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1. Introduction 

The irreplaceable mammalian primordial follicle represents the basic unit of female fertility, 

serving as the primary source of all developing oocytes in the ovary. These primordial 

follicles remain quiescent, often for decades, until recruited into the growing pool 

throughout a woman’s adult reproductive years. Once recruited, <1% will reach ovulation, 

with the remainder undergoing an apoptotic process known as atresia (Hirshfield, 1991). 

Menopause, or ovarian senescence, occurs when the pool of primordial follicles becomes 

exhausted.  

Pre-mature ovarian failure (POF; or early menopause) is an ovarian defect characterised by 

the premature loss of  menstrual cyclicity before the age of 40, well below the median age of 

natural menopause (51 years). Approximately 1-4% of the female population suffers from 

this condition, making POF a significant contributor of female infertility (Coulam et al., 

1986). There is now a growing body of evidence which suggests that foreign synthetic 

chemicals, also known as xenobiotics, are capable of causing POF by inducing premature 

follicular depletion. Indeed, exposure to pesticides, workplace chemicals, chemotherapeutic 

agents and cigarette smoke have all been associated with primordial follicle reduction 

resulting in premature ovarian senescence (Hoyer and Devine, 2001; Mattison et al., 1983a, 

1983b; Sobinoff et al., 2010, 2011).  

In addition to infertility, the loss of ovarian hormones which accompanies POF has been 

connected with an increased risk of early morbidity and mortality (Shuster et al., 2010). With 

current statistics indicating an increasing trend in western women opting to delay 

childbirth, xenobiotic exposure could have long lasting repercussions for both the fertility 

and long term health of these women. In this review we discuss the susceptible nature of 

primordial follicles and the consequences of xenobiotic induced POF. We then examine the 

mechanisms of ovotoxicity for environmental toxicants and xenobiotics known to target 

immature follicles, and discuss the development of novel methods of wildlife fertility 

control utilizing these ovotoxicants. 
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2. The primordial follicle: Precious and vulnerable 

Oocyte development and maturation occurs within ovarian follicles. These follicles assemble 
when primary oocytes (arrested at meiosis prophase I) are enveloped by a single layer of 
flattened granulosa cells, forming the most immature stage of follicular development, the 
primordial follicle. The timing of this event is species-specific, but generally occurs in the 
primitive ovary during foetal development (McNatty et al., 2000). Due to the nature of 
follicular formation, the number of oocytes established around the time of birth is finite, and 
represents the total number of germ cells available to the mammalian female throughout her 
entire life (Edson et al., 2009). It is therefore the size and persistence of this primordial 
follicle pool which determines the female reproductive lifespan (Fig. 1). 

 

Fig. 1. Simple mechanistic diagram of the human female reproductive lifespan.  

The first stage of folliculogenesis involves the recruitment of selected primordial follicles 
into the growing population. To prolong the length of the female reproductive lifespan, only 
a few primordial follicles are chosen for recruitment at any one time, with some follicles 
remaining in a quiescent (non-proliferative) state for months or years (Fig 1). This event 
occurs in regular waves, and is continuous from birth until ovarian senescence (McGee and 
Hsueh, 2000). Overall, only a few hundred of all the recruited follicles will complete 
folliculogenesis and undergo ovulation, with the vast majority being lost to atresia 
(Hirshfield, 1991). Atresia is thought to be an apoptotic process which selects the healthiest 
follicles for ovulation, although its mechanism of action is poorly understood. As virtually 
all follicles are lost during optimal follicular development, it is important that primordial 
follicles not only survive but also are maintained in a healthy state. Over-stimulation of 
primordial follicle activation and premature atresia results in the extensive depletion of the 
primordial follicle pool, resulting in premature ovarian senescence (Reddy et al., 2008). 

There is now an increasing volume of studies which link primordial follicle depletion with 
xenobiotic exposure, suggesting that these irreplaceable follicles are highly sensitive to 
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cytotoxic insult (Hoyer and Devine, 2001; Mattison et al., 1983a, 1983b; Sobinoff et al., 2010, 
2011). It is thought that this sensitivity may stem from the primordial follicles quiescent 
nature. For example, somatic cells which undergo regular rounds of proliferation constantly 
renew macromolecules and organelles by virtue of mitosis. However, the oocyte and 
granulosa cells of the primordial follicle are non-proliferative, and do not benefit from 
mitotic renewal, perhaps making them excessively vulnerable to xenobiotics which cause 
sub-lethal damage to mitochondria and other structures over time (Tarin, 1996). Similarly 
the location of the primordial follicle population within a poorly vascularised region of the 
ovarian cortex also makes them highly susceptible to toxins which damage ovarian blood 
vessels, with the resulting cortexual fibrosis destroying primordial follicle rich segments of 
the ovary (Guraya, 1985; Meirow et al., 2007; van Wezel and Rodgers, 1996). 

In addition to direct primordial follicle injury, certain xenobiotics which target developing 
follicles have been shown to cause excessive primordial follicle activation (Keating, 2009; 
Sobinoff et al., 2010, 2011). This may be due to a homeostatic mechanism of follicular 
replacement, in which destroyed developing follicles result in primordial follicle activation 
to replace the developing pool. If the offending xenobiotic is not removed, this could 
potentially lead to a vicious cycle of primordial follicle depletion. 

3. Consequences of xenobiotic induced primordial follicle depletion 

The overall impact of xenobiotic induced follicular depletion on female reproduction 
depends on the type of follicle targeted for destruction, dose, and duration of exposure 
(Hoyer and Sipes, 1996). For example, xenobiotics which target large developing follicles 
have an immediately noticeable effect on female fertility. Antral follicles are the primary 
producers of ovarian estrogen, and therefore play an important role in the FSH-LH negative 
feedback loop responsible for ovulation.  Xenobiotics which selectively target antral follicles 
consequently have harmful effects on ovarian cyclicity, effectively acting as endocrine 
disruptors (Jarrell et al., 1991; Mattison and Schulman, 1980). Fortunately, both prolonged 
and acute exposure to these ovotoxic agents only causes temporary infertility, as these 
follicles can be replaced by the primordial follicle pool once the harmful xenobiotic is 
removed from the immediate environment.  

Conversely, xenobiotics which target small pre-antral follicles have more permanent effects 
on female fertility which could potentially go unrecognised for years. Due to the non-
renewing nature of primordial follicles, these xenobiotics are particularly damaging to 
female fertility, causing permanent infertility and premature ovarian senescence. What 
makes this type of ovotoxicity concerning is that it has a delayed effect on reproduction 
which is not made apparent until such a time that follicular recruitment cannot be 
supported (Hooser et al., 1994). Thus this extended period of time between cause and effect 
means that the detrimental action of xenobiotic contact often goes unnoticed, and 
consequently steps are not taken to minimise exposure until it is too late. Thus even a 
systemic low dose of xenobiotics may produce cumulative effects over time, resulting in the 
same consequences on female fertility as a large single exposure. With current statistics 
suggesting an increasing trend in developed countries of women opting to delay childbirth 
until late in their reproductive life (>30 years), accelerated follicle loss resulting from 
xenobiotic exposure can deprive these women of the chance to start a family in the 
conventional manner (Martin et al., 2003). 
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In addition to permanent infertility, the loss of ovarian hormones which accompanies early 

menopause has been associated with an increased risk for a variety of health problems. For 

example, estrogen deficiency (a consequence of menopause) is the most common cause of 

osteoporosis in humans (Cenci et al., 2003). Bone loss results from the absence of estrogen 

production by maturing ovarian follicles, which leads to a subsequent increase in FSH 

production due to the negative feedback of estrogen on pituitary gonadotropin secretion. In 

terms of bone remodelling, increased FSH production stimulates tumor necrosis factor 

(TNF) secretion, which in turn increases osteoclast formation and bone reabsorption (Cenci 

et al., 2003). Menopause induced estrogen withdrawal has also been associated with an 

increase in many traditional cardiovascular risk factors, including body fat redistribution, 

insulin resistance and high blood pressure, increased plasma triglyceride levels and high-

density lipid cholesterol absorption (Bilianou, 2008; Rosano et al., 2007). Increased risk for 

Alzheimer’s disease is also associated with the menopause induced loss of sex steroid 

hormones as evidenced by various epidemiological and experimental studies, although 

some clinical findings refute this evidence (Pike et al., 2009). 

Over the course of the 20th century, the average life expectancy for women in the developing 

world has increased by ~40%, resulting in women now living up to a third of their lives in 

post menopausal years. Unfortunately, this means that women are now spending a larger 

proportion of their life with increased health risks brought about by the onset of menopause. 

In addition, increased risk resulting from xenobiotic induced premature menopause means 

an enhanced chance for problems. It is therefore important to understand the mechanisms 

behind xenobiotic induced primordial follicle depletion. 

4. Mechanisms of xenobiotic induced primordial follicle depletion 

4.1 The Aryl Hydrocarbon Receptor 

The Aryl Hydrocarbon Receptor (Ahr) is a ligand activated transcription factor implicated in 
the regulation of a variety of physiological and developmental effects, including xenobiotic 
metabolism, cell cycle progression, apoptosis and oxidative stress (Denison and Heath-
Pagliuso, 1998; Nebert et al., 2000). In its inactivated state, Ahr is found in the cytoplasm 
bound to a number of molecular chaperones including hsp90, Xap2, and p23 (Carlson and 
Perdew, 2002; Petrulis and Perdew, 2002). Ligand binding causes conformational changes 
which expose a nuclear import signal on the Ahr, resulting in its translocation into the 
nucleus (Pollenz et al., 1994). Once imported the Ahr-ligand receptor complex disassociates 
with its chaperones and dimerizes with the aryl hydrocarbon receptor nuclear translocator 
(ARNT) to form an active transcription factor with high affinity to specific DNA sequences 
known as xenobiotic-response elements (XRE) within the promoter region of a variety of 
genes, inducing transcription (Fig.2) (Reyes et al., 1992).  

The Ahr-ARNT ligand activated transcription factor is known to regulate the toxicity of 
various xenobiotic compounds such as polycyclic aromatic hydrocarbons, polychlorinated 
dibenzofurans and polychlorinated biphenyls which are found ubiquitously in the 
environment and are highly resistant to metabolic breakdown (Nguyen and Bradfield, 2007; 
Stapleton and Baker, 2003). In an adaptive response to their accumulation in the cell, Ahr 
induces the expression of a number of xenobiotic metabolising enzymes, including members 
of the cytochrome P450 A and B families which oxygenate the intruding xenobiotic as part 
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of a three tiered enzymatic detoxification mechanism (Conney, 1982). Unfortunately, this 
oxygenation often results in the bioactivation of the parent xenobiotic into a more reactive 
and therefore toxic metabolite (Harrigan et al., 2004; Melendez-Colon et al., 1999). Indeed, 
many of Ahr’s known xenobiotic ligands, such as the polycyclic aromatic hydrocarbons 
benzo[a]pyrene (BaP), 9:10-dimethyl-1:2-benzanthracene (DMBA), and 3-methyl-
cholanthrene (3-MC), cause primordial follicle destruction through Ahr initiated cytochrome 
P450 induced bioactivation (Borman et al., 2000; Mattison and Thorgeirsson, 1979). For 
example, BaP is initially metabolised by Ahr regulated cyp1A1 and cyp1B1 enzymes 
resulting in its biotransformation into 7,8-diol, and 9,10-diol macromolecular-adduct 

forming metabolites within the ovary. Inhibition of Ahr by -naphthoflavone nullifies its 
effects on primordial follicle destruction (Bengtsson et al., 1983; Mattison et al., 1983a). 

 

Fig. 2. Molecular mechanism of Arh-Arnt directed gene expression in response to xenobiotic 
exposure.  

In addition to detoxification, the development of Ahr-deficient mice has revealed a 
physiological role for Ahr in regulating reproduction, growth and development (Benedict et 
al., 2000, 2003; Nebert et al., 1984; Robles et al., 2000; Schmidt et al., 1996). Benedict et al. 
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(2000) demonstrated that ovaries from mice deficient for Ahr expression contained 
significantly more fully formed primordial follicles compared to wild type mice on PND2-3. 
Robles et al (2000) found similar results, identifying more than a two-fold significant 
increase in the primordial follicle pool of Ahr deficient PND4 mice compared to wild type 
mice. These results suggest a developmental role for Ahr in regulating primordial follicle 
formation and atresia in the mouse. Although the exact details of Ahr role in the regulation 
of the primordial follicle pool have yet to be determined, given that Ahr xenobiotic ligands 
cause primordial follicle depletion, we hypothesise that part of these ovotoxic compounds 
method of ovotoxicity may involve perturbed AhR developmental signalling, inducing 
premature primordial follicle atresia. 

4.2 Bioactivation 

Humans come into contact with a variety of xenobiotics over the course of their lifetime, and 

have evolved a number of physiological mechanisms designed to remove their harmful 

influence from within the body. Hydrophilic xenobiotics tend to be less toxic, as the body is 

able to directly excrete them relatively unchanged. However, if the xenobiotic is lipophilic, it 

will need to be modified by a series of biochemical reactions before it can be eliminated 

(Pavek and Dvorak, 2008). This series of biochemical reactions is termed biotransformation, 

and can be divided into two phases. Phase I metabolism involves the introduction or 

exposure of a reactive polar group on the xenobiotic via oxidation, resulting in a more 

reactive/water soluble metabolite to facilitate excretion and/or the induction of phase II 

metabolism. The cytochrome p450 super family of oxidases catalyse the majority of these 

reactions, although other oxidases, esterases, amidases, and monooxygenases can also be 

involved (Schroer et al., 2010). Phase II metabolism involves the conjugation of charged 

species such as glutathione, sulphate, glycine or glucuronic acid to the phase I metabolite to 

increase its water solubility (Kohalmy and Vrzal, 2011). The addition of these large anionic 

groups detoxifies reactive electrophiles, resulting in a more polar metabolite which can be 

actively transported out of the cell. These reactions are carried out by a broad range of 

transferases, such as glutathione S-transferase, UDP-glucuronosyltransferases, 

sulfotransferases, N-acetyltransferases, and methyltransferases (Jancovaa et al., 2010). 

Unfortunately, phase I metabolism of xenobiotics by the liver and other tissues occasionally 
results in the production of a more cytotoxic metabolite, a process known as bioactivation 
(Dekant, 2009). These highly reactive metabolites are electrophilic, and are capable of 
forming covalent bonds (or adducts) with the nucleophilic centers of cellular 
macromolecules, such as proteins, DNA, and RNA. Cellular toxicity occurs when these 
adducts disrupt the normal structure and/or function of these macromolecules, resulting in 
apoptosis, necrosis or carcinogenesis. The main site of xenobiotic biotransformation within 
the body is the liver, although the ovary is capable of both phase I and phase II metabolism 
(Igawa et al., 2009; Rajapaksa et al., 2007a, 2007b; Shimada et al., 2003). Therefore, there is 
potential for the vulnerable primordial follicle to come into contact with bioactivated 
ovotoxic metabolites via several routes of exposure. Bioactivated metabolites produced by 
the liver maybe stable enough to diffuse back into the venous circulatory system, resulting 
in direct ovarian exposure. Additionally, as the primordial follicle is capable of expressing 
xenobiotic metabolising enzymes itself, oocytes may be exposed to localised bioactivation. 
Finally, the xenobiotic may be bioactivated locally into its ovotoxic metabolite by 
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neighbouring somatic ovarian cells and taken up by the primordial oocyte, contributing to 
localised bioactivation. 

A number of studies performed in vitro have revealed that the ovary is capable of the 

localised bioactivation of a number of xenobiotics into ovotoxic intermediates which target 

primordial follicles for destruction (Rajapaksa et al., 2007a, 2007b). An example of this 

localised bioactivation is the reported metabolism of the polycyclic aromatic hydrocarbon 

DMBA (Fig.3). Ovarian exposure to DMBA disrupts folliculogenesis, resulting in the 

destruction of all follicle populations leading to POF in rodents, although recent evidence 

suggests an alternate mechanism of ovotoxicity resulting in primordial follicle depletion in 

the mouse (Mattison and Schulman, 1980; Sobinoff et al., 2011). This toxicity has been 

attributed to the bioactivation of DMBA into its ultimate DNA-adduct forming intermediate 

DMBA-3,4-diol-1,2-epoxide (Shiromizu and Mattison, 1985). DMBA is bioactivated by 

Cyp1B1 to a 3,4-epoxide which is then converted into a 3,4-diol by the microsomal epoxide 

hydrolase (MeH) phase II enzyme. This intermediate is then further modified by either 

Cyp1A1 or Cyp1B1 to form the ultimate ovotoxicant DMBA-3,4-diol-1,2-epoxide (Shimada 

and Fujii Kuriyama, 2004; Shimada et al., 2001). These three enzymes required for DMBA’s 

biotransformation are all expressed and induced by DMBA exposure in the murine ovary 

(Igawa et al., 2009; Rajapaksa et al., 2007b; Shimada et al., 2003). In further support of 

localised DMBA bioactivation, inhibition of MeH in cultured rat ovaries inhibited DMBA 

induced ovotoxicity, while ovarian culture in the presence of DMBA-3,4-diol induced 

significantly more primordial follicle depletion than DMBA alone (Igawa et al., 2009; 

Rajapaksa et al., 2007b).  

 

Fig. 3. Metabolism of DMBA and VCD into their ovotoxic metabolites. 

Another example of localised bioactivation is the conversion of the industrial chemical 4-
Vinylcyclohexene (VCH) into VCH diepoxide (VCD) (Fig. 3). VCH is metabolised by 
cytochrome P450 phase I enzymes to form VCM-monoepoxide (VCM), which is then 
converted into VCD. Studies have shown VCD to be the ultimate ovotoxicant, targeting both 
primordial and primary follicles for depletion (Hu et al., 2001; Smith et al., 1990; Sobinoff et 
al., 2010). As demonstrated in vivo and in vitro via knockout studies, VCH/VCM is 
bioactivated into VCD exclusively by the cyp2e1 isoform in the ovary (Rajapaksa et al., 
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2007a). Rajapaksa et al (2007a) cultured neonatal ovaries from both cyp2e1+/+ and cyp2e1-/- 
neonatal mice in VCM and VCD containing media. Both VCH metabolites caused 
primordial follicle depletion in cyp2e1+/+ cultured ovaries. However, unlike VCD, VCM did 
not produce an ovotoxic affect in cyp2e1-/- cultured ovaries, thus demonstrating its role in 
VCH induced bioactivation. 

4.3 Xenobiotic induced reactive oxygen species generation 

Reactive oxygen species (ROS), such as superoxide anion, hydrogen peroxide and the highly 

toxic hydroxyl free radical, are highly reactive oxygen-containing molecules which are 

produced naturally as a consequence of oxidative energy metabolism (Valko et al., 2007). 

These short lived ROS play an important role in regulating signal transduction, selectively 

oxidizing cysteine residues on proteins resulting in a variety of reversible molecular 

interactions (Janssen-Heininger et al., 2008). However, in excess these highly unstable 

molecules may lead to perturbed signal transduction and/or oxidative damage to cellular 

macromolecules, inducing DNA mutations, lipid peroxidation and premature protein 

degradation. These molecular lesions coupled with perturbed signal transduction can 

ultimately result in abnormal cellular function, apoptosis and necrosis (Valko et al., 2006, 

2007; Wells et al., 2009).  

The ovary is a highly redox sensitive organ, with oocytes themselves being particularly 

vulnerable to excess ROS exposure due to the low rates of oxidative repair in post-mitotic 

cells (Cadenas and Davies, 2000; Terman et al., 2006). According to the free radical 

hypothesis of ageing, non-renewing primordial follicles, which can remain quiescent for 

many years, gradually produce ROS through electron leakage from the mitochondrial 

electron transport chain (Tarin, 1996). Over time this excess ROS damages the mitochondrial 

membranes, leading to more electron leakage and further ROS production. Given the redox 

sensitive nature of primordial follicles, it is reasonable to assume that the generation of 

xenobiotic induced ROS formed through detoxification may exacerbate this process, 

contributing to primordial follicle loss (Bondy and Naderi, 1994; Danielson, 2002; Wells et 

al., 2009). 

Xenobiotic enhanced ROS formation may occur via several mechanisms in the primordial 

follicle (Fig.4). If the ovotoxic xenobiotic contains a quinone-like structure, it may undergo 

redox cycling with the corresponding semiquinone radical to produce superoxide anions. 

Further enzymatic and/or spontaneous dismutation of the superoxide anions produces 

hydrogen peroxide, which can further react with trace amounts of iron or other transition 

metals to form hydroxyl free radicals (Bolton et al., 2000). Given the futile cyclical nature of 

redox cycling, this would allow a relatively small concentration of quinone-like xenobiotics 

to generate an amplified production of ROS in the ovary (Park et al., 2005). For example, 

menadione (MEN), a synthetic vitamin K with a quinone-like structure, is a potent toxicant 

which exerts its cytotoxic affect via quinone cycling (Thor et al., 1982). Recently, we 

examined the effects of MEN on folliculogenesis in neonatal mouse ovaries in vitro (Sobinoff 

et al., 2010). This study found that MEN caused wide spread oxidative stress and DNA 

damage resulting in primordial and small developing follicle destruction, as evidenced by 

the detection of increased levels of the hydroxyl radical–induced mutagenic DNA lesion 8-
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hydroxyguanine, and Terminal deoxynucleotidyl transferase dUTP nick end labelling 

(TUNEL) analysis (Klaunig and Kamendulis, 2004).  

 

Fig. 4. Biochemical pathways outlining the mechanisms of xenobiotic induced ROS 
production which may contribute to primordial follicle depletion. Abbreviations: Fe, iron; 
O2

, superoxide; H2O2, hydrogen peroxide; HO, hydroxyl radical. 

Another mechanism of xenobiotic induced ROS formation is the phase I bioactivation of the 

offending xenobiotic into reactive and redox active o-quinone metabolites. As mentioned 

previously, the PAH BaP is converted into 7,8-diol, and 9,10-diol by Ahr induced cyp1A1 

and cyp1B1 enzymes in the ovary (Bengtsson et al., 1983). Studies have also shown that 

cyp1A1 is also capable of converting BaP into the BaP o-quinones benzo[a]pyrene-3,6-dione 

and benzo[a]pyrene-6,12-dion (Schwarz et al., 2001). Additionally, cyp 1A1 bioactivated BaP 

7,8-diol can be further metabolised via NAD(P)+-dependent oxidation by the phase I 

dihydrodiol dehydrogenase Akr1c1 enzyme, resulting in the formation of a ketol. This ketol 

then undergoes tautomerisation to form catechol 7,8-dihydroxybenzo[a]pyrene. Two 

subsequent 1-electron auto-oxidation events produce a o-semiquinone anion, followed by 

the formation of the o-quinone benzo[a]pyrene-7,8-dione (Trevor et al., 1996). Given the 

increases observed in cyp 1A1 expression in the ovary in response to BaP exposure, and the 

relatively high level of dihydrodiol dehydrogenase expression in the ovary compared to the 
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liver, it is reasonable to assume BaP may be exerting part of its ovotoxic affect through o-

quinone formation (Hou et al., 1994). Indeed, both benzo[a]pyrene-3,6-dione and 

benzo[a]pyrene-6,12-dion were detected in rat ovaries after a single dose exposure of BaP in 

rodents (Ramesh et al., 2010).  

The un-natural “uncoupling” of phase I cytochrome P450 enzymes may also contribute to 
xenobiotic induced ovotoxicity via ROS production. Cytochrome P450 enzymes use H+ 
obtained from NADPH to reduce O2, which leads to the production of hydrogen peroxide 
and/or superoxide anion radicals as part of phase I oxygenation. Unfortunately, the P450 
catalytic cycle can be uncoupled, resulting in the release of the reactive hydrogen peroxide 
and/or superoxide anion radical from the enzyme substrate complex (Meunier et al., 2004). 
Although all cytochrome P450 enzymes experience uncoupling, cyp 2E1 experiences a high 
rate of the phenomenon (Caro and Cederbaum, 2004). Even in the absence of substrate, cyp 
2E1 undergoes un-natural “uncoupling” due to its NADPH oxidase activity independent of 
phase I metabolism (Ekstrom and Ingelman-Sundberg, 1989). As described previously, VCH 
is exclusively bioactivated by cyp 2E1 to produce the ovotoxic metabolite VCD. It is 
therefore possible that VCH may partially cause primordial follicle depletion via excess ROS 
production. Indeed, studies conducted in our laboratory have demonstrated VCD itself, 
along with the pesticide methoxychlor (MXC) and MEN, is capable of inducing cyp 2E1 
expression and oxidative stress in the form of 8-hydroxyguanine adduct formation in 
primordial follicles (Sobinoff et al., 2010). 

Another mechanism by which ovotoxic xenobiotics may cause oxidative stress is through 
the depletion of glutathione peroxidase (GSH) via detoxification. GSH is the body’s most 
abundant antioxidant, providing protection against all forms of oxidative stress by 
scavenging ROS by virtue of its reducing thiol group, forming oxidised glutathione 
disulfide (GSSG) (Kidd, 1997). The glutathione system (GSH/GSSG ratio) acts as a 
homoeostatic redox buffer that contributes to maintenance of the cellular redox balance, 
with a reduction in the GSH/GSSG ratio indicating oxidative stress (Schafer and Buettner, 
2001). In addition to its function as a ROS scavenger, GSH is also employed in the phase II 
metabolism of many ovotoxic xenobiotics (Keating et al., 2010; Tsai-Turton et al., 2007; Wu 
and Berger, 2008). For example, VCD is conjugated to GSH by the glutathione S-transferase 
Gst isoform pi (Gstp) as part of phase II detoxification in the ovary (Keating et al., 2010).  

The mammalian ovary itself is highly redox sensitive, with maturing oocytes containing the 
highest concentration of GSH compared to any other cell type in the body (Calvin et al., 
1986; Clague et al., 1992; Luderer et al., 2001). It is therefore likely that ovarian somatic and 
germ cell GSH plays an important role in protecting ovarian follicles from damage by 
ovotoxic xenobiotics. This is especially evident in primordial follicles, where a natural 
decrease in the GSH/GSSG ratio with advancing reproductive age increases primordial 
follicle susceptibility to xenobiotic induced destruction (Mattison et al., 1983b). Therefore, 
we hypothesise that the detoxification of ovotoxic xenobiotics via GSH conjugation reduces 
the GSH/GSSG ratio in primordial follicles, leaving them vulnerable to oxidative stress and 
primordial follicle depletion. Indeed, DMBA detoxification involves GSH conjugation, and 
its ovotoxic ROS production can be reduced through the addition of GSH, curbing its 
ovotoxicity (Tsai-Turton et al., 2007). There is controversial evidence for this mechanism of 
ovotoxicity in VCD induced primordial follicle loss. Rodent exposure to VCD was shown to 
reduce GSH concentrations by 25% and 55% in rat and mouse ovaries 2 hours after VCD 
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administration (Bhattacharya and Keating, 2011). Additionally, rodents given the same dose 
of VCD over a period of several days caused specific primordial follicle depletion only after 
15 days of continual dosing (Springer et al., 1996).  The significant decrease in GSH 
concentrations almost immediately after exposure, coupled with the delayed loss of follicles 
following chronic exposure suggest that GSH reduction over time due to VCD detoxification 
could leave the susceptible primordial follicle vulnerable to increasing concentrations of 
xenobiotic induced ROS, resulting in primordial follicle destruction. It is pertinent that a 
single dose of a higher concentration of VCD (320 mg/kg) causes significant primordial 
follicle depletion 6 days after exposure, but is not specific to the primordial follicle pool 
(Devine et al., 2004). Additionally, VCD in vitro culture assays have linked an increase in 
Gstp expression with the first signs of primordial follicle loss after 6 days of exposure in 
neonatal rat ovaries (Bhattacharya and Keating, 2011; Keating et al., 2010). As Gstp catalyses 
VCD-GSH conjugation, the increase in enzymatic expression and therefore activity could 
have contributed to the observed primordial follicle loss due to a reduction in GSH/GSSG 
oxidative buffer. Conversely, substituting VCD culture media with antioxidant such as GSH 
does not prevent primordial follicle depletion, suggesting it is not the ultimate cause of 
depletion (Devine et al., 2004). 

4.4 Xenobiotic induced primordial follicle activation 

Traditionally, studies attempting to identify the molecular mechanisms behind xenobiotic 

induced POF have focused on premature follicular atresia as the main source of primordial 

follicle depletion. However, there is now a growing body of evidence which suggests that 

xenobiotics cause primordial follicle depletion through accelerated primordial follicle 

activation (Keating, 2009, 2011; Sobinoff et al., 2010, 2011). A study of VCD and MXC 

induced primordial follicle depletion has revealed a selective mechanism of pre-antral 

ovotoxicity involving small developing follicle atresia and primordial follicle activation both 

in vitro and in vivo (Sobinoff et al., 2010). Extracted neonatal mouse ovaries cultured in either 

VCD or MXC were immunopositive for the apoptotic markers caspase 2, caspase 3, and 

TUNEL in small developing follicles from the primary stage onward, but were absent in 

primordial follicles (Fig.5). In addition, the primordial follicles in VCD and MXC cultured 

ovaries expressed proliferating cell nuclear antigen (PCNA), a marker of primordial follicle 

activation (Picut et al., 2008; Tománek and Chronowska, 2006). VCD and MXC exposure 

also induces primordial follicle activation and developing follicle atresia in vivo as evidenced 

by increased primordial follicle PCNA expression and histomorphological analysis (Sobinoff 

et al., 2010). Microarray analysis confirmed via qPCR also showed VCD and MXC up-

regulated PI3K/Akt and mTOR signalling, two synergistic pathways intimately associated 

with primordial follicle activation (Reddy et al., 2010). Further evidence for PI3K/Akt 

signalling in VCD induced primordial follicle activation comes from a study conducted by 

Hoyer et al (2009), in which LY294002, an inhibitor of PI3K, prevented primordial follicle 

depletion in cultured rat ovaries (Vlahos et al., 1994). 

The polycyclic aromatic hydrocarbon DMBA, which was previously thought to cause 
indiscriminate follicular destruction, has also been shown to cause pre-antral ovotoxicity 
through selective immature follicle destruction and primordial follicle activation (Mattison 
and Schulman, 1980; Sobinoff et al., 2011). In addition to showing signs of maturing follicle 
atresia (caspase 2, caspase 3, TUNEL) and primordial follicle activation (PCNA), DMBA 
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induced Akt1 phosphorylation, mTOR activation, and decreased FOXO3a expression in 
DMBA cultured primordial oocytes. All of these events occur downstream of the PI3K/Akt 
and mTOR signalling pathways, providing evidence for these pathways involvement in 
xenobiotic induced primordial follicle depletion (Reddy et al., 2010). Unlike VCD however, 
PI3K/Akt inhibitor studies utilising LY294002 in DMBA cultured rat ovaries caused 
accelerated primordial follicle depletion (Keating, 2009). In addition to its role in primordial 
follicle activation, PI3k/Akt signalling is also responsible for augmenting cellular survival 
by inhibiting the activation of proapoptotic proteins and transcription factors (Blume-Jensen 
et al., 1998; Testa and Bellacosa, 2001). Therefore, in addition to acting synergistically with 
mTOR signalling to cause primordial follicle activation, PI3k/Akt signalling may help 
preserve the primordial follicle pool in times of cytotoxic stress. Interestingly however, 
mTOR signalling does not require PI3k/Akt signalling to induce primordial follicle 
activation, and in fact may be the sole driver of DMBA induced primordial follicle activation 
(Adhikari et al., 2010). 

 

Fig. 5. Immunohistological staining of apoptotic markers in VCD exposed neonatal mouse 
ovaries. Blue staining (DAPI) represents nuclear staining; red staining (Cy-5) represents 
specific staining for the protein of interest; green staining (Fluorescein) represents specific 
staining for degraded DNA (TUNEL). Thin arrow=developing follicle; scale bar is equal to 
50µm. 

As xenobiotic induced primordial follicle activation is reportedly accompanied by small pre-

antral follicular destruction, it has been hypothesised that xenobiotic induced primordial 

follicle depletion is the result of a homeostatic mechanism of follicular replacement 

(Keating, 2009; Sobinoff et al., 2010). In this hypothesis, the ovotoxic xenobiotic targets and 

destroys developing follicles, leading to increased primordial follicle recruitment to 

maintain the developing pool (Fig. 6). Although the developing pool may be maintained for 

some time, eventually the rate of developing follicle destruction will exceed the dwindling 

primordial follicle pools rate of replacement, resulting in POF. Indeed, it is well known that 
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rapidly dividing cells, such as the granulosa cells of developing follicles, are highly 

susceptible to the action of cytotoxic xenobiotics (Blumenfeld and Haim, 1997; Hirshfield, 

1991). Therefore, if the xenobiotic targeted these proliferating granulosa cells for destruction, 

the entire follicular structure would demise (Hughes and Gorospe, 1991). Even given the 

vulnerable nature of the primordial follicle explained earlier in this review, the primordial 

follicles quiescent nature may reduce their susceptibility to certain xenobiotics, and are only 

destroyed once a commitment to activation/recruitment has been made. 

 

Fig. 6. Homeostatic mechanism of follicular replacement hypothesis. Under control 
conditions, premature primordial follicle activation is prevented by negative cytokine 
signals excreted from the developing pool of follicles. Xenobiotic exposure results in the 
destruction of this developing pool, removing these negative signals causing primordial 
follicle activation.  

Another proposed mechanism of xenobiotic induced primordial follicle activation may 
involve perturbed signal transduction caused by oxidative stress. As described previously, 
ROS play a physiological role in regulating signal transduction by selectively oxidising 
cysteine residues on proteins resulting in a variety of reversible molecular interactions 
(Wells et al., 2009). It is therefore conceivable that increased levels of xenobiotic induced 
ROS could lead to abnormal cysteine oxidation and consequently dysregulated signal 
transduction. For example, the PI3K/Akt signalling pathway has been shown to be up-
regulated by increased levels of ROS through the H2O2 oxidation of phosphatases which 
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negatively regulate the pathway (Kim et al., 2005; Naughton et al., 2009). Given the 
PI3K/Akt pathway’s role in the regulation of primordial follicle recruitment, increased ROS 
production could potentially cause primordial follicle activation in xenobiotic treated 
ovaries. Indeed, all three xenobiotics which have thus far been reported to induce 
primordial follicle activation also cause oxidative stress and induce the 
expression/activation of members of the PI3K/Akt signalling pathway in the ovary 
(Sobinoff et al., 2010, 2011; Tsai-Turton et al., 2007). 

Xenobiotic induced primordial follicle activation may also be the result of abnormal cross-
talk between signalling pathways. For example, DMBA exposure was shown to induce 
Dnajb6 expression, a heat shock protein whose expression is normally induced by Nrf2 and 
Hsf1 in response to oxidative stress (Sobinoff et al., 2011; Thimmulappa et al., 2002; Wang, 
K. et al., 2009). Dnajb6 responds to stress by inhibiting nuclear factor of activated T cells 
(NFAT) transcriptional activity through the recruitment of class II histone deacetylase (Dai 
et al., 2005). In turn NFAT positively regulates PTEN expression, a known inhibitor of Akt1 
phosphorylation. Therefore DMBA induced Dnajb6 expression may inhibit NFAT 
transcriptional activity, reducing PTEN expression and stimulating Akt1 phosphorylation, 
resulting in primordial follicle activation (Baksh et al., 2002; Reddy et al., 2010; Wang, Q. et 
al.). 

4.5 Xenobiotic induced cell death 

Ovarian follicles undergo physiological cell death via the apoptotic process of atresia, which 
is thought to select dysfunctional follicles and thus reserving the healthiest follicles for 
ovulation (Tilly et al., 1991). A number of studies have concluded that ovotoxic xenobiotics 
which target primordial follicles for destruction do so by inducing premature follicular 
atresia (Hu et al., 2001; Matikainen et al., 2001; Tilly and Robles, 1999). In this review we 
have already discussed the mechanisms by which ovotoxic xenobiotics may induce 
follicular atresia in primordial follicles (Ahr activation, Bioactivation, and ROS generation). 
However, other forms of cell death have been reportedly induced by xenobiotic exposure. 
Cell death by necrosis usually occurs in response to tissue injury, and elicits an 
inflammatory response in the surrounding tissue. Necrosis can be distinguished from 
apoptosis via histomorphological and ultrastructural analysis (Gobe and Harmon, 2001). In 
a study by Mattison (1980), the three PAHs BaP, 3-MC, and DMBA were shown to cause 
morphological changes in mouse primordial follicle oocytes which were consistent with 
necrosis (Mattison, 1980). The alkylating chemotherapeutic agent cyclophosphamide was 
also shown to cause necrotic damage in mouse primordial follicle oocytes three days after a 
single i.p injection (Plowchalk and Mattison, 1992). However, lower doses of 
cyclophosphamide produced atretic changes in primordial follicle oocytes, suggesting the 
type of cell death (apoptosis/necrosis) caused by xenobiotic exposure depends upon the 
dose given, and the duration of exposure. Therefore, concentrations of xenobiotic which 
cause mild cellular damage may result in active cell death, or apoptosis, while concentration 
which result in severe damage will result in passive cell death, or necrosis (Raffray and 
Gerald, 1997). 

Autophagy or “self eating” is another possible non-apoptotic mechanism of cell death which 
may result in primordial follicle depletion. This conserved catabolic process involves the 
lysosomal-dependant turnover of cytoplasmic organelles and proteins during times of 
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starvation or nutrient deficiency, allowing the regeneration of metabolic precursor 
molecules to ensure survival (Levine and Klionsky, 2004). Increased incidences of 
autophagy have also been observed in response to other environmental stresses, including 
hypoxia, oxidative stress, and xenobiotic exposure (Kiffin et al., 2006; Kondo et al., 2005). 
Under these conditions autophagy may renew damaged or dysfunctional organelles, 
thereby maintaining a healthy cell population. Although the activation of autophagy in 
response to cell stress may be a cellular adaptation to promote survival, excessive activation 
beyond a key threshold may result in cellular collapse and atrophy, a process known as 
autophagic cell death (Galluzzi et al., 2008). While debatable whether autophagic cell death 
is independent from apoptosis, it has been almost universally accepted that excess 
autophagy can induce apoptosis (Levine and Yuan, 2005; Maiuri et al., 2007). Recent studies 
have suggested autophagy as an alternate form of programmed cell death in the ovary, with 
evidence indicating it is the main mechanism by which oogonia are lost prior to primordial 
follicle formation (Duerrschmidt et al., 2006; Lobascio et al., 2007; Rodrigues et al., 2009). 
Thus prolonged xenobiotic exposure resulting in organelle damage may induce autophagic 
cell death in primordial follicles, resulting in depletion. Indeed, proteins responsible for 
regulating apoptosis, such as members of the Bcl2 family, have also been found to regulate 
autophagy (Maiuri et al., 2007; Shimizu et al., 2004). Therefore, gene expression studies in 
which these pathways have been thought to induce xenobiotic atresia could be inducing 
primordial follicle destruction by apoptotic independent or dependent autophagy (Flaws et 
al., 2006). 

5. Ovotoxic xenobiotics as agents for wildlife fertility control 

Population control of native and exotic pest species is necessary to prevent environmental 
degradation, competition and predation of native wildlife, the spread of pathogenic 
diseases, and conflicts with humans over food production. Traditionally, population control 
has involved the elimination of the target species through poisoning, trapping and shooting 
(McAlpine et al., 2007). Although effective immediately, these methods are seen as inhuman, 
unsustainable, and ineffective over the long term. Manipulating the reproductive rate, 
particularly in females, instead of increasing the mortality rate is potentially more humane, 
species specific, and effective at curtailing populations (Kirkpatrick, 2007). The use of 
ovotoxic xenobiotics as agents of contraception/sterilisation represents a novel approach to 
fertility control. Of particular interest are xenobiotics which have been shown to cause POF 
by specifically targeting the primordial follicle population for degradation (Hoyer and 
Devine, 2001; Sobinoff et al., 2010), thus causing permanent sterility.  

To achieve widespread efficacy ovotoxic xenobiotics in fertility control must be delivered 
via single or minimal oral administration. To be successful an oral agent must also have 
permanent or very long lasting effects, be specific for the target pest species and be 
humane/environmentally safe (Castle and Dean, 1996). Rodents such as the rice-field rat 
represent a serious pest in cereal agriculture, accounting for an average annual loss of 
between 5-10% of rice crops in Asia, 17% of rice crops in Indonesia, between 15-100% of 
maize in Africa, and between 5-90% of total crop production in South America (Geddes, 
1992; Mwanjabe and Leirs, 1997; Rodríguez and Jaime, 1993; Singleton, 2003; Taylor, 1968).  

VCD represents an ideal fertility control agent due to its ability to induce rapid small follicle 
depletion resulting in POF in rodents at concentrations which do not cause widespread 
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cytotoxicity (Springer et al., 1996). Additionally, VCD metabolism in the liver and hepatic 
tissue of rodents results in the production and excretion of the inert compound from the 
body, potentially reducing its effects on predators and its bioaccumulation in the 
environment (Flaws et al., 1994; Keating et al., 2010; Rajapaksa et al., 2007a). However, VCD 
does have disadvantages which make it fall short of the ideal fertility control agent. As 
described previously, VCD requires multiple doses to cause complete infertility in the 
rodent model (Springer et al., 1996). In addition, a VCD containing bait would need to be 
both attractive and palatable to the pest species, but not palatable or accessible to non-pest 
species. Currently, VCD is being trialled as an oral fertility control agent in the rice-field rat 
Rattus argentiventer. Registered by SenesTech Inc. as ContraPest®, the company website 
suggests the formulated bait is palatable, causes complete sterility within one month’s 
ingestion, and does not adversely affect the animal’s health and well being 
(http://www.senestech.com/). The use of other ovotoxicants as oral fertility control agents 
has been less successful. In a study by Sanders et al (2011) ERL-4221, a less toxic diepoxide, 
cycloaliphatic epoxide resin, which recently replaced VCD in industry, was investigated as a 
possible fertility control agent for pigs. A 20 day treatment period using palatable bait 
containing 16.0 mg ERL-4221 kg–1 bodyweight failed to produce any difference in follicular 
composition compared to control treated animals (Sanders et al., 2011).  In summary, 
ovotoxicants represent potential fertility control agents, provided the xenobiotic delivers 
significant follicle depletion without side effects, and does not adversely affect the 
environment or food chain. 

6. Conclusions 

Ovotoxic xenobiotics cause primordial follicle depletion via several mechanisms which 
ultimately lead to their destruction or activation. These chemicals are rarely ovotoxic  
by themselves, and require hepatic or ovarian metabolism to exert their destructive effects 
on reproduction. This type of ovotoxicity is insidious in its nature, and is not usually 
detected until the primordial follicle pool has become severely depleted, resulting  
in premature reproductive senescence. Besides a loss in fertility, reproductive senescence 
is also associated with an increased incidence of a variety of health problems. Despite  
the negatives associated with ovotoxic xenobiotics, there is potential to use their 
destructive nature for wildlife control and agricultural gain. It is a form of poetic justice 
that ovotoxic xenobiotics which prevent women from conceiving may be used to combat 
one of the biggest causes of death in the third world, starvation. Future research should be 
aimed at further elaborating the specific mechanisms of primordial follicle ovotoxicity, 
improving our ability to predict/detect human risk from environmental exposure, and 
investigating the possibility of using these ovotoxicants for the environmental control of 
pest species.  
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