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Particles in the Indoor Environment 

Hermann Fromme 
Bavarian Health and Food Safety Authority,  

Dep. of Chemical Safety and Toxicology 
 Germany 

1. Introduction  

As a result of a change in living and work habits, we now stay in industrial countries every 
day more than 90% of the time inside buildings. Against this backdrop findings about the 
exposure of users are relevant. Given their heterogeneity, very complex exposure patterns 
exist in the indoor environment in respect of which not only input from the outdoor air but 
also important sources inside the rooms themselves have to be taken into account. At any 
rate, different indoor environments have to be identified (e.g. living, bed, handicraft, leisure 
and cellar rooms, working rooms and workplaces in buildings, public buildings, restaurants 
and inns, community facilities such as schools and kindergartens as well as spaces in motor 
vehicles and other public transportation systems). Furthermore, it has been shown that the 
amount of airborne particle content in indoor environments can be highly variable in terms 
of space but also in terms of time. Apart from the conditions prevailing in the outdoor air 
close to the indoor environment (e.g. location close to a heavily trafficked street or in a rural 
region) and the current climatic conditions, the structural conditions of the building and the 
ventilation conditions are important. Furthermore, activities in indoor environments, such 
as the deposition and resuspension of house dust, cooking and cleaning activities or 
smoking can make a considerable contribution to the respective pollution situation. 

Particulates (particulate matter, PM) which are dispersedly distributed in the air form 
colloidal systems with the gases which are also referred to as aerosols. Overall, the 
composition of aerosols strongly depend on the specific sources. The particles of the fine 
fraction develop primarily through transformation processes from gases or within the 
framework of combustion processes. They are typically composed of nitrates, sulphates, 
ammonium, elementary carbon, a large number of organic compounds and trace 
elements. By contrast, the particles in the coarse fraction develop largely mechanically 
following the disintegration of larger solid particles and consist typically of whirled up 
dust from industrial processes and biological material such as pollen and bacteria and 
their fragments. 

PM in indoor environments consist of very different particles which are considerably 
varying in terms of size, form and chemical composition. Whereas the larger particles 
determine primarily the mass of the environmental aerosol, the particle number 
concentration (PNC) and the particle surface are dominated almost exclusively by the ultra 
fine particles (<100 nm). 
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Concerning the measurement of PM in air, different sampling conventions have established 
themselves, often using the aerodynamic diameter of the particles. In order to better reflect 
the human respiratory characteristics, conventions such as PM10 (Particulate Matter) or 
PM2.5 were introduced by the US Environmental Protection Agency and European 
authorities. PM2.5 is, for instance, the particle fraction which passes through a size-selective 
air inlet which has a separation efficiency of 50% for an aerodynamic diameter of 2.5 µm. 
Depending on the specific context, other definitions may be applied, for example in indoor 
working environments. 

2. Behaviour, transport, and fate of particles in the indoor environment 

The transport and fate of particles in indoor environments are fundamentally influenced by 
a series of physical and chemical processes (Fig. 1). This can lead to considerable changes in 
terms of their chemical composition, their physical characteristics, their distribution patterns 
and finally the measurable contents (Thatcher et al., 2001; Morawska & Salthammer, 2003; 
Nazaroff, 2004). 

 
Fig. 1. Transport and transformation processes with impact on the indoor concentration of 
particulate matter (modified from Thatcher et al., 2001) 

2.1 Infiltration/ penetration 

The dimensionless penetration factor (P) is defined as the share of the particle fraction with 
a specific diameter which reaches the indoor environment through the inflow of outdoor air. 
In the scientific literature there are results of different studies which are based on the 
observation of the indoor to outdoor ratio of the particles, manipulations of the external 
building envelope, experimental simulations in the laboratory or mathematical modelling 
(e.g. Long et al., 2000; Vette et al., 2001; Riley et al., 2002; Riley et al., 2002; Liu & Nazaroff, 
2003; Chen & Zhao, 2011). The results show that for different types of buildings and gap / 
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crack diameters and geometry, the largest penetration factor seems to exist for the particles 
with diameter between approximately >0.05 and < 1 µm (see Fig. 2). 

Size Interval (µm)
0.0

2-0
.0

3

0.0
3-0

.0
4

0.0
4-0

.0
6

0.0
6-0

.0
8

0.8
-0

.1

0.1
-0

.1
5

0.1
5-0

.2

0.2
-0

.3

0.3
-0

.4

0.4
-0

.5
0.7

-1 1-2 2-3 3-4 4-5 5-6

P
e
n

e
tr

a
ti

o
n

 /
 d

e
p

o
s
it

io
n

 e
ff

ic
ie

n
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

all homes

summer

deposition

 
Fig. 2. Penetration efficiencies (P) and deposition rates (k) (all homes nightly averaged data 
from n=98-106 and in summer from n=8) (modified from Long et al., 2001) 

2.2 Deposition 

The deposition of particles on surfaces is based on different physical mechanisms such as 
gravitation and diffusion. Apart from the deposition speed, this process is described by the 
so-called deposition rate (k) (example, Fig. 2). This process is strongly dependent on the 
particle diameter and reaches a minimum for particles with an aerodynamic diameter of 
approximately 0.4 µm. However, there is a considerable variation range (Morawska & 
Salthammer, 2003; Miguel et al., 2005; Hussein et al., 2009). The particle deposition, in 
particular of coarse particles, increases with a rising draught in the room and an increasing 
room area and also varies depending on the degree of interior decoration. 

2.3 Resuspension 

Particles deposited on the surfaces of the room can become resuspended in the indoor air in 
particular through activities in the indoor environment (Thatcher & Layton, 1995; Hussein et 
al., 2006). Hu et al. (2005) state that essentially three parameters like mechanical vibration, 
aerodynamic as well as electrostatic forces can achieve a stronger effect than gravitation and 
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hence influence the resuspension of particles. In different field studies it was shown that 
activities in the indoor environment (e.g. running, playing kids) resulted in a significant 
increase in PM contents, whereby essentially coarse particles were whirled up (Thatcher & 
Layton, 1995; Long et al., 2000; Miguel et al., 2005) (Fig. 3). Moreover it could be shown that 
the resuspension in rooms with wall to wall carpet was significantly higher compared to 
rooms with a smooth flooring (Long et al., 2000). 
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Fig. 3. The ratio of the suspended particle concentration after a resuspension activity to the 
indoor concentration before that activity, by particle size (modified from Thatcher & Layton, 
1995) 

2.4 Particle formation 

Within the framework of chemical processes in the indoor environment particles can be 
newly formed or there can be a growth in particle size. The coagulation of particles in the 
indoor environment is based on the fact that e.g. depending on the particle number they 
come together with a certain probability and then tend to agglomerate. This process is, for 
instance, relevant for ultra fine particles in indoor environments, since the latter exist e.g. in 
high number concentrations when for example burning candles. They then agglomerate 
over time; this can be observed through a shift in the peak value of particle distribution 
(Dennekamp et al., 2001). The phenomenon of phase transition, too, describes an “ageing 
process” during which a growth of the particles is observed through the adsorption of 
organic substances or water. 
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3. Sources of particles indoors 

3.1 Burning processes 

Tobacco smoking constitutes an essential particle source in indoor environments which 
results in an increase in the particle mass as well as the ultrafine particles. In the Harvard 
Six City Study, for instance, the annual mean values in smoker households were higher by 
approximately factor 3 compared to non smoker households (Neas et al., 1994). Fig. 4 
shows the increase in indoor pollution depending on the number of cigarettes smoked. In 
the same way the particle number increases considerably during cigarette smoking, partly 
to values up to 213,000 particles/cm³ (He et al., 2004; Afshari et al., 2005; Hussein et al., 
2006).  

When burning candles or oil lamps in indoor environments, an increase in ultrafine particles 
was likewise observed (Fine et al., 1999; Hussein et al., 2006; Wallace & Ott, 2011). This 
involved significantly higher concentrations when extinguishing candles compared to the 
burning itself (Hussein et al., 2006). During the burning of incense sticks it is also possible to 
detect high particle contents, in particular in the range from 0.06 to 2.5 µm, in indoor air 
(Chao et al., 1998; Jetter et al., 2002). 
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Fig. 4. Distribution percentiles for the annual average concentration of indoor particulate 
matter by household smoking status and the estimated number of cigarette packs smoked in 
the home (modified from Neas et al., 1994) 
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3.2 Cooking activities 

During cooking, too, fine and ultrafine particles are released. Different working groups were 
able to detect very high peak pollutions during cooking with electric stoves and in particular 
gas stoves of 100,000 to 560,000 particles /cm³ (Morawska et al., 2003; Dennekamp et al., 
2001; He et al., 2004; Afshari et al., 2005; Ogulei et al., 2006; Hussein et al., 2006). The large 
concentration range is attributable to the different cooking activities (eg baking, roasting, 
frying, toasting), the use of energy, the respective cooking goods, the ventilation conditions 
and the room geometry. Dennekamp et al. (2001) describe PNCs of up to 110,000 or 150,000 
particles/cm³ when using four electric or gas rings. Peak values of up to 590,000 ultra fine 
particles/cm³ were reached at the frying of bacon on a gas stove. After a short period of time 
the particles grew up in the indoor air and a displacement towards larger diameters. (Abt et 
al., 2000; Dennekamp et al., 2001; Hussein et al., 2006). After the end of the cooking activity 
the concentration rapidly decreases (Fig. 5). Referred to the particle mass, these activities 
likewise constitute a certain source. In the American PTEAM Study it was determined by 
means of a regression model that cooking increased the basic load of PM10 in the indoor 
environment by approximately 12 - 26 µg/m³ (PM2.5: approximately 13 µg/m³) (Wallace et 
al., 2003). Extremely high pollutions are to be expected when cooking on open fireplaces as, 
for instance, in third world countries (e.g. Naeher et al., 2000). 
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Fig. 5. Particle number concentration (PNC) and PM10 in the kitchen baking with an electric 
oven or vacuuming 

www.intechopen.com



 
Particles in the Indoor Environment 

 

123 

3.3 Cleaning activities 

During cleaning and in particular vacuum cleaning, an increase in coarse particles and 
hence in particular the particle mass is observed in indoor air (Abt et al., 2000). See also 
figure 5. In two US studies the contribution of cleaning activities to the PM2.5 indoor 
pollution was estimated at 23-32 µg/m³ (Long et al., 2000; Ferro et al., 2004). Afshari et al. 
(2004) describe, by contrast, merely an insignificant minor increase for ultrafine particles. 

Long et al. (2000) investigated the influence of the use of commercial cleaning agents on a 
pine oil basis on the exposure in a living room. During the activities the PNCs rose from 
initially 2,000 particles/cm³ to a maximum of 190,000 particles/cm³ and the PM2.5 contents 
increased from 5 to 38 µg/m³. This phenomenon was explained by referring to the new 
particle formation and / or particle growth through oxidative processes in the indoor 
environment. Other working groups, too, were able to detect in test chambers in the 
presence of ozone and the simultaneous application of terpene-containing cleaning agents a 
significant increase in particle number concentrations and the particle mass (Sarwar et al., 
2004; Singer et al., 2006; Destaillats et al., 2006).  

3.4 Secondary organic aerosols (SOA) 

Following chemical reactions of the gas and aerosol phase, so-called secondary organic 
aerosols (SOAs) are newly formed in indoor environments (Weschler et al. 2006). The 
formation of SOAs through the reaction of ozone with terpenes and other unsaturated 
organic compounds was demonstrated and confirmed in many test chamber experiments 
(e.g. Wainman et al., 2000; Fan et al., 2003; Sarwar et al., 2004; Liu et al., 2004b; Vartiainen et 
al., 2006; Destaillats et al., 2006; Aoki & Tanabe, 2007). In two office rooms, for instance, 
there was an increase in the particle mass and the PNC (Fig. 6) with realistic ozone and 
limonene contents (Weschler et al., 2003). Ozone was in these experiments the limiting factor 
in the formation of SOAs. 

3.5 Outdoor air as a source 

The contribution of outdoor air to the amount of PM concentration in indoor air depends, in 
addition to the particle fraction, in particular on the ventilation behaviour of the room user, the 
tightness of the building envelope, the dust deposition rates indoors, the resuspension effects 
in the room and the coagulation behaviour of the particles. The ventilation behaviour itself is 
naturally dependent to a large extent on the season and the meteorology (Nazaroff, 2004). 
Through the windows and doors but also through leakages of the building envelope there is 
an exchange of air between the indoor air and the outdoor air. This results in a highly variable 
share of outdoor air in the amount of particle concentration in the indoor air. Other factors 
such as the building geometry (e.g. floor height) and location (e.g. close to a heavily trafficked 
road) can have a significant influence on the exposure situation. Cyrys et al. (2004) report in 
respect of the examination of two model rooms without an indoor activity that 75% of the 
indoor air contents of PM2.5 but only 43% of the PNCs can be explained by corresponding 
outdoor air contents. During the parallel measurements of particle distribution in rooms 
without indoor source and outdoor air there were in the event of closed windows and doors in 
the indoor environments significantly lower contents in the particle size classes than outdoors 
(Franck et al., 2003). Fig. 7 shows results which represent the ventilation-related influencing of 
PM from outside to residential indoor environments (Riley et al., 2002). 
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Fig. 6. Comparison between the concentrations of particles (left: number, PNC; right: mass) 
in an office with a limonene source and one without (modified from Weschler et al., 2003) 

 

 
Fig. 7. Predicted proportion of outdoor particles in three urban residential scenarios 
(modified from Riley et al., 2002) 
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4. Occurrence of particles in indoor spaces 

4.1 Particles in residences 

In the scientific literature a large number of measurements of particle mass concentrations in 
indoor air are described. Table 1 shows the results for the mass-related measurements in 
residential indoor environments. It must be taken into account that due to different 
sampling and measurement methods the results can only be compared to a limited extent. 
 

Reference Concentration Description 

Europe   

Hänninen et al., 2004+ 31 (A), 26 (B), 13 
(H), 36 (P) 

A: Athens, B: Basel, H: Helsinki, P: 
Prague; n: 186; 1996-2000 

Lai et al., 2004 10  UK; n: 42; 1998-2000 

Fromme et al., 2005* 30 (Wi), 27 (Su) Berlin, Germany; n: 62; WI: 1997/98;  
SU: 2000 

Raaschou-Nielsen et al., 
2011 

13 Denmark; n: 389; 1999-2002 

Link et al., 2004 19 Germany; n: 126; 2001-2002 

Franck et al., 2011 32 Germany; n: 129; 2001/2002 

Stranger et al., 2007+ 36 Belgium; n: 19; 2002-2003 

Wichmann et al., 2010 10 Sweden; n: 29; 2003/2004 

Osman et al., 2007 18 Scotland; n: 75; 2004/2005 

Santen et al., 2009 3-15 Germany; n: 50; 2007 

Cattaneo et al., 2011 23 Italy; n: 107; 2007/2008 

America, Australia   

Wallace et al., 2003+ 28 USA; n: 294; 7 cities 

Meng et al., 2005 14 USA; n: 212; 1999-2001 

Breysse et al., 2005+ 26 USA; n: 90 

Simons et al., 2007 35 (a), 10 (b) USA; n: 100 city (a), 20 suburban (b) 

Baxter et al., 2007 17 USA; n: 43; 2003-2005 

Héroux et al., 2010 6  Canada; n: 96; 2007 

Jung et al., 2010 14 USA; n: 286; 2005-2010 

Asia   

Li & Lin, 2003+ 39 (Wi), 37 (Su) Taiwan; urban; n: 10; 1999-2000 

Chao & Wong, 2002+ 45 Hong Kong; n: 34; 1999-2000 

Lim et al., 2011 48 Korea; n: 60; 2008 

Wi: winter; Su: summer; S: smoker; NS: non smoker; *: PM4; +: mean 

Table 1. Median concentrations of PM2.5 in the indoor air of residences in µg/m³ 
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In different studies it could be shown that smoking is the most important influencing factor 
for the PM contents (e.g. Özkaynak et al., 1995; Wallace & Howard-Reed, 2002; Lai et al., 
2004; Fromme et al., 2005; Breysse et al., 2005; Héroux et al., 2010; Franck et al., 2011). In 
Germany, the mean PM4 concentrations in smoker households amounted in winter and 
summer, for instance, to 109 µg/m³ and 59 µg/m³ respectively, and in non smoker 
households they amounted during the two seasons only to 28 µg/m³ (Fromme et al., 2005). 
Other important influencing factors for the indoor air contents are the season, the outdoor 
air, the ventilation behaviour, the age and the location of the buildings and indoor activities 
such as cooking, the use of ovens and the burning of incense sticks (Mönkkönen et al., 2005; 
Martuzevicius et al., 2008; Santen et al., 2009; Rodes et al., 2010; Héroux et al., 2010; Byun et 
al., 2010; Raaschou-Nielsen et al., 2011). 

Studies on the ultrafine particles (as particle number concentration, PNC) in residences 
resulted in Germany in cities on average in 20,400 particles/cm³ (Link et al., (2004) or to 
between 4,000 and 25,000 particles/cm³ in a monthly median (n: 50) (Santen et al., 2009) and 
in an epidemiological study in 59 residences in the median of 9,000 particles/cm³ (Franck et 
al., 2011). McLaughlin et al. (2005) report in seven Irish residences about mean PNCs 
between 4,900 and 105,200 particles/cm³ with a maximum value of up to 485,300 
particles/cm³. In a Swedish study three residences were investigated with mean daily 
values between approximately 1,800 and 8,300 particles/cm³ (Matson, 2005). The proportion 
of indoor to outdoor ranged between 0.7 and 2.5. 

In the USA in an apartment in Boston mean PNCs of 16,000 particles/cm³ (Levy et al., 2002) 
and in seven Californian homes values of 9,200 to 35,000 particles/cm³ were measured 
(Bhangar et al., 2011). With indoor sources a mean value of 18,700 particles /cm³ (maximum: 
300,000 particles/cm³) was found in a house; without indoor sources it only amounted to 
2,400 particles/cm³ (maximum: 58,000 particles/cm³) (Wallace & Howard-Reed, 2002). In 36 
houses in Canada mean contents of 21,600 particles/cm³ were determined during the 
afternoon whereas during the night the average contents were only at 6,700 particles/cm³ 
(Weichenthal et al., 2007). In another Canadian study median PNCs of 2,700 particles/cm³ 
(summer) were determined in 94 flats, 3,700 particles/cm³ (winter) and 2,600 particles/cm³ 
(summer) (Kearney et al., 2011). 

In Australia Morawska et al. (2003) measured mean PNCs of 18,200 particles/cm³ (during 
indoor activities) and 12,400 particles/cm³ (without corresponding activities) when 
examining kitchens in 15 flats in 1999. 

4.2 Particles in schools 

Figure 8 shows some examples of results from schools. In most of the studies the PM2.5 
contents ranged on average between 8 and 20 µg/m³. Merely in a study in 27 Belgian 
schools 61 µg/m³ were described, i.e. comparatively high concentrations (Stranger et al., 
2007). By contrast, the PM10 contents at schools were highly variable with medians in the 
range of 50 - 100 µg/m³. Significantly higher contents were determined in a Greek study in 
which there was, however, also a high outdoor air pollution (Diapouli et al., 2007). In a 
European survey of 45 schools contents between 14 and 260 µg/m³ (PM10) were measured 
(HESE, 2006). 
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Fig. 8. Particulate matter in the indoor air of schools (minimum, median, maximum); *: mean; 
Su: summer; wi: winter 

Different studies showed for PM2.5 a ratio of indoor to outdoor air was in the range of 1 and 
a strong dependence on the outdoor air contents (Diapouli et al., 2007; Fromme et al., 2007; 
Wichmann et al., 2010; Guo et al., 2010). The situation is different if coarse particle fractions 
are considered. In a German study it was observed that 90% of the variability of the daily 
indoor medians of PM1 were attributable to differences between the schools and / or the 
days but in this way only 45% of the PM10 variants could be explained (Fromme et al., 2007). 
Indoor sources themselves seem to be highly significant in this connection. In order to be 
able to assess the contribution of different sources and outdoor air, different studies also 
determined the elementary and/or ionic composition of PM (Diapouli et al., 2007; Molnar et 
al., 2007; Fromme et al., 2008). It turned out that in particular the coarse particles did not 
originate from the outdoor air but that the source was the classroom itself. Examinations of 
the filters by EDX (energy dispersive X-ray spectroscopy) suggested that the PM10 contents 
were mainly composed of floor particles and other mineral substances, attrition of building 
materials and chalk dust (Fromme et al., 2008). A further study revealed significantly more 
silicate particles (36% of all particles), organic particles (29%, probably from human skin) 
and Ca carbonate particles (12%, probably from paper) indoors, whereas in the 
corresponding outdoor filters in particular Ca sulphate containing particles (38%) were 
determined (Oeder et al., 2011). 

The physical activity of the pupils and the associated whirling up of suspended particles 
from the floor seems to be the main reason for the high PM10 concentrations in classrooms 
(Fromme et al., 2007, 2008; Almeida et al., 2010; Guo et al., 2010; Oeder et al., 2011). 
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Measurements of the particle number concentration (PNC) have only been carried out so far 
in some cases at schools. In 36 German classrooms PNCs of 2,600 to 12,100 particles/cm³ 
were measured (Fromme et al., 2007). In another German study the contents ranged 
between 2,400 and 75,500 particles/cm³ (city) or 1,720 and 47,100 particles/cm³ (rural area) 
(Link et al., 2004). In a study in Greece mean PNCs of 24,000 particles/cm³ were determined 
during the class time at seven primary schools in Athens (Greece) which correlated well 
with the outdoor air contents (32,000 particles/cm³) (Diapouli et al., 2007). In an Australian 
study 3,100 particles/ cm³ were determined as mean value which increased within the 
framework of indoor activities such as cooking or cleaning of the floor surfaces to a 
maximum of 100,000 particles/cm³ (Guo et al., 2010). Since in school classrooms these 
classical sources for ultra fine particles are as a rule missing, the exposure of pupils during 
class time is essentially determined by the pollution of the outdoor air. 

4.3 Particles in offices 

Table 2 represents the mass related contents in indoor air of office buildings. The study 
results are difficult to compare with one another, since it was partly not mentioned whether 
smoking was allowed in the rooms. The median PM2.5 and PM10 values in non-smoker 
 

Reference Median 
(Min-Max) 

Description 

PM10 

Phillips et al., 1998 53 (NS) *; 63 (S) * France; n: 222 personal monitoring; 1995 

Gemenetzis et al., 2006 103 (25- 370) Greece; 40 rooms in 2 buildings; natural 
ventilated 

Heavner et al., 1996 30 (<DL- 98)(NS) *
67 (18- 217) (S) * 

USA, New Jersey, Pennsylvania; n: 52 (NS) and 
28 (S); 1992 

Burton et al., 2000 11 (3- 35) + USA; n: 100; with AC; 1994-1998 

Reynolds et al., 2001 14 to 36# USA; n: 6; with AC; 1996/1997 

Liu et al., 2004a 63 (14- 166) China, Peking; n: 11; 2002/2003 

PM2.5 

Mosqueron et al., 2005 26 (5- 265) France; n: 55; 1999/2000 

Lahrz et al., 2002 29 (5- 120) (NS) Germany; n: 25; natural ventilation; 2001 

Gemenetzis et al., 2006 77 (11- 250) Greece; 40 rooms in 2 buildings; natural 
ventilated 

Vardavas et al., 2007 51 (39- 63)* (NS) 
107 (39- 63) (S) 

Greece; n: 6; natural ventilation; 2006 

Horemans et al., 2007 11 (5- 28) Belgium; n:9; natural ventilation; 2007 

Burton et al., 2000 7  (1- 25) + USA ; n: 100; with AC; 1994-1998 

Liu et al., 2004a 28 (3- 103) China, Peking; n: 11; 2002/2003 

*: Mean; +: geometric mean; #: geometric mean per building; DL: detection limit; S: smoker; 
NS: non smoker 

Table 2. Concentrations of particulate matter in the indoor air in office buildings in µg/m³ 
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offices ranged between 7 – 51 µg/m³ and 30 - 63 µg/m³, respectively. Noticeably low values 
resulted from the most extensive examination in 100 buildings with air conditioning systems 
in the USA (Burton et al., 2000). By contrast, particularly high concentrations were observed 
in Greek offices (Gemenetzis et al., 2006). These are attributed to the high outdoor air 
concentrations and the presence of smokers. 

Concerning the ultra fine particles, higher PNCs were observed in offices exposed to tobacco 
smoke than in outdoor air whereby they ranged between approximately 1,000 and 13,000 
particles/cm³ in offices with air conditioning (Matson, 2005). In an Australian study a mean 
concentration of 6,500 particles/cm³ was measured during and 1,200 particles/cm³ after 
working hours (He et al., 2007) in an open plan office with ventilation and air conditioning 
system and smoking ban. The highest measured concentration amounted to 38,000 
particles/cm³ in this study. 

4.4 Particles in hospitality venues 

An overview of the exposure in pubs, restaurants and similar venues is provided by Table 
3. The worldwide studies all reach the conclusion that in venues in which smoking is 
permitted very high concentrations have to be expected. A German study in discos  
(n = 10) resulted, for instance, for PM10 in a median of 1,014 µg/m³ and for PM2.5 of 869 
µg/m³ (Bolte et al., 2008). In pubs (n = 18) the same working group measured medians of 
210 µg/m³ (PM10) and 195 µg/m³ (PM2.5). Figure 9 shows, for instance, the PM2.5 
concentration time course in three venues which were examined during the above 
mentioned study. 

Results about the development of indoor air pollution in bars, restaurants and similar 
venues after the introduction of smoking bans are available so far to a larger extent from the 
USA, Italy, Ireland, Scotland and Norway (summary in Fromme et al., 2009). Overall, it 
turned out that a considerable reduction of the PM2.5 contents between 70 and 97%, mostly 
above 90%, can be achieved through the implementation of a consistent smoking ban in 
these venues alone. 

On the other hand, the published results proved that through spatially not completely 
separated smoking areas in pubs and with ventilation systems no or only a low decrease in 
particle pollution is achieved. This is confirmed in a position paper by the American Society 
of Heating, Refrigerating and Air Conditioning Engineers which does not see ventilation 
systems as a useful instrument to protect from passive smoking in these venues (ASHRAE, 
2005). 

So far there are hardly any study results on the number of ultrafine particles. Milz et al., 
(2007) investigated 2 restaurants in two American cities. Whereas in non-smoker 
restaurants the mean contents amounted to ca. 15,000 particles/cm³, 82,000 particles/cm³ 
and ca. 106,000 particles/cm³ were observed in smoker rooms. Concerning ultrafine 
particles, smoker rooms result in a pollution of areas nearby in which smoking is banned. 
In Germany very high median PNCs of 221,100 particles/cm³ were measured in 4 cafés/ 
restaurants, 119,100 particles/cm³ in 2 bars and 289,900 particles/cm³ in 7 discos (Bolte et 
al., 2008).   
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Reference Median (Min-Max) Description

Europe 

Bohanon et al., 2003 194 (56- 312)+ Restaurants; France
 75 (0- 277) + Restaurants; Schwitzerland
 201 (62- 391) + Restaurants; UK
Gee et al., 2006 94*+ 59 pubs; England; 2001
Edwards et al.,  167 (54- 1395) 33 pubs, with cooking; UK; 2004
2006a 217 (15- 1227) 31 Pubs; no cooking; UK; 2004
Goodman et al., 2007 35,5 * 42 pubs; Ireland; 2004/2005
Valente et al., 2007 119 40 locations; Italy; 2005
Schneider et al., 2008 173 (22- 831) 38 restaurants; Germany; 2005
 131 (24- 1029) 20 cafes; Germany; 2005
 378 (144- 2022) 11 bars; Germany; 2005
Bolte et al., 2008 164 (55- 570) 11 restaurants, cafes; Germany; 2005/2006 
 203 (103- 1250) 7 pubs and bars; Germany; 2005/2006 
 869 (291- 4475) 10 discotheques; Germany; 2005/2006 
Vardavas et al., 2007 268 (19- 612)* 31 bars, pubs, cafes, clubs; Greece; 2006 
Semple et al., 2010 197 (8- 902) 42 bars; Scotland; 2006
 92 (5- 1005) 52 bars; England; 2007
 184 (16- 872) 12 bars; Wales; 2007
Rosen et al., 2007 465 (66- 862)+ 6 bars, pubs; Israel; 2007
 52 (18- 557)+ 8 cafes; Israel; 2007
Daly et al., 2011 83 (51- 108)* 70 bars, cafes, restaurants; Switzerland; 2008 
America, Australia

Maskarinec et al., 2000 66 (0- 233) + Restaurants; USA; 1996/1997
 82 (0- 768) + Bars; USA; 1996/1997
Brauer et al., 2000 (11- 163) 11 restaurants; Canada
 (47- 253) 4 bars; Canada
Repace et al., 2006 178 (43- 323) 6 pubs; USA; 2003
Connolly et al., 2005 206 (23- 727) 28 locations, USA; 2005
Brennan et al., 2010 61 (6- 338) 19 pubs; Australia; 2007
Jiang et al., 2011 63 (18- 183) 36 casinos, USA; 2008
Asia 

Baek et al., 1997 159 (33 - 475)+ 6 restaurants; Korea; 1994/1995
Lee et al., 1999 400 - 1760 3 restaurants; China; 1996/1997
Bohanon et al., 2003 194 (0- 611) + Restaurants; Japan
 107 (54- 172) + Restaurants; Korea
Lee et al., 2010 92 (17- 565)* 55 restaurants; 7 countries; 2008/2009 
 114 (14- 565)* 35 cafes; 7 countries; 2008/2009
 191 (33- 748)* 34 bars, clubs; 7 countries; 2008/2009 
 169 (4- 881)* 44 entertainment venues; 7 countries; 2008/2009 

*: mean; +: PM4 or respirable particulate matter (RPM) 

Table 3. Concentrations of particulate matter (PM2.5) in indoor air of hospitality venues in 
µg/m³ 
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Fig. 9. Time course of PM2.5 in three hospitality venues in Germany (modified from Bolte et 
al., 2008) 

4.5 Particles in transportation systems 

4.5.1 PM in aboveground transportation systems 

The contents of PM2.5 in above ground buses and cars are shown in Figure 10. The highest 
contents in cars and buses were observed in Asian cities; merely in one study in Mexico 
City, in Boston (Levy et al., 2002) and in Peru (Han et al., 2005) similar high concentrations 
were described. The other studies, in particular in Europe and Australia, refer, by contrast, 
to a mean exposure level for PM2.5 of approximately 10 - 40 µg/m³; as a rule the 
concentrations are significantly higher indoors than in the ambient air. There was a 
dependency of the indoor air contents on the outdoor levels, the time of day and the day of 
week (e.g. Lee et al., 2010). 

Table 4 shows the results of the measurements of ultrafine particles in cars and buses. The 
mean PNC ranges between 10,000 and 50,000 particles/cm³. By contrast, very high 
contents were described by Kaur et al. (2005) in the City of London which ranged on 
average between 90,000 and 100,000 particles/cm³. During a drive on the freeway with an 
open window high concentrations were likewise determined (Eiguren-Fernandez et al., 
2005). Under special conditions, eg a diesel truck ahead, short term peak concentrations of 
up to 500,000 particles/cm³ were observed (Abraham et al., 2002; Eiguren-Fernandez et 
al., 2005). 
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Fig. 10. Concentrations of PM2.5 in cars and buses (*: PM4) (minimum, median, maximum) 

Overall, the exposure in the indoor environment of transportation systems is influenced by 
many different factors such as ventilation, quality of driving, traffic volume and traffic 
composition, built-up area and meteorology. Car passengers seem to be exposed to a 
slightly higher PM2.5 and PNCs than cyclists (Adams et al., 2001; Kaur et al., 2005), whereas 
they are stated as the same or only slightly different in other studies (Gulliver & Briggs, 
2004; Boogaard et al., 2009; Zuurbier et al., 2010; Int Panis et al., 2010). In this connection it 
must, however, be taken into account that due to the approximately 2 – 4.5 fold higher 
breathing volume cyclists have a significantly higher inhaled dose compared to car and bus 
users (Zuurbier et al., 2010; Int Panis et al., 2010). 

In addition, air conditioning and filter systems, which can have a major influence on the 
contents in the indoor environment of transportation systems depending on the quality and 
the separation level, must be taken into account (Rim et al., 2008). Studies in an urban 
environment also showed a higher exposure for pedestrians than during car use or 
compared to the general outdoor air pollution (Kaur et al., 2005). 

A special pollution situation results from passive smoking exposure. During a drive in 
Wellington with a fully opened side window mean PM2.5 contents of 169 µg/m³ (maximum: 
217 µg/m³) were measured while smoking a cigarette (Edwards et al., 2006b). With a closed 
window the mean values were 2,962 µg/m³ (maximum: 3,645 µg/m³) and in a Canadian 
study mean PM2.5 contents between 790 and 4,626 µg/m³ (maximum: 7,635 µg/m³) were 
determined (Sendzik et al., 2006). Rees & Connolly (2006) determined in 45 measurements 
during smoking with closed windows mean PM2.5 values of 271 µg/m³ (maximum: 
approximately 500 µg/m³) and with opened side windows approximately 50 µg/m³ 
(maximum: approximately 100 µg/m³). Liu & Zhu (2010) observed inside cars the tenfold 
PNC and 120-fold PM2.5 contents compared to outdoor air. 
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Reference Mean (Min-Max)  Description 

Europe    

Dennekamp et al., 2002 53 (-) a  bus Aberdeen, UK; n: 11 

Mackay, 2004 44 (10-143) 
58 (8-282) 

bus 
car 

Leeds, UK 

Krausse & Mardaljevic, 
2005 

- (46-116)  Leicester, UK; n:133 

Kaur et al., 2005 101 (65-159) 
100 (37-152) 
88 (52-114) 

bus 
car 
taxi 

London, UK; 2003 

Diapouli et al., 2007 94 (25-217) car Athens, Greece; through city 

Geiss et al., 2010 16 (8-30) car Italy; 18 cars; 2009 

North America, Australia 

Abraham et al., 2002 30 b (4-190)  New York, USA; 3 city routes 

Levy et al., 2002 ~32 (12-80) 
~39 (11-83) 

bus 
car 

Boston, USA; 2000 

Eiguren-Fernandez et al., 
2005 

25 (X, AC) 
55 (X, nAC) 
69 (Y, AC) 
246 (Y,nAC) 

car Los Angeles, USA, car; AC: air 
condition, nAC: windows open; X: 
small streets; Y: freeway 

Rim et al., 2008 6-35 bus Austin; USA; 6 busses; 2006 

Wallace & Ott, 2011 29-34 (-) car USA; 17 trips; 2005-2009 

Knibbs & de Dear, 2010 11 
9 

bus 
car 

Sydney; Australia; 40 trips; 2004 

Zhang & Zhu, 2010 7.3-34 bus Texas; USA; school buses; 2008 

a: median; b: mean of three cycles 

Table 4. Particle number concentrations (PNC) in indoor air of transportation systems (10³ of 
particles/cm³) 

4.5.2 PM in underground transportation systems 

Studies in this micro environment show that the exposure is significantly above the values 
measured in above ground transportation systems. In the Berlin underground mean PM4 

contents of 141 (124-169 µg/m³) were measured in winter and 153 µg/m³ (121-176 µg/m³) in 
summer (Fromme et al., 1998). Similar results were obtained in the London underground 
with mean PM2.5 concentrations of 247 µg/m³ (105 – 371 µg/m³) (summer) and 157 µg/m³ 
(12 – 263 µg/m³) (winter) (Adams et al., 2001). In a more recent study conducted in London 
mean values of 180 - 200 µg/m³ (PM2.5) were measured (Hurley et al., 2004). By contrast, 
significantly lower mean pollutions were observed in Boston (70 µg/m³ PM2.5), Los Angeles 
(13.7 µg/m³) and Helsinki (21 µg/m³) (Levy et al., 2002; Aarnio et al., 2005; Kam et al., 2011). 
In the underground of Mexico City the mean values amounted to 61 µg/m³ (31 - 99 µg/m³) 
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(Gómez-Perales et al., 2004). Measurements in the Seoul underground and in a Chinese city, 
resulted in concentrations of 148 µg/m³ (Sohn et al., 2005) and 67 µg/m³ (26-123 µg/m³), 
respectively (Chan et al., 2002).  

In the Berlin underground stations the PM4 contents ranged between 128 and 311 µg/m³ 
during operation (Fromme et al., 1998), and in London the average PM2.5 contents were 270 - 
480 µg/m³ (Hurley et al., 2004). In Boston 130 µg/m³ were measured at the underground 
station (Levy et al., 2002). On the other hand the contents in Taipei were on average only 25-
40 µg/m³ (Cheng & Yan, 2011) and in Paris (Raut et al., 2009) the contents were 61 µg/m³ 
(normal hours) and 93 µg/m³ (rush hours) correspondingly lower. 

At present only a few measurements on ultrafine particles are available. In three 
underground lines in London 17,000 – 23,000 particles/cm³ (>50 nm) were measured on 
average whereas on the platforms of the three underground stations the average contents 
determined were 14,000 – 29,000 particles/cm³ (Hurley et al., 2004). Similar results were 
reached by measurements at the underground of Boston with mean values of approximately 
21,000 particles/cm³ (Levy et al., 2002) and in Helsinki, with 27,000 particles/cm³ (14,000-
50,000 Pt./cm³) (Aarnio et al., 2005). 
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