 20. Temporal evolution of resting macrophages with A(0) = 40 for distinct values of
λN|A.

Fig. 21. Temporal evolution of activate macrophages with A(0) = 40 for distinct values of
λN|A.

8. Conclusion and future works

In this chapter we presented the sensitivity analysis of a mathematical model that simulates

the immune response to LPS in a microscopic section of a tissue. The results have shown that

the two most relevant parameters of the model are: the capacity of the tissue to support the

entrance of more neutrophils and the phagocytosis rate of LPS by neutrophils.

The sensitivity analysis can be a time consuming task due to the large number of scenarios that

must be evaluated. This prohibitive computational cost leads us to develop a parallel version

of the sensitivity analysis code using GPGPUs. Our experimental results showed that the

parallelization was very effective in improving the sensitivity analysis performance, yielding

speedups up to 276.
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As future works, we plan to implement a more complete mathematical model including,

for example, new cells (Natural Killer, dendritic cells and the complement system), others

proinflammatory cytokines, anti-inflammatory cytokine, molecules and others processes

involved in the immune responses.
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