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1. Introduction 

In every pattern recognition problem there exist the need for variable and feature selection 
and, in  many cases, feature generation.  In pattern recognition, the term variable is usually 
understood as the  raw measurements or raw values taken from  the subjects to be classified, 
while the term feature is used to refer to the result of the transformations applied to the 
variables in order to transform them into another domain or space, in which a bigger 
discriminant capability of the new calculated features is expected; a very popular cases of 
feature generation are the use of principal component analysis (PCA), in which the variables 
are projected into a lower dimensional space in which the new features  can be used to 
visualize the underlying class distributions in the original data [1], or the Fourier Transform, 
in which a  few of its coefficients can represent new features [2], [3]. Sometimes, the 
literature does not make any distinction between variables and features, using them 
indistinctly [4], [5].  

Although many variables and features can be obtained for classification, not all of them 
posse discriminant capabilities; moreover, some of them could cause confusion to a 
classifier. That is the reason why the designer of the classification system will require to 
refine his choice of variables and features. Several specific techniques for such a purpose are 
available [1], and some of them will be reviewed later on in this chapter.  

Optimal feature generation is the generation of the features under some optimality criterion, 
usually embodied by a cost function to search the solutions’ space of the problem at hand 
and providing the best option to the classification problem.  Examples of techniques like 
these are the genetic algorithms [6] and the  simulated annealing [1]. In particular, genetic 
algorithms are used in this work.  

Speech recognition has been a topic of high interest in the research arena of the pattern 
recognition community since the beginnings of the current computation age [7], [8]; it is due, 
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partly, to the fact that it is capable of  enabling many practical applications in artificial 
intelligence, such as natural language understanding [9], man-machine interfaces, help for 
the impaired, and others; on the other hand, it is an intriguing intellectual challenge in 
which new mathematical methods for feature generation and new and more sophisticated 
classifiers appear nearly every year [10], [11]. Practical problems that arise in the 
implementation of speech recognition algorithms include real-time requirements, to lower 
the computational complexity of the algorithms, and noise cancelation in general or specific 
environments [12]. Speech recognition can be user or not-user dependant.    

A specific case of speech recognition is word recognition, aimed at recognizing isolated 
words from a continuous speech signal; it find applications in system commanding as in 
wheelchairs, TV sets, industrial machinery, computers, cell phones, toys, and many others. 
A particularity of this specific speech processing niche is that usually the vocabulary is 
comprised of a relatively low amount of words; for instance, see [13] and [14].   

In this chapter we present an innovative method for the restricted-vocabulary speech 
recognition problem in which a genetic algorithm is used to optimally generate the design 
parameters of a set of bank filters by searching in the frequency domain for a specific set of 
sub-bands and using the Fisher’s linear discriminant ratio as the class separability criterion 
in the features space.  In this way we use genetic algorithms to create optimum feature 
spaces in which the patterns from N classes will be distributed in distant and compact 
clusters. In our context, each class {ω0, ω1, ω2,…, ωN-1} represents one word of the lexicon.  
Another important part of this work is that the algorithm is required to run in real time on 
dedicated hardware, not necessarily a personal computer or similar platform, so the 
algorithm developed should has low computational requirements. 

This chapter is organized as follows:  the section 2 will present the main ideas behind the 
concepts of variable and feature selection; section 3 presents an overview of the most 
representative speech recognition methods. The section 4 is devoted to explain some of the 
mathematical foundations of our method, including the Fourier Transform, the Fisher’s 
linear discriminant ratio and the Parseval’s theorem. Section 5 shows our algorithmic 
foundations, namely the genetic algorithms and the backpropagation neural networks, a 
powerful classifier   used here for performance comparison purposes. The implementation 
of our speech recognition approach is depicted in section 6 and, finally, the conclusions and 
the future work are drawn in section 7.  

2. Optimal variable and feature selection 

Feature selection refers to the problem of selecting features that are most predictive of a 
given outcome. Optimal feature generation, however, refers to the derivation of features 
from input variables that are optimal in terms of class separability in the feature space. 
Optimal feature generation is of particular relevance to pattern recognition problems 
because it is the basis for achieving high correct classification rates: the better the 
discriminant features  are represented, the better the classifier will categorize new  incoming 
patterns. Feature generation is responsible for the way the patterns lay in the features space, 
therefore, shaping the decision boundary of every pattern recognition problem; linear as 
well as non-linear classifiers can be beneficiaries of well-shaped feature spaces.  
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The recent apparition of new and robust classifiers such as support vector machines (SVM), 
optimum margin classifiers and relevance vector machines [4], and other robust kernel 
classifiers seems to demonstrate that the new developments are directed towards 
classifiers which, although powerful, must be preceded by reliable feature generation 
techniques.  In some cases, the classifiers use a filter that consists of a stage of feature 
selection, like in the Recursive Feature Elimination Support Vector Machine [15], which 
eliminates features in a recursive manner, similar to the backward/forward variable 
selection methods [1]. 

2.1 Methods for variable and feature selection and generation 

The methods for variable and feature selection are based on two approaches: the first is to 
consider the features as scalars -scalar feature selection-, and the other is to consider the 
features as vectors –feature vector selection-. In both approaches a class separability 
measurement criteria must be adopted; some criteria include the receiver operating curve  
(ROC), the Fisher Discriminant Ratio (FDR) or the one-dimensional divergence [1]. The goal 
is to select a subset of k from a total of K variables or features. In the sequel, the term 
features is used to represent variables and features. 

2.1.1 Scalar feature selection 

The first step is to choose a class separability measuring criterion, C(K). The value of the 
criterion C(K) is computed for each of the available features,  then the features are ranked in 
descending order of the values of C(K).  The k features corresponding to the k best C(K) 
values are selected to form the feature vector. This approach is simple but it does not take 
into consideration existing correlations between features.  

2.1.2 Vector feature selection  

The scalar feature selection may not be effective with features with high mutual correlation; 
another disadvantage is that if one wishes to verify all possible combinations of the features 
–in the spirit of optimality- then it is evident that the computational burden is a major 
limitating factor. In order to reduce the complexity some suboptimal procedures have been 
suggested [1]: 

Sequential Backward Selection. The following steps comprise this method:  

a. Select a class separability criterion, and compute its value for the feature vector of all the 
features.  

b. Eliminate one feature and for each possible combination of the remaining features 
recalculate the corresponding criterion value. Select the combination with the best 
value. 

c. From the selected K-1 feature vector eliminate one feature and for each of the resulting 
combinations compute the criterion value and select the one with the best value.  

d. Continue until the feature vector consists of only the k features, where k is  the 
predefined size. 

The number of computations can be calculated from: 1+1/2 ((K+1)K – k(k+1)). 
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Sequential Forward Selection. The reverse of the previous method is as follows:  

a. Compute the criterion value for each individual feature; select the feature with the 
“best” value, 

b. From all possible two-dimensional vectors that contains the winner from the previous 
step. Compute the criterion value for each of them and select the best one.  

2.1.3 Floating search methods 

The methods explained suffer from the nesting effect, which means that once a feature (or 
variable) has been discarded it can’t be reconsidered again. Or, on the other hand, once a 
feature (or variable) was chosen, it can’t be discarded.  To overcome these problems, a 
technique known as floating search method, was introduced by Pudin and others in 1994 [1], 
allowing the features to enter and leave the set of the k chosen features. There are two ways 
to implement this technique: one springs from the forward selection and the other from de 
backward selection rationale. A three steps procedure is used, namely inclusion, test, and  
exclusion. Details of the implementation can be found in [1], [16].   

2.1.4 Some trends in feature selection 

Recent work in feature selection are, for instance, the one of Somol et al., [17], where besides 
of optimally selecting a subset of features, the size of the subset is also optimally selected.  
Sun and others [18] faced the problem of feature selection in conditions of a huge number or 
irrelevant features, using machine learning and numerical analysis methods without making 
any assumptions  about the underlying data distributions. In other works, the a feature 
selection technique is accompanied by instance selection; instance selection refers to the 
“orthogonal version of the problem of feature selection” [19], involving the discovery of a 
subset of instances that will provide the classifier with a better predictive accuracy than 
using the entire set of instances in each class.  

2.2 Optimal feature generation 

As can be seen from section 2.1, the class separability measuring criterion in feature 
selection is used just to measure the effectiveness of the k features chosen out of a total of K 
features, with independence of how the features were generated.  The topic of optimal 
feature generation refers to involving the class separability criterion as an integral part of the 
feature generation process itself. The task can be expressed as: If x is an m-dimensional 
vector of measurement samples, transform it into another l-dimensional vector andso that 
some class separability criterion is optimized. Consider, to this end, the linear 
transformation y=ATx.  

By now, it will suffice to note the difference between feature selection and feature generation.  

3. Speech recognition 

For speech processing, the electrical signal obtained from an electromechanoacoustic 
transducer is digitized and quantized at a fixed rate (the sampling frequency, Fs), and 
subsequently segmented into small frames of a typical duration of  10 milliseconds. 
Regarding to section 2, the raw digitized values of the voice signal will be considered here 
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as the input variable; the mathematical transformations that will be applied to this variable 
will produce the features.  

Two important and widely used techniques for speech recognition will be presented in this 
section due to its relevance to this field. Linear Predictive Coding, or LPC, is a predictive 
technique in which a linear combination of some K coefficients and the last K samples from 
the signal will predict the value of the next one; the K coefficients will represent the 
distinctive features. The following section will explain the LPC method in detail.  

3.1 Linear Predictive Coding (LPC) 

LPC is one of the most advanced analytical techniques used in the estimation of patterns, 
based on the idea that the present sample can be predicted from a linear combination of 
some past samples, generating a spectral description based on short segments of signal 
considering a signal s[n] to be a response of  an all-pole filter excitation u[n]. 

 
Fig. 1. LPC model of speech. 

Figure 1 shows the model the LPC is based on, considering that the excitation u[n] is the 
pattern waiting to be recognized. The transfer function of the filter is described as [3]: 
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where G is a gain parameter, ak are the coefficients of filter and p determines the order of the 
filter. In Figure 1,  the samples s[n] are related to the excitation u[n] by the equation: 
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Considering that the linear combination of past samples is calculated by using an estimator 
[ ]s n which is denoted by: 
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the error in the prediction is determined by the lack of accuracy with respect to s[n], which is 
defined as [20]:  
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from equation (5), it is possible to recognize that the sequence of prediction of the error has 
in its components a FIR-type filter system which is defined by: 
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equations (2) and (4) show that e[n]=Gu[n]. The estimation of the prediction coefficients is 
obtained by minimizing the error in the prediction. Where e[n]2 denotes the square error of  
the prediction and E is the total error over a time interval (m). The prediction error in a short 
time segment is defined as: 
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the coefficients {ak} minimize the prediction of error E on the fragment obtained by the 
partial derivatives of E with respect to such coefficients; this means that: 
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Through equations (7) and (8) the final equation is obtained:  
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this equation is written in terms of least squares and is known as a normal equation. For any 
definitions of the signal s[n], equation (9) forms a set of p equations with p unknowns that 
must be solved for coefficients {ak}, trying to reduce the error E of equation (7). The 
minimum total squared error, denoted by Ep, is obtained by expanding equation (7) and 
substituting the result in equation (9), this is: 

 2

1
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k
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= + −    (10) 

using the autocorrelation method to solve it [8]. 

For application, it is assumed that the error of equation (7) is minimized for infinite duration 
defined as -∞<n<∞, thus equations (9) and (10) are simplified as: 
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which is the autocorrelation function of the signal s[n], with R(i) as an even function. The 
coefficients R(i-k) generate auto-correlation matrix, which is a symmetric Toeplitz matrix; ie, 
all elements in each diagonal are equal. For practical purposes, the signal s[n] is analyzed in 
a finite interval. One popular method of approach this is by multiplying the signal s[n] times 
a window function w[n] in order to obtain an s‘[n] signal:  
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Using equation 14, the auto-correlation function is given by: 
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One of the most common ways to find the coefficients {ak}, is by computational methods, 
where the equation (11) is expanded to a matrix with the form: 
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and it is necessary to use an algorithm to find these coefficients; one of the most commonly 
used, is the Levinson-Durbin one, which is described below [21]: 
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An important feature of this algorithm is that, when making the recursion, an estimation of 
the half-quadratic prediction error must be made. This prediction satisfies the system 
function given in equation (17), which corresponds to the term A (z) of equation (1); namely: 

 ( ) ( 1) ( 1) 1( ) ( ) ,i i ii
iA z A z k z A z− −− −= −  (17) 

where the fundamental part for the characterization of the signal in coefficients of 
prediction, is met by establishing an adequate number of coefficients p, according to the 
sampling frequency (fs) and based on the resonance in kHz  [3]  which is: 

 4
1000

sfp = +  (18) 

where the optimal number of LPC coefficients is the one that represents the lowest mean 
square error possible. Figure 2 shows the calculation of LPC in a voice signal with 8 kHz 
sampling rate and the effect of varying the number of coefficients in a segment (frame). 

 
Fig. 2. Comparison of the original signal spectrum and LPC envelope with different 
numbers of coefficients. 

3.2 Dynamic Time Warping (DTW) 

Another commonly used technique used in speech recognition is the dynamic time warping. 
Is presented here, again, for it relevance to the this field. Dynamic time warping  is a 
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technique widely used in pattern recognition, particularly oriented to temporal 
distortions between vectors, such as the time of writing, speed of video camera, the 
omission of a letter, etc. These temporal variations are not proportional and vary 
accordingly to each person, object or event, and those situations are not repetitive in any 
aspects. DTW uses dynamic programming to find similarities and differences between two 
or more vectors. 

This method considers two sequences representing feature vectors defined by a(i), i=1,2,…,I 
and b(j), j=1,2,…,J, where, in general, the number of elements differs in each vector (I≠J). The 
aim of DTW is to find an appropriate distance between the two sequences and in a two-
dimensional plane, where each sequence represents one axis, and each point corresponds to 
the local relationship between two sequences. The nodes (i,j) of the plane are associated with 
a cost that is defined by the function d(c)=d(i,j)=a(i)-b(j), which represents the distance 
between the elements a(i) and b(j). 

The collection of points begins in the starting point (i0,j0) and finishes in the (ik,jk) nodes, and 
it being an ordered pair of size k, where k is the number of nodes along the way. Every path 
established with the points is associated with a total cost D and defined by 
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and the distance between the two sequences is defined as the minimum value D of all the 
possible paths 

 ( , ) min( ).
k

D a b D=  (20) 

There are normalization and temporary limitations in the search for the minimum distance 
between patterns to compare [22], [1]. These limitations are: endpoint, monotonicity 
conditions, local continuity, global path and slope weight. 

The final point is bounded by the size of windowing and performed in each pattern, at most 
cases is empirical and defined to extremes, that is: 
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Figure 3 shows an example in which it is only partially considered one of the sequences, a 
situation that is not allowed to search the minimum cost. 

The monotonicity conditions try to maintain the temporal order of the normalization of the 
time, and avoid negative slopes, by 

 1k ki i+ ≥  (22) 

and 

 k kj j1 .+ ≥  (23) 
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Fig. 3. Example of a sequence  that violates the rule of the endpoint. 

Figure 4 shows an example without monotonicity paths, which are not allowed to find the 
optimal path. 

 
Fig. 4. Without monotonicity path example. 

The continuity conditions  

 ( ) ( 1) 1i K i k− − ≤    And ( ) ( 1) 1,j K j K− − ≤    (24) 

are defined by maintaining the relationship between two consecutive points of the form: 
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Global limitations define a region of nodes where the optimal path is found, and is based on 
a parallelogram that offers a feasible region [7], thereby avoiding unnecessary regions 
involved in processing. Figure 5 shows the values of the key points of the parallelogram. 
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Fig. 5. Global region and determination of slopes. 

The optimal path layout defined a measure of dissimilarity between the two sequences of 
features, whose general form is 
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where d(c(k)) and w(k) are the local distance between the windows i(k) of the reference vector 
and j(k) of the recognize vector, and a weighting function in k to maintain a flexible way and 
improve alignment, respectively. The simplified computational algorithm for calculating the 
distance of DTW is shown below [1] : 
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4. Mathematical foundations 

4.1 Fisher’s Linear Discriminant Ratio FLDR 

Fisher’s Linear Discriminant Ratio, is used as an optimization criterion in several research 
fields, including speech recognition, handwriting recognition, and others [1]. Consider the 
following definitions: 

Within-class scatter matrix. 
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where Si is the covariance matrix for class ωi, and Pi the a priori probability of class ωi. 
Trace{Sw} is a measure of the average variance of the features, or descriptive elements of the 
class.  

Between-class scatter matrix 
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where µ0 is the global mean vector 
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Trace{Sb} is a measure of the average distance of the mean of each individual class from the 
respective global value. 

Mixture scatter matrix 
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Sm is the covariance matrix of the feature vector with respect to the global mean, and E[.] is 
the mathematical operator of the expected mean value. Based on the just given definitions, 
the following criteria can be expressed: 
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It can be shown that J1 and J2 take large values when the samples in the l-dimensional are 
well clustered around their mean, within each class, and the clusters of different classes are 
well separated. Criteria in equation (31) can be used to guide an optimization process, since 
they measure the goodness of data clustered; the data to be clustered could be the set of 
features representative of the items of a class.  Trace{Sb} is a measure of the average distance 
of the mean of each individual class from the respective global value. 

www.intechopen.com



Optimal Feature Generation with  
Genetic Algorithms and FLDR in a Restricted-Vocabulary Speech Recognition System 

 

247 

Figure 6 shows an example in which the FLDR is evaluated using equation (31); FLDR and 
the respective values are displayed. Notice that the more the blue clusters are separated 
from the red cluster, the bigger FLDR value is.  

 
Fig. 6. Example of the FLDR values for two clusters. 

4.2 Parseval’s theorem and the Fourier Transform 

Parseval’s theorem states, in an elegant manner,  that the energy of a discrete signal in the 
time domain can be calculated in the frequency domain by a simple relation [2], [3]:  

 
/21

22

0 0

2
[ ] [ ]

NN

i k

x i X k
N

−

= =

=   (32) 

where  

   N    is the number of samples of the discrete signal,  
x[i]    is the i-th sample of the discrete signal,  
X[k]   is the k-th sample of the Fourier transform of x[i].  

For  a discrete signal x[i], the Fourier transform can be computed using the well known 
Discrete Fourier Transform via the efficient algorithm for its implementation, the  FFT [2], [3]:  
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The implication of the Parseval’s theorem is that an algorithm can search for specific 
energetic properties of a signal in the frequency domain off-line, and then use the 
information obtained off-line to configure a bank of digital filters to look for the same 
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energetic properties in the time domain on-line, in real time. The link between both domains 
is the energetic content of the signal.  

5. Algorithmic foundations 

This section is devoted to describe two important figures in pattern recognition:  
backpropagation  neural networks  BPNN and genetic algorithms GA. The BPNN is used as a 
reference classifier to compare the performance of the approach presented here to the word 
recognition problem. The GA is an integral part of the generation of the features in the 
proposed technique.  

5.1 Learning paradigms  

There are several major paradigms, or approaches, to machine learning. These include 
supervised, unsupervised, and reinforcement learning. In addition, many researchers and 
application developers combine two o more of these learning approaches into one system 
[23].  

Supervised learning is the most common form of learning and is sometimes called 
programming by example. The learning system is trained by showing it examples of the 
problem state or attributes along with the desired output or action. The learning system 
make a prediction based on the inputs and if the output differs from the desired output, 
then the system is adjusted or adapted to produce the correct output. This process is 
repeated over and over until the system learns to make accurate classifications or 
predictions. Historical data from databases, sensor logs, or trace logs is often used as the 
training or example data.  

Unsupervised learning is used when the learning system needs to recognize similarities 
between inputs or to identify features in the input data. The data is presented to the system, 
and it adapts so that it partitions the data into groups. The clustering or segmenting process 
continues until the system places the same data into the same group on successive passes 
over the data. An unsupervised learning algorithm performs a type of feature detection 
where important common attributes in the data are extracted. 

Reinforcement learning is a type of supervised learning used when explicit input/output 
pairs of training data are not available. It can be used in cases where there is a sequence of 
inputs and the desired output is only known after the specific sequence occurs. This 
process of identifying the relationship between a series of input values and a later output 
value is called temporal credit assignment. Because we provide less specific error 
information, reinforcement learning usually takes longer than supervised learning and is 
less efficient. However, in many situations, having exact prior information about the 
desired outcome is not possible. In many ways, reinforcement learning is the most 
realistic form of learning. 

Another important distinction in learning systems is whether the learning is done on-line or 
off-line. On-line learning means that the system is sent out to perform its tasks and that it 
can learn or adapt after each transaction is processed. On-line learning is like on the job 
training and places severe requirements on the learning algorithms. It must be very fast and 
very stable. Off-line learning, on the other hand, is more like a business seminar. You take 
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your salespeople off the floor and place them in an environment where they can focus on 
improving their skills without distractions. After a suitable training period, they are sent out 
to apply their new found knowledge and skills. In an intelligent system context, this means 
that we would gather data from situations that the systems have experienced. We could then 
augment this data with information about the desired system response to build a training data 
set. Once we have this database we can use it to modify the behavior of our system. 

5.2 Backpropagation Neural Networks 

Backpropagation is the most popular neural network architecture for supervised learning. It 
features a feed-forward connection topology, meaning that data flow through the network in 
a single direction, and uses a technique called the backward propagation of errors to adjust the 
connection weights Rumelhart, Hinton, and Williams 1986 in [23]. In addition to a layer of 
input and output units, a back-propagation network can have one or more layers of hidden 
units, which receive inputs only from other units, and not from the external environment. A 
backpropagation network with a single hidden layer or processing units can learn to model 
any continuous function when given enough units in the hidden layer. The primary 
applications of backpropagation networks are for prediction and classification. 

Figure 7 shows the diagram of a backpropagation neural network and illustrates the three 
major steps in the training process.  

 
Fig. 7. Topology of a backpropagation neural network. 

First, input data is presented to the units of the input layer on the left, and it flows through 
the network until it reaches the network output units on the right. This is called the forward 
pass. 

Second, the activations or values of the output units represent the actual or predicted 
output of the network, because this is supervised learning.  
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Third, the difference between the desired and the actual output is computed, producing the 
network error. This error term is then passed backwards through the network to adjust the 
connection weights. 

Each network input unit takes a single numeric value, ix , which is usually scaled or 
normalized to a value between 0.0 and 1.0. This value becomes the input unit activation. 
Next, we need to propagate the data forward, through the neural network. For each unit in 
the hidden layer,  we compute the sum of the products of the input unit activations and the 
weights connecting those input layer units to the hidden layer. This sum is the inner product 
(also called the dot or scalar product) of the input vector and the weights in the hidden unit. 
Once this sum is computed, we add a threshold value and then pass this sum through a 
nonlinear activation function, f , producing the unit activation iy . The formula for 
computing the activation of any unit in a hidden or output layer in the network is 

 ( )i j i ij iy f sum x w θ= = +  (34) 

where i ranges over all the units leading into the j-th unit, and the activation function is  

 ( ) 1

1 jj sum
f sum

e
−

=
+

 (35) 

As mentioned earlier, we use the S-shape sigmoid or logistic function for f.  The formula for 
calculating the changes of the weights is 

 ij j iw yηδ∆ =  (36) 

where ijw is the weight connecting unit i to unit j, η  is the learn rate parameter, jδ
 
is the 

error signal for that unit, and iy is the output or activation value of unit i. For units in the 
output layer, the error signal is the difference between the target output jt and the actual 
output iy multiplied by the derivative of the logistic activation function. 

 ( ) ( ) ( ) ( )´ 1j j j j j j j j jt y f sum t y y yδ = − = − −  (37) 

For each unit in the hidden layer, the error signal is the derivative of the activation function 
multiplied by the sum of the products of the outgoing connection weights and their 
corresponding error signals. So for the hidden unit j. 

 ( )´
j j j k jkf sum wδ δ=   (38) 

where k ranges over the indices of the units receiving j-th unit´s output signal. 

A common modification of the weight update rule is the use of a momentum term α , to cut 
down on oscillation of the weight change becomes a combination of the current weight 
change, computed as before, plus some fraction ( α ranges from 0 to 1) of the previous 
weight change. This complicates the implementation because we now have to store the 
weight changes from the prior step. 
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 ( ) ( )1ij j i ijw n y w nηδ α∆ + = + ∆  (39) 

The mathematical basis for backward propagation is described in detail in [23]. When the 
weight changes are summed up (or batched) over an entire presentation of the training set, 
the error minimization function performed is called gradient descent. 

5.3 Genetic Algorithms 

In this section a brief description of a simple genetic algorithm is given. Genetic algorithms 
are based on concepts and methods observed in nature for the evolution of the species. 
Genetic algorithms were brought to the artificial intelligence arena by Goldberg [6], [24]. 
They apply certain operators to a population of solutions of the problem to be solved, in a 
such a way that the new population is improved compared to the previous one according to 
a certain criterion function J [5], [1], [6], [24]. Repetition of this procedure for a preselected 
number of iterations will produce a last generation whose best solution is the optimal 
solution to the problem. 

The solutions of the problem to be solved are coded in the chromosome and the following 
operations are applied to the coded versions of the solutions, in this order: 

Reproduction. Ensures that, in probability, the better a solution in the current population is, 
the more replicates it has in the next population, 

Crossover. Selects pair of solutions randomly, splits them in a random position, and 
exchanges their second parts. 

Mutation. Selects randomly an element of a solution and alters it with some probability. It 
helps to move away from local minima. 

Besides the coding of the solutions, some parameters must be set up:  

N, number of solutions in a population. Fixed or varied. 
p, probability with which two solutions are selected for crossover. 
m, probability with which an element of a solution is mutated. 

The performance of the GA depends greatly on these parameters, as well as on the coding of 
the solutions in the chromosome. The solutions can be coded in some of the following 
formats: 

Binary. Bit strings represent the solution(s) of the problem. For instance, a chromosome 
could represent a series of integer indexes to address a database, or the value of a variable(s) 
that must be integer, or each bit could represent the state (present-absent) of a part of an 
architecture that is being optimized, and so on. 

Real valued. The bit strings represent the value of a real valued variable, in fixed of floating 
point. 

The aspect of one chromosome could be like this: C = {100101010101010101}; the 
interpretation will vary in accordance with the coding scheme selected to represent the 
knowledge domain of the problem. For instance, it might represent a set of six indices of 
three bits each one; or it could have a meaning with all the bits together, representing an 18 
bit code.  
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The primary reason of the success of genetic algorithms is its wide applicability, easy use 
and global perspective [6], [24], [25].  The next is the listing of a simple genetic algorithm. 

 

The genetic algorithms find application in the field of speech processing via the solution to 
the problem of variable and feature selection  [11], [14], [26], [27], [28], [29], [30]. 

6. Restricted-vocabulary speech recognition system 

The expression restricted-vocabulary speech recognition refers to the recognition of 
repetitions of spoken words that belongs to a limited set of words within a semantic field. 
This means that the words have connected meanings, for instance, the digits = {0,1,2,…, 9} or 
the days of the week={Saturday,  Monday,…, Friday}. The applications of the recognition of 
limited size word-sets include voice-commanded systems, spoken entry and search for 
computer databases in warehouse systems, voice-assisted telephone dialing, man-machine 
interfaces, and others. The advantage of a system developed for a specific semantic field is 
that it can be built to be much more accurate than those constructed for the general speech 
recognition, also requiring less extensive training sets.  

Restricted-vocabulary speech recognition is also an important research topic because of the 
intricacies involved in the underlying pattern recognition problem: variable selection, 
feature generation/selection and classifier selection. Variable selection is mostly restricted to 
select the raw digitized voice signal as the variable; alternatively, the surrounding 
environmental noise could be used as another variable  for noise cancelation purposes. 
Feature generation has been carried out by obtaining linear predictive coefficients (LPC), 

www.intechopen.com



Optimal Feature Generation with  
Genetic Algorithms and FLDR in a Restricted-Vocabulary Speech Recognition System 

 

253 

AR/ARMA coefficients, Fourier coefficients, Cepstral coefficients, Mel Spectral Coefficients, 
and others [31]. In many the cases, the coefficients are computed over a short-time window 
(typically 10 ms) and over the voiced segments of the speech signal.  As well as for the 
feature generation, for the classifier several options are available: Hidden Markov Models 
HHM (perhaps the most popular), neural networks (backpropagation, self-organizing maps, 
radial basis, etc.), support vector and other kernel machines,  Gaussian mixtures, Bayesian 
type classifiers, LVQ,  and others. It should be noted that this list of choices of each element 
in the pattern recognition chain is by no means extensive.  Please note that by simply 
considering all the combinations of variables, features and classifiers mentioned here, it is 
easily seen that there exist too many ways to implement a  restricted-vocabulary speech 
recognition system.  

 
Fig. 8. Block diagram showing the optimal feature generation with the GA and FLDR. 

6.1 Methodology 

Figure 8 shows a block diagram of the whole speech recognition system. The system works 
in two phases: training and operation. The blocks of the training-phase are described below.  

Lexicon Acquisition and Normalization. In this stage, the set L = {w0,w1,w2,…, wM-1} of M 
words that will comprise the lexicon to be recognized is acquired from the speaker(s) that 
will use the system; vectors containing the digitized versions of the voice signals will be at 
the disposal of the next stage.  

Power Spectrum. The power spectrum has been traditionally the source of features for 
speech recognition; here, the power spectrum of the voice signals will be used by the genetic 
algorithm to determinate discriminant frequency bands. 

Optimal Feature Generation. The features selected here are a) the energy E of eight to twelve  
frequency regions (sub-bands) of the spectrum, b) the bandwidth (BW) of each sub-band, 
and c) the central frequency (FC) of the sub-bands. See Figure 9.  Sub-band processing in 
speech have been previously used, but in different manners [32], [33], [34]. A genetic 
algorithm with elitism is used here to select each bandwidth (BW) its central frequency 
(Fc) and a number of sub-bands.  The main parameters of the genetic algorithm are listed 
in table 1. The cost function of the GA is an expression aimed at maximizing the Fisher’s 
linear discriminant ratio (FLDR). The use of the FLDR in the cost function ensures  
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Parameter Value 

     Population      20-120  

     Mutation       Gaussian ( 1-2 , 1-2)   (scale,shrink) 

     Selection       Elitism 

     Crossover       Scattered, one-point and two-points 

Table 1. Parameters of the Genetic Algorithm. 

increasing both, class separability and cluster compactness between classes ω0 and ω1, being 
ω0 the class of the word to be recognized and ω1 the class of the rest of the M-1 words. The 
FLDR was described here in section  4.1, and the expression adopted here is the equation 
(31):  

1
2

b
w b

w

S
J S S

S
−= =  

where |Sb| is the determinant of the inter-class covariance matrix and  |Sb|is the 
determinant of the intra-class covariance class. At the end of the evolutionary process the 
genetic algorithm produced a set of vectors with the parameters [E, BW, Fc] and the number 
of sub-bands, between 8 and 12. 

 
Fig. 9. Sub-band spectrum division to separate the power spectra in discriminant regions. 

Bank-filter Design. During the operation phase, the calculation of the power espectrum of the 
incoming voice signals is not practical for real-time response because the discrete Fourier 
transform (DFT  [2], [3]) requires too much time to be calculated, and the fast Fourier 
Transform (FFT [2], [3]) requires that the number of samples to be a power of 2, requiring 
zero padding most of the times. Instead of using the power spectrum, in this application it is 
used the Parseval’s theorem, described in section 4.2, which  states that the energy in time 
and frequency is equal. In discrete form, we recall equation (32): 
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where x[i] is the time domain signal with and X[k] is its modified frequency espectrum, 
which is found by taking the DFT of the signal and dividing the first and last frequencies by 
the square rooth of two. Therefore, all that have to be done is to filter the sub-bands out  of 
the time signals and then to calculate the energy in each sub-band. This can be perfectly 
accomplished by a bank of digital band-pass filters whose parameters match the parameters 
found by the genetic algorithm, and the advantage is that at the end of the last sample of 
voice in real-time a word can be immediately recognized.  

In the Operation Phase, the three first stages operate simultaneously at each time a sample 
of the voice is acquired, and occur between two successive sampling intervals; in the first 
stage the voice signal is acquired and a normalization coefficient Nc is updated with the 
maximum value of the signal; the block labeled filtering represent the action of the filter 
bank and the outgoing signal is squared and added sample by sample. At the end of a 
voiced segment of sound, the third block provides to a classifier with the set of features for 
word classification.  

6.2 System design 

In this section the details of the system design will be presented.  

6.2.1 Characterization of the frequency spectrum using sub-bands 

Consider the Fourier Transform of a signal:  

 ( ) ( )( )=S F s tω         (40) 

Now consider the frequency spectrum split in sub-bands, as shown in Figure 9. Please notice 
in Figure  9 that S(w) has been normalized to unitary amplitude. For each sub-band, the 
energy can be calculated as: 

 ( )( )2
0= 

ub

i
lb

E k S ω     (41) 

where Ei, is the energy of the i-th sub-band, k0  is a constant proportional to the bandwidth 
(BWi) of the i-th sub-band, lb and ub are the lower and upper bounds of the i-th sub-band. 
The feature vector of the n-th utterance of s(t) in the frequency domain becomes:  

 ( ) [ ]1 2 3 4= n MSr ω E  E  E  E   E   (42) 

In which M is the number of sub-bands, and Srn is the reduced version of the n-th S(ω). In 
order to characterize a word in the vocabulary, N samples of s(t) must be entered. From the 
example in Figure 9 and without loss of generality, the set of parameters of the respective 
filter bank that will operate in the time domain is: 

    1 1 2 2 3 3[               ]=  L LBF C BW C BW C BW C BW   (43) 

The number of filters to be applied in the time-domain signal in this case is L. For a 
vocabulary of K words (K small), the spectra in which the solution must be searched is given 
by K matrices of N rows and 2000 columns. 
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6.2.2 Genetic algorithm set up 

6.2.2.1 Coding the chromosome 

The chromosome is comprised of the parameters of the filter bank described in equation 43. 
The number of sub-bands is fixed, and each one of the centers and bandwidths are subject to 
the genetic algorithm. Real numbers are used. 

6.2.2.2 The cost function 

The cost function is given by equation (32), criterion J2. The goal is to maximize J2 as a 
function of the centers and bandwidths. 

6.2.2.3 Restrictions 

The following restrictions apply: 

R1. Sub-bands overlapping < = 50Hz, 
R2. Bandwidth is limited to range from 40 to 400 Hz, varying according to the 
performance of the genetic algorithm. 

6.2.2.4 Operating parameters of the genetic algorithm 

The main parameters of the genetic algorithm are summarized in the Table 1. The values of 
the parameters are given according to the best results obtained by experimentation. The 
genetic algorithm was ran in Matlab®, using the genetic algorithms toolbox and the gatool 
guide. The nomenclature of the parameters in Table 1 is the one used by Matlab®. 

6.2.2.5 Application’s algorithm 

To make operational de methodology described so far, the following steps apply: 

1. Vocabulary definition. 2 to K words. In many real life applications, K in 8 to 15 words do 
the job. 

2. Database acquisition. 15 to 20 utterances of each word from the vocabulary, for learning  
purposes. The sampling frequency can be set from 6000 to 8000 Hz. Human voice 
accommodates easily here. 

3. s(t) to S(w) transformation. Apply Fourier transform to the data, normalize to unitary 
amplitude and to a fixed length of 2000. 

4. Data preparation for the GA. Set-up the size (eq. 43) and restrictions (subsection 6.2.2.3) of 
the filter bank (chromosome). 

5. Running the GA. Run the GA to find the sub-bands whose J2 (eq. (32)) is the maximum. 
6. Filters realization. For each sub-band, compute the coefficients of the respective 

bandpass filters. For real-time implementation, order from 4 to 8 is recommended, type 
IIR, elliptic. Elliptic filters  achieve great discrimination and selectivity. Implementation 
details can be found in [2]. 

7. Modeling the commands. To make comparisons and therefore classification, a Gaussian 
statistical  model of each word is to be constructed for each command in the vocabulary. 
Proceed as follows for each command: 
a. Construct a matrix C of 15-20 rows of Srn(w) and M columns (one row  per sample 

of the command, one column per sub-band selected by the AG), 
b. Compute the mean value overall the samples, to find the average energy per sub-

band, this is the feature vector of the command (μi) 
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c. Compute the covariance matrix, Si = cov(Ci). 
d. At any time, the Mahalanobis distance between the model of the i-th command and 

the feature vector x of an incoming command is:  

 dM(x,µi) = (x-µi)*Σi-1*(x-µi)-1   (44) 

To make the real-time implementation, a digital system must sample the input microphone 
continuously. Each sample of a command must  be filtered by each filter (sub-band 
extraction). The integral of the energy of the signal leaving each filter over the period of the 
command is used to create the feature  vector of that command, that is, x in equation 44. The 
feature vector is compared to each model in the vocabulary, and the command is recognized 
as the one with the minimum dM score. This is the so-called “minimum distance classifier” 
[5]. 

7. Results 

To test the system, the following lexicons were used: L0={faster,  slower, left, right, stop, 
forward, reverse, brake}, L1={zero, one, two, three, four, five, six, seven, eigth, nine}, 
L2={rápido,  lento, izquierda, derecha, alto, adelante, reversa, freno}, L3 = {uno, dos, tres, 
cuatro, cinco}. In all the lexicons, 3 male and 3 female volunteers were enrolled. They 
donated 116 samples of each word, 16 for training and 100 for testing. To demostrate the 
power of our approach we used the minimum distance classifier with the Mahalanobis 
distance. In all the cases, the genetic algorithm was ran 30 times to find the best response in 
the training set. During the training phase, the leave-one-out method was used to exploit the 
limited size of the training set [1]. Table 2 summarizes the results. In columns 5 and 7 are 
shown the comparison against a backpropagation neural network using as features Cepstral 
coefficients. The experiments were done using Matlab(R)  and its associated toolboxes of 
genetic algorithms, neural networks and digital signal processing. The real-time 
implementation was done with a TMS320LF2407 Texas Instruments(R) Digital Signal 
Processor mounted on an experimentation card.  
 

 
Simulations Real-time on DSP 

MDC3 BPNN4 MDC3 BPNN4 

G1 L2 
Training 

Set
Testing 

Set
Testing 

Set
Real 

scenario 
Real 

scenario 

F
e
m

a
le

 0 100 97 92 94 90 
1 100 98 90 95 90 
2 100 100 97 94 89 
3 100 100 91 95 88 

M
a

le
 0 100 100 94 96 89 

1 100 100 90 95 90 
2 100 99 92 94 90 
3 100 98 92 93 88 

  1Gender,  2 Lexicon, 3Minimum distance classifier, 4Backpropagation neural network  [1]  8-32-K 
neurons per layer, K according to the experiment, one neuron for each word in L. 

Table 2. Percentage (%) of correct classification with 4 lexicons, 2  languages, 6 persons, male 
and female voices, 2 classifiers. Simulations and real time implementation. 
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7.1 Results  and discussion 

7.1.1 Results in the L3 Spanish vocabulary 

The genetic algorithm was executed 30 times, and the maximum Fisher’s ratio obtained was 
62. The resulting best chromosome was: 

BF = [254 180 526 132 744 118 1196 141 1483 115 2082 86 2295 171 2828 46] 

From which the corresponding center and bandwidth were: 

[ ]
[ ]

C   254 526 744 1196 1483 2082 2295 2828

BW   180 132 118 141 115 86 171 46

=

=
 

The recognition rates in the training and testing sets were 100% and 99%, respectively. In 
real conditions the correct classification rate was 93.5% in 40 repetitions of each word to the 
microphone.  

7.1.2 The genetic algorithm in L3 

Consecutive executions of the GA produced variable Fisher’s ratios. It was observed here 
that the population size is critical, since a population of 20 chromosomes produced Fisher’s 
ratios between 35 and 42, while a population of 120 individuals easily produced Fisher’s 
ratios above 58.  It was noticed during experimentation that specific values for restrictions 
R1 and R2 also have a strong influence in the outcome. 

Comparing the results over a traditional approach with neural networks and cepstral 
coefficients it is evident a higher performance and, more important, the system exhibits real-
time operation and very low computational effort compared to neural networks and real-
time computation of the Cepstral coefficients. 

7.1.3 Results in the L0 English vocabulary 

The genetic algorithm was executed 30 times, varying population size, probability of 
mutation, restrictions, number of sub-bands, and other parameters. The initial number of 
sub-bands was 8, then it was scaled to 9 and 12; in this scenario, the Fisher‘s ratio varied 
from 23 (8 sub-bands, population size = 20) to 48 (12 sub-bands, population size = 200). The 
resulting centers and bandwidths were: 

[ ]
[ ]

C  250 446 648 1283 1483 1776 2018 2506 2737 3197 3383 3833

BW   5 138 187 157 139 43 207 106 105 98 148 224

=

=
 

Intra-class repeatability and inter-class differences 

The performance in the training set was 100%; the performance in the testing set was 99%. 
The correct classification per word was  {100%  100% 98% 100% 97% 100% 98% 99%} for the 
respective words {‘faster‘,‘slower‘,‘left‘,‘right‘,‘stop‘,‘forward‘,‘reverse‘,‘brake‘}, respectively. 
Figure 10 shows the normalized espectra of two utterances of the word ‘faster‘ and the word 
‘slower‘. In both cases notice the repeatability in the frequency domain, as well as the 
difference between both sets of spectra. 
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Fig. 10. Normalized spectra of the words “faster” and “slower”. 

7.1.4 Results of the real-time implementation 

A minimum distance classifier was implemented in a digital signal processor 
TMS320LF2407 for each of the four lexicons L={L0, L1, L2, L3} from Texas Instruments, in 
order to verify the performance using in a nearly real-life application. The voiced/no-voiced 
segmentation was performed using a push-button to start and finish capturing the voice. 
The DSP has a built-in 10-bit analog to digital converter facilitating the interfacing task. The 
digital filters used were IIR topology, elliptic type, 8th order. The filter coefficients (A, B) 
were calculate using the Matlab® Software. The analog-to-digital conversion was set-up to 
acquire one sample every T seconds, (T=1/6000); each time a sample came into de device, 
the filters actuated and the respective output was squared and accumulated to calculate the 
energy of the signal. Scaling issues had to be solved since the model was created in a real 
valued [-1 , 1] scale, while the DSP just “see“ integer values. Once a whole command was 
processed, it was just a matter of a few miliseconds to apply the minimum distance classifier 
and provide the classification. The correct classification rate was in this case of the order of 
94.5%, in a total of 1200  repetitions  of the words in L. 

8. Conclusions and future work 

In this chapter was presented a method to implement a high performance, real-time, 
restricted-vocabulary speech  recognition system, combining a genetic algorithm and the 
Fisher’s Linear Discriminant Ratio (FLDR) in its matrix formulation. A review of the 
concepts of variable and feature selection as well as feature generation was made; also were 
presented some concepts related with speech processing, like the LPC formulation and the 
DTW method for template matching.  

One of the conceptual tools used here was the energy of the signal in certain sub-bands in 
the frequency domain; thanks to the Parseval’s theorem, the same amounts of energy can be 
calculated in the time domain via a bank of digital filters, enabling thus a very fast way to 
apply the recognizer, since the process goes on at the same time as the occurrence of the 
word is exerted. Mainly, two experiments were shown, in Spanish and English, with male 
and female participants; in both cases high performance was attained, beyond 94% at the 

www.intechopen.com



 
Bio-Inspired Computational Algorithms and Their Applications 

 

260 

worst case. Compared to a typical implementation with backpropagation neural networks 
and cepstral coefficients, this approach was at least 10% more effective in near real-life 
application.  

The genetic algorithm consistently maximized the criteria of inter-class separability and 
intra-class compactness, under different conditions of population, probability of mutation, 
etc., and also varying the restriction set. It is remarkable and worth to mention that the 
genetic algorithm didn’t gave the best result in its first execution, which means that the 
execution must be repeated to achieve good results; increasing the population and 
manipulating the restriction set demonstrated that it is possible to obtain a variety of 
different outcomes, so it is important to experiment carefully.  

The future work will consist of developing the voice/unvoiced detection in noisy 
environments, investigate an adapt more features that can be easily computed in time and 
with a dual in frequency, start working on the non-dependant speaker approach, making 
use of more robust classifiers, and finally, increase the vocabulary size, although still 
restricted to a specific semantic field, like in [35].  Another interesting venue is the one in 
which the user aging process is taken into account by the speech recognition system  [36]. 
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