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1. Introduction 

Plant cells are surrounded by a polysaccharide-rich cell wall that, as well as being a 
supporting structure (O’Neill & York, 2003), plays important roles in plant growth and 
development, and in the protection of plants from both biotic and abiotic stresses (Bowles, 
1990). Plant cell walls are also of global economic importance, with the cell walls of food 
crops being of great nutritional value, while those of agricultural crops are important as a 
renewable resource for the textile and building industries, and increasingly as a sustainable 
source of fuel (O’Neill & York, 2003).  

2. The plant cell wall 

2.1 Plant cell wall structure 

The primary plant cell wall is a three-dimensional assembly of the polysaccharides, 
cellulose, pectin and hemicelluloses together with water, minerals and some structural 
glycoproteins. Atomic force microscopy (AFM) of Arabidopsis thaliana leaf cell walls showed 
the cellulose exists as microfibrils (Davies & Harris, 2003). AFM of living celery parenchyma 
tissue showed the cellulose microfibrils exist in highly ordered parallel array (Thimm et al., 
2000). While AFM on isolated cell walls from celery and cucumber hypocotyls that were 
kept hydrated showed the cellulose microfibrils were undulating in a roughly parallel 
manner (Thimm et al., 2009; Marga et al., 2005). Moreover, each cellulose microfibril is 
surrounded by matrix material (presumably pectin and hemicelluloses) that keeps the 
celluloses uniformly spaced apart (Marga et al., 2005; Thimm et al., 2000; Thimm et al., 
2009). Small angle X-ray scattering of hydrated celery collenchyma cell walls also showed 
uniform spacing of cellulose microfibrils (Kennedy et al., 2007). Solid-state 13C nuclear 
magnetic resonance spectroscopy (NMR) indicated that in mung bean hypocotyls less than 
10% of the surface of cellulose microfibrils has xyloglucan adhering to it (Bootten et al., 
2004) and a recent three-dimensional solid-state NMR study of Arabidopsis thaliana cell walls 
supported this finding and also showed somewhat more pectin than xyloglucan adhered to 
cellulose (Dick-Perez et al., 2011). Indeed, Zykwinska et al. (2007) have previously shown 

www.intechopen.com



 
Atomic Force Microscopy Investigations into Biology – From Cell to Protein 282 

arabinan and galactan side chains of pectin are bound to cellulose. This leads to two possible 
models for the primary cell wall. In the first cellulose microfibrils are held apart at a uniform 
distance by a limited number of xyloglucan crosslinks that are reinforced by more indirect 
crosslinks via the pectin matrix (Bootten et al., 2004; O’Neill & York, 2003). It is pertinent to 
note that xyloglucan has been found covalently linked to pectin in cell walls (Popper & Fry, 
2008). In the alternative model the cellulose micofibrils are embedded in a matrix of pectin 
and hemicelluloses some of which adhere strongly to the cellulose but others interact with 
those bound to cellulose and the interactions diminish with the distance from cellulose 
(Cosgrove, 2001; Talbott & Ray, 1992). In other words a layer of other cell wall 
polysaccharides, of decreasing density, surrounds each cellulose rod and there is no direct 
cross-linking between cellulose microfibrils. 

However, it is important to note the structures of the primary plant cell walls detailed above 
are just models, developed from a wealth of information provided by studies that have 
conducted chemical analyses of isolated cell walls or independently imaged isolated, or 
more rarely intact cell walls (Thimm et al., 2009). Hence cell wall architecture and chemistry 
have yet to be fully reconciled. 

The chemical composition of plant cell walls is usually studied by first isolating cell walls 
from the plant tissues to be analysed, and then sequential extraction techniques are used to 
fractionate the main polysaccharide groups that make up the cell wall (Thimm et al. 2009). 
While isolated cell wall polysaccharides can be analysed using chemical methods or by 
cytochemical staining to visualise the polysaccharide types and gather information about 
their quantity and location, they do not give a true picture of the cell wall in its undisturbed 
state (Carpita et al., 1996; Thimm et al., 2002; Vian & Roland, 1991).  

2.2 Imaging the plant cell wall of higher plants 

While imaging techniques such as transmission electron microscopy (TEM), field emission 
scanning electron microscopy (FESEM) and contact mode atomic force microscopy (AFM) can 
provide valuable information on the appearance, arrangement and structural dimensions of 
cell wall components (Hansma et al., 1997; Li, 1999; Thimm et al., 2002; Thimm et al., 2009), 
only limited chemical information can be obtained. For example, when using AFM, the 
contrast mechanism used to obtain an image is the force between the tip and the sample, and 
many samples produce the same force, thus it is difficult to reliably determine the chemical 
groups that are imaged. However, single-molecule force spectroscopy (SMFS), a technique 
where AFM tips are modified by the addition of specific molecules has the potential to provide 
both structural and chemical information (Mueller et al., 2009a & 2009b). 

3. Atomic force microscopy as a tool for studying plant cell walls 

3.1 Contact mode AFM 

Contact mode AFM is a non-destructive imaging technique by which images with 
nanometer resolution can be obtained, and is therefore ideal for studying cell wall structure. 
In this mode a sharp stylus or tip is scanned across the surface of a sample and the force 
between the tip and sample is measured at a series of points. A colour or grey scale is 
assigned to each force, and then a map of colours displays an ``image'' of the surface 
(Thimm et al., 2000). This form of AFM has been used to examine isolated cell wall material 
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from plants including apple, water chestnut, potato, carrot (Kirby et al., 1996a & 1996b) 
cotton (Pesacreta et al., 1997) and celery (Thimm et al., 2009), and in the “intact walls” of 
celery parenchyma cells (Thimm et al., 2002) and single Zinnia elegans tracheary elements 
(Lacayo et al., 2010). For a recent review of the application of AFM and other scanning probe 
microscopy techniques potentially useful for the study of plant cell walls see Yarbrough et 
al. (2009). While providing useful structural information this technique does not provide 
any chemical information regarding the structures observed.  

3.2 Chemical and single-molecule AFM 

Ducker et al. (1992) demonstrated that the forces between colloid particles could be 
measured by attaching a colloid particle to the end of an AFM cantilever. In biological 
systems, this approach has been adapted to estimate bond strength between different 
biological molecules such as ligands and receptors (You & Yu, 1999), antigen antibody 
binding (Nyquist et al., 2000), receptor binding (Raiteri et al., 1999), and the molecular 
assembly of biomolecules (Kossek et al., 1998, Perrin et al., 1999).  

The principle of sensor force measurement involves attaching one type of molecule to the 
AFM tip and binding another molecule to a surface. The tip is moved towards the surface 
until the molecules interact. This has been demonstrated for biotin-streptavidin (Florin et al., 
1994), avidin-biotin (Moy et al., 1994), for cell-cell interactions (Antonik et al., 1997), cell-
adhesion proteoglycans (Dammer et al., 1995; Misevicz, 1999) and antigen-antibody systems 
(Dammer et al., 1996; Hinterdorfer et al., 1996). This technique can also be used to gain 
chemical information from the surfaces of structural components isolated from cells or from 
the surfaces of living cells (Mueller et al. 2009a & 2009b). For example, Gad et al. (1997) used 
gold-coated tips functionalized with concanavalin A to map the cell wall polysaccharides of 
living microbial cells.  

Single-molecule force sensors can also be used to resolve topographical information (Muller 
et al., 2009a & 2009b). Force mapping is a force sensing technique where a small area is 
raster force probed. Each force curve can potentially be identified and a force map 
generated, showing for example the distribution of cell wall polysaccharides as mentioned 
above. When using single-molecule force microscopy, the probe is not in physical contact 
with the surface, but instead uses the attractive/repulsive part of the force curve, whereby 
the cantilever is purely force driven. We used a variant of this technique, with sugars 
attached to the tip of the cantilever, in an attempt to map the distribution of polysaccharides 
in the parenchyma cell walls of celery epidermal peels, produced as described in Thimm et 
al. (2000). In the following sections we present some preliminary findings regarding the 
development of sensors to both image and to determine the chemical characteristics of 
celery parenchyma cell walls. 

4. A system for single-molecule force microscopy of celery (Apium 
graveolens L.) parenchyma cell walls using glycoside probes 

4.1 The celery cell wall 

Thimm et al. (2002) isolated the primary walls of celery parenchyma cells and their 
polysaccharide components were characterized by glycosyl linkage analysis, cross-
polarization magic-angle spinning solid-state 13C nuclear magnetic resonance (CP/MAS 13C 
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NMR) and X-ray diffraction. The cell walls consisted of mainly cellulose (43 mol%) and 
pectic polysaccharides (51 mol%), made up of rhamnogalacturonan (28 mol%), arabinan (12 
mol%) and galactan (11 mol%), with only smalls amounts of xyloglucan (2 mol%) and xylan 
(2 mol%) detected in the cell walls. Solid-state 13C NMR signals were consistent with the 
constituents identified by glycosyl linkage analysis and allowed the walls to be divided into 
three domains, based on the rigidity of the polymers. Cellulose (rigid) and 
rhamnogalacturonan (semi-mobile) polymers responded to the CP/MAS 13C NMR pulse 
sequence and were distinguished by differences in proton spin relaxation time constants. 
The arabinans, the most mobile polymers, responded to single-pulse excitation (SPE), but 
not CP/MAS 13C NMR. From solid-state 13C NMR of the cell walls the diameter of the 
crystalline cellulose microfibrils was determined to be approximately 3 nm while X-ray 
diffraction of the cell walls gave a value for the diameter of approximately 2 nm. 

4.2 Sensor design 

Glucose and galactose were chosen as sensor molecules as cellulose is a polymer of glucose 
and is one of the main structural components in the celery cell wall, while galactose is an 
important component of celery pectins (Thimm et al., 2002). The two main types of probes 
used in conventional AFM experiments are either silicon-nitride (pyramidal) or silicon 
(ultralever). Sugar groups can be covalently attached directly to the silanol or silolamine 
surface groups on commercial tips, or the commercial tip can be coated in a thin film that is 
convenient for further reactions. Gold is a useful film because a broad spectrum of groups 
can be attached to gold via thiol linkages. Thiols are well known to adsorb under mild 
conditions onto gold surfaces (Biebuyck & Whitesides, 1994; Fritz et al., 1996; Liu et al., 1994, 
Nyquist et al., 2000) and thiol adsorption is strong enough to use sugar-thiols as sensors, for 
these reasons we chose to use gold-coated tips.  

Most interactions in biological systems depend on the orientation of the molecules. 
Therefore, forces between the sensor and the surface can only be detected if the sensor is 
able to align itself unhindered relative to the surface molecule. A carbon spacer chain was 
introduced to ensure that the sensor molecule had enough flexibility to sample different 
orientations relative to the sample. The chain-length of the spacer between the sugar ring-
system and the probe determines its flexibility or ability to rotate freely, and a spacer of C4-
carbons between the interacting sugar ring and the thiol-group was found to be sufficient 
for probing plant cell wall extracts and surfaces (Thimm, 2000). 

4.3 Synthesis of glycoside-sensors and attachment of glycoside-sensors to gold-
coated cantilevers 

The synthetic approach for the derivatisation of thiobutyl-glycosides with a C4-spacer 
(butyl-spacer) can be found in Thimm (2000) and the probes used are shown in Figure 1. 

To avoid contamination of the gold-coated AFM cantilevers, all sensor attachment 
procedures were conducted in a laminar flow cabinet, in 9 cm polystyrene petri dishes. A 
glass-slide was cut to fit inside a petri dish and 30 min prior to sensor attachment, distilled 
ethanol was poured around the glass-slide and the dish was covered to saturate the 
atmosphere with ethanol vapour. The cantilevers were placed onto the glass-slide and 3-4 
drops of a dilute ethanolic solution (1 to 5 mmol) of the thio-glycosides was placed onto the 
gold-coated cantilever and the petri dish was covered. If the sample appeared to be drying 
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Fig. 1. The probes used in the experiments detailed below 

out within the incubation time, a drop of distilled ethanol was added. The surfaces were 
then carefully washed with ethanol and then deionised water, and stored wet. Force 
experiments were conducted where glycoside-sensors were used to probe gold-coated 
surfaces, to which glycosides were attached, to the determine if the sensors were sufficiently 
coated with thio-glycosides and to determine the functionality of the system (Thimm, 2000). 

5. Force mapping celery cell wall fractions 

5.1 Cell wall fractionation 

As discussed in section 3 plant cell walls can be studied by selectively fractionating the 
polysaccharide groups that make up the wall, using sequential extractions, so that each 
fraction can be studied in more detail (Melton & Smith, 2005). Water-soluble pectins are 
extracted with boiling water or cold HEPES buffer, while less-methylated pectins, held in the 
wall with calcium bridges, are solubilised with calcium chelating agents such cyclohexane-
trans-1,2-diaminetetraacetic acid (CDTA). Esterified pectins, and some hemicelluloses are 
extractable with weak alkali (sodium carbonate, Na2CO3). Hemicelluloses and some branched 
pectins are extracted with 1M KOH, while 4M KOH is used to extract more hemicelluloses, 
including xylogucans, and additional branched pectins (Siddiqui, 1989a and 1989b). The 
insoluble final residue is largely cellulose, with any remaining hemicelluloses and some 
complex pectins (Percy et al., 1997, Redgwell et al., 1997; Thimm et al., 2009).  

We used force mode AFM, using the glycoside-sensors detailed in the last section, to probe 

the cell wall components isolated/extracted from celery parenchyma cells as described by 

Thimm et al. (2009). The components probed were the final insoluble residue largely 

composed of cellulose, water-soluble pectins (referred to as the HEPES fraction) and the 

esterified pectins, and some hemiceluloses (referred to as the carbonate fraction). Briefly a 

dilute (1-4 mg/mL) 20 % ethanolic suspension of each component was adsorbed onto 

freshly cleaved mica and allowed to dry in air for up to 20 min. To avoid floating particles 

the sample was careful rinsed with 1-2 mL dionized water (Thimm et al., 2009). The cell wall 

components were then probed using glycoside-sensors and force curves generated for the 

cell wall components detailed above. 

5.2 The final insoluble residue (cellulose) 

To determine if the force curves associated with the final residue were largely due to the 

chemical properties of cellulose, a standard (Whatman cellulose, CF11) was probed and the 

force curves compared to those of the insoluble final residue. The force curves for both the 

Gal:R1=OH, R2=H; Glc:R1=H, R2=OH 
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CF11 and the final insoluble residues were similar (Figure 2). The force curves showed 

jumps starting at 8 to 8.3 nm distance and less defined jumps at 3 to 3.1 nm and 2 to 2.3 nm 

distance. The force curves generated when the final insoluble residue was probed with 

either a galactoside or glucoside sensor showed no clear differences (Figure 3). 

 

 

Fig. 2. Force-distance plots for a galactoside-sensor vs. the final cell wall residue (largely 
cellulose) and a galactoside-sensor vs. cellulose CF11. 

 

    

Fig. 3. Force-distance plots for galactoside- and glucoside-sensor vs. the final cell wall 
residue (largely cellulose).   
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5.3 Water-soluble pectins (the HEPES fraction) 

Figure 4 shows a force-distance plot for a glucoside-sensor vs. the HEPES fraction. Jumps 
are observed at 49 ± 2 , 42 ± 2 (weak), 37.5 ± 2, 23.3 ± 1, 13.5 ± 1, 6.1 ± 0.5 (weak), 3.1 ± 0.1 and 
1.7 nm ± 0.2.  

 

Fig. 4. A force-distance plot for a glucoside-sensor vs. the HEPES fraction. No differences 
were observed between the glucoside- and galactoside-sensors. Jumps are indicated by an *. 

As with the final cell wall residue (cellulose) the glucoside- and galactoside-sensors showed 

only minor differences in their respective force curves and so could not be used as 

individual sensors to distinguish galactoses from glucoses and vice versa. 

5.4 Esterified pectins and some hemicelluloses (the carbonate fraction) 

Figure 5 shows a force-distance plot for a glucoside-sensor vs. the carbonate fraction. Two 

distinct jumps were observed at 16.5 nm ± 1 (with a displacement force of 0.2 nM ± 0.1) and 

at 2.9-3.2 nm (0.1 nN ± 0.05). Two weak repulsions at 5.4 ± 0.1 and 9.2 nm ± 0.7 were also 

observed, but these were often not well resolved.  

5.5 Mixture of fractions 

Force mapping experiments were also conducted on mixtures of the three cell wall 

components in an attempt to simulate an in situ system. This experiment attempted to 

determine if cell wall polysaccharides could be identified, by their force curves, in a complex 

mixture and if the results could then be used to generate a polysaccharide distribution map. 

A mixture of the three cell wall components (1:1:1 w/w) were adsorbed onto a mica sheet 

and the sheet was force mapped using a glucoside-sensor. Figure 6 shows a polysaccharide 

distribution map of such a mixture, showing the distribution of the three cell wall 

components, identified based on their force curves. 

For one sample of mixed components, 242 force curves were generated. Of these, 78 counts 

(32 %) were for cellulose, possibly indicating that cellulose could readily be detected on the 
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surface, possibly as a result of swollen microfibrils that are larger and hence were more 

easily detected that the other cell wall components.  

 

Fig. 5. A representative force-distance plot for a glucoside-sensor vs. the carbonate fraction. 
Jumps are indicated by an *. 

 

Fig. 6. A force curve distribution map of three cell wall components adsorbed onto a mica 
sheet and force mapped using glucoside-sensor. 

The HEPES fraction was detected 44 times (18 %). This result was unexpectedly low and 

may have indicated preferred adsorption of the HEPES polysaccharides to the mica surface. 

Mica (muscovite) is a potassium aluminium silicate hydroxide fluoride that exposes silicate 

oxygen atoms at the surface, resulting in a negative charge in water. This charge might 

induce the preferred adsorption of particular polysaccharides from the polysaccharide 

mixture. Once the first species is adsorbed onto mica, their properties might drive the 
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aggregation of the next layer. It is possible that the HEPES fraction adheres more quickly to 

the mica than the other cell wall components. The other cell wall components could then 

form a second or third layer on top of the HEPES fraction and thus it would be less 

accessible to the sensor, which probes only the surface. 

The carbonate fraction was only detected slightly more frequently (21 %) than the HEPES 
fraction. This pectic material might show a similar behaviour as the HEPES fraction and 
hence compete for mica surface space. Adsorption to mica is possibly through the formation 
of electrostatic bonds with the uronic acids of the HEPES fraction. Greater branching and 
methyl-esterification of the carbonate fraction could result in a reduced ability to compete 
for mica, even though the sodium carbonate extraction might have caused saponification of 
methyl-esters to some degree. Another possible explanation might be that the three cell wall 
components aggregate in solution prior to adsorption to the mica.  

A large number (70 counts (29 %) of 242 force curves) of force curves could not be identified. 
One factor contributing to this was the surface of the polysaccharide mixture seemed to be 
very rough for force experiments. During raster scanning, forces were probed in regions 
consisting of gaps or raised regions of the surface. Another explanation might be that forces 
that could not be assigned are a direct result of intermolecular aggregation of the three cell 
wall components in solution, resulting in new unidentified force profiles. The distribution 
maps for the three cell wall components showed an even distribution covering most of the 
scanned region. No accumulation of individual cell wall components at particular areas was 
observed. 

6. Force mapping the celery cell wall in situ 

6.1 Imaging using force mode 

Figure 7 shows an AFM deflection image of a celery epidermal peel in situ, captured in force 
mode, using a glucoside sensor. Force mode was used to image the cell in order to prevent 
or minimize contamination of the sensor by reducing physical contact with the surface. The 
force mode images of the cell wall of celery parenchyma epidermal peels are not as sharp or 
defined as previously published contact mode images (Thimm et al., 2000).  

6.2 Force mapping the surface in situ 

Prior to force mapping the cell wall, a force mode image was captured and was used to guide 
the probe (reading x, y coordinates in nm) when force mapping the surface in situ. For the 
image shown in Figure 7, 126 force curves were generated, from different points on the sample 
and the structural identity of each point was determined by comparison to the forces curves 
generated from the isolated cell wall components. For each component of the wall, an example 
of a force curve from the in situ experiments is shown below, compared to the isolated cell wall 
components, cellulose (Figure 8), HEPES (Figure 9) and carbonate (Figure 10). 

Of the 126 force curves generated in situ using the glucoside-sensor, 53 (42 %) could be 
attributed to cellulose, 9 (7 %) could be attributed to HEPES fraction polysaccharides and 13 
(10 %) could be attributed to carbonate fraction polysaccharides. Of the 126 curves, 51 (41 %) 
could not be identified. The large number of forces that could not be assigned could be due 
to the presence of non-polysaccharide material, to aggregated polysaccharides or to 
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Fig. 7. AFM force mode deflection image of celery epidermal peels in situ captured using a 
glucoside sensor (scan size 2 μm, scale bar 200 nm, height scale 5 nm) 

 

Fig. 8. Representative force-distance plots, using a glucoside-sensor, showing two over laid 
force curves. One for celery parenchyma cells in situ and the second for the cell wall final 
residue (mainly cellulose).  

polysaccharide components of the cell wall for which no reference force curves were 

available. Most of the force curves that could not be identified showed a strong exponential 

repulsive behaviour, which could be due to the presence of high molecular weight polymers 

or aggregates. 
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Fig. 9. Representative force-distance plots, using a glucoside sensor, showing two over laid 
force curves. One for celery parenchyma cells in situ and the second for HEPES fraction.  

 

 

Fig. 10. Representative force-distance plots, using a glucoside-sensor, showing two over laid 
force curves. One for celery parenchyma cells in situ and the second for the carbonate 
fraction.  

By overlaying data points of the force maps for each identified cell wall component, with the 

force mode AFM deflection image in Figure 7, an image of the wall in situ with some 

chemical information could be generated (Figure 11). Force curves identified as belong to 

the final cell wall residue did appear to be localised more frequently on the raised 

microfibril like structures clearly seen in Figure 11. However, no distinct pattern of 

localisation of the three cell wall components to any particular area of the image was 

consistently observed.  
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Fig. 11. A map of a celery epidermal cell wall in situ, showing the cell wall component 
distribution (cellulose, circle; HEPES, square; carbonate, diamond; unassigned forces, X). 

7. Conclusions 

The use of force curves generated by single molecule sensors is potentially a useful way that 
information about the chemical nature, the strength of interactions, and possibly the molecular 
arrangement of complex biological structures can be deduced (Gad et al., 1997; Hansma et al., 
1997; Li et al., 1998; Li et al., 1999; Marzalek et al., 1998; Osada et al., 1999; Okabe et al., 2000; 
Rief et al., 1997). To date a few attempts have been made to force probe intact plant cell walls 
in situ. The approach taken in our investigation demonstrates the potential for using single 
molecule force microscopy to study plant cell wall chemistry and structure and opens up a 
variety of possible uses, depending on the type of sensor chosen. By probing, using the 
glucoside-sensors, the three celery cell wall components (HEPES fraction, carbonate fraction 
and the final residue) in isolation and a mixture of them, we have shown that individual cell 
wall components can be distinguished in a complex mixture. 

When force mode imaging, using glucoside-sensors, was combined with force curve 
identification, it was possible to map the distribution of cell wall components in celery 
epidermal peels in situ. However, while a cell wall component distribution map of celery 
epidermal peels in situ was obtained, showing the chemical information overlaid over a 
topographical AFM force mode image, the HEPES and carbonate fraction polysaccharides 
did not show any regular or ordered distribution. Only force curves identified as belong to 
the final cell wall residues showed some localisation, appearing more frequently on the 
raised microfibril-like structures. 

For celery, the chemical resolution of the force map was limited to the number of calibration 
standards produced. We used only three polysaccharide extracts (HEPES fraction, carbonate 
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fraction and the final cellulose residue). The quality and/or purity of the fractions used as 
standards is unknown, because it is not known how many different types of polysaccharides 
are present in, for example, the HEPES or carbonate fraction. More sophisticated extraction 
and purification methods could be used to produce cell wall standards to generate force 
curves that could be interpreted in more detail. 

By increasing the number of calibration standards a larger number of forces could be 
identified. Ideally polysaccharides that are highly purified or synthesised, to give molecules 
of known composition, molecular arrangement and linkage type (e.g. xyloglucan, xylan) 
could be used. A different approach might be to mimic polysaccharide structures in the 
plant cell wall by synthesising identified structural elements of, for example, polysaccharide 
sidechains of pectin (galactans and arabinans). Their conformation, strength and fingerprint 
forces could then be studied systematically.  

In the present study, a number of forces could not be identified. One explanation for this 
was the lack of calibration standards, but another important factor might be the interaction 
of polysaccharides in solution and in situ. Aggregation of polysaccharides has been 
observed for xyloglucan and cellulose as well as pectin sidechains and cellulose (Pauly et al., 
1999; Whitney et al. 1995 & 1999; Zykwinska et al., 2007) and this could influence the force 
curve observed. Force measurements of calibration standards (e.g. hemicelluloses such as 
xyloglucan and xylan, pectins such as homogalacturonan, arabinan, galactan or 
arabinogalactan) need to be made of polysaccharides mixed in solution prior to adsorption 
on to a mica surface. In addition, further experiments need to be conducted to determine 
what influences polysaccharide aggregation might have on the observed force curves.  
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