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The Functioning of “Aged” Heterochromatin  

Teimuraz A. Lezhava, Tinatin A. Jokhadze and Jamlet R. Monaselidze 
Department of Genetics, Iv.Javakhishvili Tbilisi State University, Tbilisi,  

Georgia 

1. Introduction 

1.1 Heterochromatin – Substratum of aging 

The aging process is programmed in the genome of each organism and is manifested late in 
life. Any change in normal homeostasis, particularly any further loss of the cell function 
with aging, occurs in the functional units of the chromatin domains. 

Modification of the chromatin structure and function by hetero- or 
deheterochromatinization occurs throughout life and plays a pivotal role in the irreversible 
process in aging by affecting gene expression, replication, recombination, mutation, repair, 
and programming (Gilson and Magdinier, 2009; Elcock and Bridger, 2010). Among 
chromatin modifications, methylation and acetilation of lysine residues in histones H3 and 
H4 are critical to the regulation of chromatin structure and gene expression. Compacted 
heterochromatin regions are generally hypoacetylated and methylated in a discrete 
combination of lysine methylated marks such as H3K9me2 and 3 (its recognition by specific 
structural proteins such as HP1 is required for heterochromatin assembly and spreading) 
and H4K20me1 (Trojer and Reinberg, 2007; Vaquero, 2009). Hypermethylation may cause 
heterochromatinization and thus would result in gene silencing (Mazin, 1994, 2009). It was 
found that HP1 is associated with transcripts of more than one hundred euchromatic genes. 
All these proteins are in fact involved both in RNA transcript processing and in 
heterochromatin formation. Loss of HP1 proteins causes chromosome segregation defects 
and lethality in some organisms; a reduction in levels of HP1 family members is associated 
with cancer progression in humans (Dialynas et al., 2008). This suggests that, in general, 
similar epigenetic mechanisms have a significant role on both RNA and heterochromatin 
metabolisms (Piacentini et al., 2009). 

Current evidence suggests that SirT1-7 (NAD-dependent deacetylase activity proteins), now 
called "sirtuins," have been emerging as a critical epigenetic regulator for aging (Imai, 2009). 
The first event, arrival of and SirT1 at chromatin, results in deacetylation of H4K 16 and 
H3K9Ac, and direct recruitment of the linker histone H1, in the formation of heterochromatin, 
a key factor in the formation of the 30 nm fiber (Vaquero, 2004; Michishita et al., 2005). The fact 
that such histones modifications are reversible (Dialynas et al., 2008; Kouzarides, 2007) offers 
the potential for therapy (Dialynas et al., 2008). The first level of chromatin organization, the  
10 nm fiber, corresponds to a nucleosome array. This fiber is accessible to the transcriptional 
machinery and is associated with transcriptionally active regions, which are also known as 
active chromatin or euchromatin (Trojer and Reinberg, 2007).  
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Heterochromatin is divided into two main forms according to their distinct structural 

functional dynamics: constitutive heterochromatin (CH) and facultative heterochromatin 

(FH). CH refers to the regions that are always maintained as heterochromatin; these span 

large portions of the chromosome and have a structural role. CH regions contain few genes 

and are located primarily in pericentromeric regions and telomeres. FH refers to those 

regions that can be formed as heterochromatin in a certain situation but can revert to 

euchromatin once required. FH can span from a few kilobases to a whole chromosome and 

generally includes regions with a high density of genes. SirT1 contains both forms of 

heterochromatin (Prokofieva-Belgobskaya, 1986; Vaquero, 2004, 2009). Heterochromatin 

composed of distinct life-important functional domains, includes: 1. constitutive 

heterochromatin, almost entirely composed of non-coding sequences (satellite DNA) that 

are mostly localized at or are adjacent to the centromeric and telomeric regions; 2. NOR- 

satellite stalk heterochromatin reflecting the activity of synthetic processes (Ag-positive -

coding chromatin and Ag-negative – non-coding chromatin) and 3. facultative 

heterochromatin (heterochromatinization - condensed euchromatic regions) that mainly 

consist of “closed” transcribe genes.  

According to this view, we discuss of the levels of: 1) total heterochromatin; 2) constitutive 

(structural) heterochromatin; 3) nucleolus organizer regions (NORs) heterochromatin and 4) 

facultative heterochromatin in lymphocytes cultured from individuals at the age of 80 and 

over.  

2. Facultative heterochromatin (condensation of eu- and heterochromatin 
regions)  

We have used differential scanning microcalorimetry to produce a calorimetric curve in 

cultured human lymphocytes over the temperature range 38–130C. It was determined 
that the clearly expressed shoulder of the heat absorption curve in the temperature 
interval from 40°C to 50°C with Tm(I)=45+1°C corresponds to melting of membranes and 
some cytoplasm proteins, maxima at Tm(II)=55+1°C correspond to melting (denaturation) 
of non-histone nuclei proteins, maxima at Tm(IV)70+1°C corresponds to the 
ribonucleoprotein complex, and maxima at Tm(III)=63+1°C and Tm(V)=83+1°C 
correspond to cytoplasm proteins. Other clearly expressed peaks at Tm(VI)=96+1°C and 
Tm(VII)=104+1°C correspond to the chromatin denaturation (Monaselidz et al.,2006,2008). 
The heating process produced clear and reproducible endothermic heat absorption peaks. 

We found that an endothermic peak at Tm=104±1C corresponds to melting of 30 nm-thick 
fibers, which represents the most condensed state of chromatin in interphase nuclei 

(heterochromatin), and that an endothermic peak at 96±1C corresponds to melting of  
11 nm-thick filaments. 

The chromatin heat absorption peaks VI and VII changed significantly with age. In 

particular, in the shifted endotherms VI and VII, the temperatures increased by 2C and 3°C 

accordingly in old age (80-86 years). Additional condensation of the eu- and 

heterochromatin was demonstrated by an increase in Tm by 2°C and 3°C in comparison with 

the meddle age (25-40 years) (Fig.1). These prominent changes in chromatin stability 

indicated transformation of eu- and heterochromatin in condensed chromatin 

(heterochromatinization).  
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Fig. 1. The excess of heat capacity (ΔCp=dQ/dT ) as function of temperature for 
lymphocytes cultures from young donors (------) and old donors (——) (48 –hour cell 
culture), dry biomass (------) - 8.5 mg and 87 μg DNA, dry biomass (——) 8.8mg and 90 μg 
DNA 

One of the potential epigenetic mechanisms is heterochromatinization of chromatin within 
the region of the genome containing a gene sequence, which inhibits any further molecular 
interactions with that underlying gene sequence and effectively inactivates that gene  
(Ellen et al., 2009). The chromatin peak behavior described above shows progressive 
heterochromatinization of lymphocyte chromosomes from old individuals and confirms 
previously reported data (Lezhava, 1984, 2001, 2006; Vaquero, 2004).  

These significant changes in chromatin stability in old age indicate that the aging process 
involves transformation of the eu- and heterochromatin into condensed forms and that 
further compaction or progressive heterochromatinization occurs during aging. 

3. Constitutive heterochromatin  
(pericentromeric and telomeric heterochromatin) 

Centromeric and telomeric heterochromatin differs from each other by structure and 
sensitivity to exogenous factors. Centromeric heterochromatin showed increased H3-K27 
trimethilation in the absence of SUV39h1 and Suv39h2HMTases. Such modification was not 
detectable at telomeric heterochromatin. Despite the differences between the two 
heterochromatin domains and the distinction of functions, they have much in common 
(Blasco, 2004; Lam et al., 2006).  
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3.1 Pericentromeric heterochromatin 

The heterochromatin regions of human chromosomes near the centromere vary and the 

degree of variability is related to the amount and molecular organization of DNA, which 

contains only a fraction of satellite DNA. The amount and function of heterochromatin 

regions have a close relationship with the organization and functioning of the entire 

genome. 

Satellite DNA (tandemly repeated noncoding DNA sequences) stretch over almost all native 

centromeres and surrounding pericentromeric heterochromatin. Satellite DNA was 

considered to be an inert by-product of genome dynamics in heterochromatic regions. 

However, recent studies have shown that the evolution of satellite DNA involved an 

interplay of stochastic events and selective pressure. This points to the functional 

significance of satellite sequences, which in (peri) centromeres may play some fundamental 

roles. First, specific interactions between satellite sequences and DNA-binding proteins are 

proposed to complement sequence-independent epigenetic processes. Second, transcripts of 

satellite DNA sequences initialize heterochromatin formation through an RNAi mechanism. 

In addition, satellite DNAs in (peri)centromeric regions affect chromosomal dynamics and 

genome plasticity (Mehta et al., 2007; Plohl et al., 2008). Satellite DNA is localized in human 

(peri) centromeres heterochromatin chromosomes 1,9, 16 and Y. 

The data on comparative of (peri) centromeric heterochromatin (C-segment ) were provided 

for all three chromosome pairs (1, 9 and 16) indicating that the variants of large C-segments 

(d and e) were registered more often in old individuals than in the cells of the younger ones: 

for chromosome 1 – X²4 =21.9, (p<0.001); for chromosome 9 – X²4 =10,6 (p<0.001); for 

chromosome 16 – X²4 =18.7, (p<0.001). The increased size of the C-segments were also found 

in the Y- chromosomes of the family : the father and the grandfather (59 and 88 years, 

respectively), compared with the 30 year old son (Lezhava, 2006).  

Thus, the (peri) centromeric heterochromatin on three chromosome pairs (1, 9 and 16) and 

the C-segments of the Y chromosome increase in size in old age, pointing to the 

heterochromatinization of these heterochromatin regions of chromosomes. 

In some cases, without pretreatment metaphases from old individuals, blocks of centromeric 

heterochromatin were common on homologous chromosomes 1qh C-band locations were 

similar to those seen after an alkaline or thermal pretreatment or staining with buffered 

Giemsa. 

In a percentage without pretreatment of metaphases, the heterochromatin-positive 1qh 

chromosomes displayed some packing impairment. Sizes and distribution of centromeric 

heterochromatin on the 1qh homologous varied in some metaphases of 6 from 24 

individuals aged 81 to 114 years and was absents in control group ranging in age from 13 to 

34 years. 

Of interest was a sample from a 114-year-old man whose 1qh showed dark-stained 

heterochromatin sites sized 1.5-fold greater than counterpart sites in other individuals 

samples. However, intrahomologous variability was often related to sizes and the absents of 

heterochromatin blocks in one of the homologous chromosome 1 (Fig.2).  
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The control of cellular senescence by specific human chromosomes was examined in 

interspecies cell hybrids between diploid human fibroblasts and an immortal, Syrian 

hamster cell line. Most such hybrids exhibited a limited life span comparable to that of the 

human fibroblasts, indicating that cellular senescence is dominant in these hybrids. 

Karyotypic analyses of the hybrid clones that did not senesce revealed that all these clones 

had lost both copies of human chromosome 1, whereas all other human chromosomes were 

observed in at least some of the immortal hybrids. The application of selective pressure for 

retention of human chromosome 1 to the cell hybrids resulted in an increased percentage of 

hybrids that senesced. Further, the introduction of a single copy of human chromosome 1 to 

the hamster cells by microcell fusion caused typical signs of cellular senescence. These 

findings indicate that human chromosome 1 may participate in the control of cellular 

senescence and further support a genetic basis for cellular senescence (Sugawara et al., 

1990). 

 

               
 

Fig. 2. Distribution of C-bands on one of the homologous of the 1qh chromosomes without 
preparation pretreatment and unbuffered Unna blue staining. Metaphases: from 114-year-
old man (a) and from 83-year-old man (b). Arrows indicate: homologous chromosomes 1 
with and without bands 

3.2 Telomeric heterochromatin  

Telomeres are specialized DNA–protein structures that form loops at the ends of 

chromosomes (Boukamp et al., 2005). In human cells they contain short DNA repeat 

sequences (TTAGGG)n added to the ends of chromosomes by telomerase. Telomere 

heterochromatin in most human somatic cells loses 50–200 bp per cell division (lansdorp, 

2000; Geserick and Blasco, 2006). Telomeres serve multiple functions, including the 

protection of chromosome ends and prevention of chromosome fusions. They are essential 

for maintaining individuality and genome stability (Lo et al., 2002; Murnane, 2006). A major 

mechanism of cellular senescence involves telomere shortening (Horikawa and Barrett, 

2003; Opresko et al., 2005), which is directly associated with many DNA damage–response 

proteins that induce a response similar to that observed with DNA breaks (Bradshow et al., 

2005; Wright and Shay, 2005).  
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Terminal telomere structures consist of tandemly repeated DNA sequences, which vary in 
length from 5 to 15 kb in humans. Several proteins are attached to this telomeric DNA, 
including PARP-1, Ku70/80, DNA-PKcs, Mre11, XRCC4, ATM, NBS and BLM, some of 
which are also involved in different DNA damage response (repair) pathways. Mutations in 
the genes coding for these proteins cause a number of rare genetic syndromes characterized 
by chromosome and/or genetic instability and cancer predisposition (Callen and Surralles, 
2004; Hande, 2004; Bradshow et al., 2005).  

Based on the presented data, we concluded that telomeric chromatin undergoes progressive 
heterochromatinization (condensation) with aging that determines: (a) inactivation of the 
gene coding for the catalytic subunit of telomerase, hTERT; and (b) switching off the genes 
for Ku80, Mre11, NBS, BLM, etc causing chromosome disorders related to chromosome 
syndromes. Telomere shortening is another consequence of age-related. 

Heterochromatinization that is reportedly due to unrepaired single-strand breaks of DNA in 
telomere regions resulting in unequal interchromatid and interchromosome exchanges and 
inactivation of the telomerase-coding gene-determining telomere length (Golubev,2001; 
Gonzalo et al., 2006).  

Our experimental data showed that the number of cell with end-to-and telomere 
associations and the total frequency of aberrant telomeres were considerably increased at 
the old age in comparison with those at middle age (lezhava,2006).  

The higher frequency of chromosome end-to-and telomere associations in extreme old age 
may be due to the loss of heterochromatin telomere regions (Fig.3). Mouse embryonic 
fibroblast cells lacking Suv39h1 and Suv39h2 exhibit reduced levels of H3K9me and HP1 
(deheterochromatinization).These alterations in chromatin correlate with telomere 
elongation (Garcia-Cao et al., 2004).  

 

 

 

Fig. 3. Telomeres aberrations and end-to-end associations of chromosomes from elderly are 
shown by arrows. 
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According to previous publications (Prokofieva-Belgovskaya, 1986; Hawley and Arbe, l993) 
sister chromosome exchanges (SCEs) do not occur or are less frequent in heterochromatin or 
heterochromatinized regions. The evaluation of SCE in individuals aged 80 years and more 
has revealed that single-cell SCE counts appear to be lower than in middle age (lezhava, 
2006), that is, exchanges between sister chromatids mostly take place in euchromatic 
regions. 

In old age, CoCl2 alone and in combination with the tetrapeptide bioregulator Livagen 
enhanced the distribution of SCE; that is, pericentromeric heterochromatin appeared to be 

more sensitive to the CoCl2 effect alone (15.4  1.8% SCE), whereas SCE was mostly 
observed in telomere heterochromatin when CoCl2 in combination with livagen was used 

(12  1.2% SCE) (control, 2.8  0.5% SCE, respectively).Because exchanges occur in 
euchromatic uncondensated regions, the obvious effect of CoCl2 alone and in combination 
with Livagen could be attributed to its decondensing deheterochromatinization effect on 
pericentromeric and telomeric heterochromatin, which would elevate the possibility of SCE 
((lezhava and Jokhadze, 2007). At the same time, the deheterochromatinization of telomeric 
heterochromatin contributes to activation of DNA repair. That is, the intensity of 
unscheduled DNA synthesis increases (lezhava and Jokhadze, 2004) and creates a basis for 
activation of inactivated genes during aging and development of diseases.  

4. Nucleolus Organizer Regions (NOR) heterochromatin  

The heterochromatic regions of secondary constrictions (NORs) in human D (13, 14, 15) and 
G (21, 22) group acrocentric chromosomes contain genes coding for 18S and 28 ribosomal 
RNA. It has been established that genetically active NORs can appear with nucleolar form of 
DNA-dependent RNA-polymerase and selectively stain with silver (Ag-stained). It has also 
been found that association between Ag-stained satellite stalks of acrocentric chromosomes 
in metaphase cells (Fig.4) are determined primarily by their function as nucleolar 
organizers. 

 

 

Fig. 4. Metaphases with variable sizes of Ag-positive nucleolar organizer regions. Arrows 
indicate a - “open” satellite stalks association; b - “closed” satellite stalks association. 
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The acrocentric association phenomenon may induce acrocentric nondisjunction during the 
meiosis or early zygote division, and chromosome rearrangements. Chromosomes can 
associate when two chromatid satellites are available, and so they are defined as associated, 
when their satellites make up a pair. Therefore, prematurely condensed silver-stained 
acrocentrics have similar rates of interphase and metaphase association. It was shown 
(Lezhava,1984; Verma and Rodriguez, 1985) that the likelihood of acrocentric chromosome 
associations is related to an extent of satellite stalk heterochromatinization. 

Heterochromatinization of stalks – NORs has been studied by association frequencies in 
lymphocytes. In humans of a very old age (80–93 years), the estimated number of Ag-
positive nucleolus organizer regions (NORs) for all chromosomes per cell, both associated 
and nonassociated, was significantly lower (6.10 in individuals 80–93 years old) in 
comparison with that in young individuals (7.05; p < 0.01). The frequency of acrocentric 
chromatid association in individuals aged 80 years and over was significantly decreased in 
comparison with those in a control group.  

Increase of associations frequency was parallel to the growth of Ag segment size. At the 
same time, chromosomes containing NORs of grade 2 frequently formed associations 
among the middle-aged individuals, rather than in the older group.  

Moreover, the transcriptional activity of ribosomal cistrons, which determine activity of a 
nucleolar form of DNA-dependent RNA polymerase - were from 668–721 imp/min in old 
individuals. They were significantly decreased in comparison with the control: from 1020 to 
1120 imp/min. 

The above considerations imply that a decreased number of chromosomes with Ag-positive 
NORs, a lower frequency of association of acrocentric chromatids, and a decrease in 
endogenic RNA-polymerase activity of ribosomal cistrons, result in alterations in the length 
of chromosomal satellite stalks that is caused by heterochromatinization in the process of 
aging (Lezhava and Dvalishvili,1992).  

4.1 Cis- and trans-types of chromatid association 

Most of acrocentric chromosome associations (85 percent) are formed by single chromatid 
satellite stalks (Lezhava et al., 1972; Verma et al., 1983). The exposure of lymphocyte cultures 
to 5-bromodeoxyuridine (BrDU) during two replication cycles revealed two-acrocentric 
associations that were either at a cis-position (differentially stained acrocentric chromatids 
with a dark-to-dark or light-to-light association) or a trans-position (chromatids with a dark-
to-light or light-to-dark association) (Chemitiganti et al., 1984).  

Frequencies of the cis- and trans-orientation of acrocentric chromatid association have been 
studied in old individuals. Lymphocyte cultures were prepared with a conventional 
methodology. The study examined 173 metaphases from 9 individuals aged 80 to 89 years 
and 124 metaphases from 6 individuals aged 20 to 48 years. For differential staining of sister 
chromatids BrDU (7.7 µg/ml) was added to the cultures immediately on their initiation. The 
lymphocytes were incubated in darkness for 96 h at 37°C. Giemsa stain was employed after 
DNA thymine was substituted by BrDU. In DNA thymine was totally substituted in one of 
second-mitosis sister chromatids which stained light and was denoted chromatid 1; only 
half of DNA thymine was substituted in the other chromatid which stained dark and was 
defined as chromatid 2 (Fig. 5). According to association criteria of cis-1 position was the 
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term adopted for the light-to-light association, cis-2 position for the dark-to-dark 
association, and trans-position for the light-to-dark association (Fig. 5). 

Statistical analysis of association frequencies proceeded from the assumption that the cis-1 
and cis-2 associations have similar chances to occur, and the chances make half of the 
probability of the trans-oriented association, that is 

 Pcis-1(DD) = Pcis-2(DD) = 1/2 Ptrans(DD)  (1) 

 Pcis-1(GG) = Pcis-2(GG) = 1/2 Ptrans(GG)  (2) 

 Pcis-1(DG) = Pcis-2(DG) = 1/2 Ptrans(DG)  (3) 

These equalities represent the hypothesis that chromatids-1 and chromatids-2 participated 
in the association with the same probability. 

The data of the middle-aged group fitted the hypotheses (2) and (3). The statistics 
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should be almost X2(2)-distributed if (3) is true; they yielded the value of 0.69. Similar 

statistics X2(DG) for testing (3) gave the value of 1.54. Equalities (1) proved less supportive: 

the verifying statistics X2(DD) gave 5.14 while the presumptive value was 0.08. 

A different pattern was seen in the old individuals group. While the data fitted equalities 

(2), (1) and (3) had to be rejected since the statistics were X2(DD) = 5.76 and X2(DG) = 18. 

   

Fig. 5. Associations of acrocentric chromatid satellite stalks. a - cis-1 position (light -to-light 
chromatid association); b - cis -2 position (dark-to dark association); c - trans-position (dark-
to-light association). 
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An important consideration is deviation of the data from the hypotheses (1)-(3). The 
deviation suggested that chromatids 1 and 2 of D chromosomes had different associative 
activities, unlike G-chromosome chromatids. Indeed, if D-chromosome chromatid 2 were 
more active than chromatid 1, probabilities should be 

 Pcis-1(DD) < 1/2 Ptrans(DD) < Pcis-2(DD)  (4) 

 Pcis-1(DG) < 1/2 Ptrans(DG) < Pcis-2(DG)  (5) 

and these agreed well with the actual findings. 

In conclusion, sister chromatids of acrocentric chromosomes show a functional 
heterogeneity in very old individuals (Lezhava, 1987, 2006). 

5. Correlation between mutation, repair and hetheterochromatinization of 
chromosomes in aging  

Progressive heterochromatinization of chromosome regions observed during aging 
correlates with the greater frequency of chromosome aberrations and the reduced intensity 
of reparative events. Chromosome alterations have been studied in 70 individuals aged 80–
114 years (30 women and 40 men). In these samples, the percentages of aberrant metaphase 
and chromosomal aberrations were 4.08±0.41% in women and 5.15±0.45% in men; these 
values are significantly higher than the published control levels (aged 25–40 years )of 
1.8±0.42% and 2.15±0.35%, respectively (Lezhava, 2001, 2006).  

The incidence of cell with chromosome aberrations in 80- to 90-year-old individuals was 
4.75±0.71% for 25 women and 3.06±0.54% for 31 men; these means were also above those of 
20-to 48-year-old individuals. The incidence of aberrant cells in men aged 91 to 114 years 
(5.62±1.45%) was higher than that in women aged 91 to 108 years and control individuals 
(Fig. 6, 7).  

Our studies have also demonstrated a marked decline in the unscheduled DNA synthesis 
(repair) rates in 80-90 year- old individuals in response to UV irradiation at a dose of  

10–15 J/mm2 compared with the middle-aged individuals (P  0.03, P  0.01 respectively). 
These data suggest that human lymphocytes from older people have a significantly reduced 
capacity for unscheduled DNA synthesis–excision repair (Lezhava, 1984, 2001).  

Progressive heterochromatinization of chromosome regions observed during senescence 
correlates with the lowered intensity of reparative events and the increases frequency of 
chromosome aberrations. To explain the prevalence of the accumulation of damage in 
heterochromatin and in the heterochromatinization regions, it has been assumed that the 
repair of lesions capable of causing aberrations is possible only in those areas of DNA that 
are actively involved in transcription and that are within physically accessible of reparative 
enzymes, i.e. in euchromatin areas (Yeilding, 1971). Assuming that heterochromatinized 
regions are inaccessible to reparative enzymes and therefore number of cells with 
chromosome aberrations profoundly affects the functioning of the genome in old age (Fig.8). 

Our results indicate that decreases in the repair processes and increases in the frequency of 
chromosomal aberrations in aging are secondary to the progressive heterochromatinization 
and that chromosome heterochromatinization is a key factor in aging. 
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Fig. 6. Spontaneously structural chromosome aberration at 80 years and over 

  

 

 

 

Fig. 7. 114-year-old man’s metaphase with aberrant chromosomes. a – association of 
telomeric regions 
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Fig. 8. Heterochromatinized regions inaccessible to reparative enzymes and therefore the 
number of cells with chromosome aberrations profoundly affects the functioning of the 
genome in old age. 

6. Heterochromatin and pathology 

Heterochromatinization progresses with aging and can deactivate many previously 

functioning active genes. It blocks certain stages of normal metabolic processes of the cell, 

which inhibits many specific enzymes and leads to aging pathologies. The action of genetic 

systems reveals general rules in the behavior of such systems, such as the connection 

between the structural and functional interrelationships between the “directing” and 

“directed” structures. In the respect, it should be noted that heterochromatinized regions in 

chromosomes can reverse. Many physical and chemical agents, hormones and peptide 

bioregulators (Epitalon - Ala-Glu-Asp-Gly; Livagen - Lys-Glu-Asp-Ala; Vilon - Lys-Glu) 

(Khavinson et al., 2003; Lezhava and Bablishvili, 2003; Lezhava et al., 2004, 2008) cause 

deheterochromatinization (decondensation) releasing the inactive (once being active)genes 

that seems to favour purposive treatment of diseases of aging.  

We have demonstrated also that Co2+ ions alone and in combination with the bioregulator 

Livagen can reverse the deheterochromatinization of precentromeric and telomeric 

heterochromatin (Fig.9), to normalize the telomere length in cells from old individuals 

(Lezhava and Jokhadze, 2007; Lezhava et al.,2008). Blood cholesterol levels in an animal 

model (rabbit) for atherosclerosis was reduced (41% on the average) by pretreatment with 

combination of livagen and CoCl2 - normalization of telomere length (unpublished data of 

research – STCU 4307- grants in 2007-2009) (Lezhava et al., 2007-2009). 
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Fig. 9. The effect of Co2+ ions separate and with peptide bioregulators Epitalon (Ala-Glu-
Asp-Gly) and Livagen (Lys -Glu-Asp-Ala) distribution of SCE among centromer and 
telomer heterochromatin regions. 

7. Conclusion 

In the present investigation, we assessed the modification of total, constitutive 
(pericentromeric, telomeric and nucleolus organizer region (NOR) heterochromatin) and 
facultative heterochromatin in cultured lymphocytes exposed to the influence of heavy 
metal and bioregulators from individuals aged 80 years and over. 

The results showed that: (1) progressive heterochromatinization of total, constitutive 
(pericentromeric, telomeric and NOR heterochromatin) and facultative heterochromatin 
occurred with aging; (2) a decrease in repair processes and an increase in frequency of 
chromosome aberrations with aging is secondary to the progressive heterochromatinization 
of chromosomes; (3) peptide bioregulators induce deheterochromatinization of 
chromosomes in old age and (4) Co2+ ions alone and in combination with the tetrapeptide 
bioregulator, Livagen (Lys-Glu-Asp-Ala), have different chromosomal target regions; that is, 
deheterochromatinization of pericentromeric (Co2+ ions) and telomeric (Co2+ ions in 
combination with livagen) heterochromatin regions in lymphocytes of olderaged 
individuals. 

The proposed genetic mechanism responsible for constitutive (pericentromeric, telomeric 
and nucleolus organizer region (NOR) heterochromatin) and facultative heterochromatin 
remodeling (hetero- and deheterochromatinization ) of senile pathogenesis highlights the 
importance of external and internal factors in the development of diseases and may lead to 
the development of therapeutic treat. 
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