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1. Introduction 

Senescence is an age-dependent process at the cellular, tissue, organ or organism level, 
leading to death at the end of the life span (Noodén 1988). Annual plants as grain and oil 
crops undergo a visual process towards the end of the reproductive stage that is 
accompanied by nutrient remobilization from leaf to developing seeds (Buchanan-Wollaston 
et al. 2003). The final stage of this process is leaf death but this is actively delayed until all 
nutrients have been removed and recycle through the process of developmental senescence. 
It have been documented that a delay in leaf senescence has an important impact on grain 
yield trough the maintenance of the photosynthetic leaf area during the reproductive stage 
in different crops (Ewing & Claverie 2000), including sunflower (Sadras et al. 2000; De la 
Vega et al. 2011). The potential yields of sunflower crop are far from the real ones in all 
Argentina productive regions. In Balcarce, for example, while the potential yields are 
estimated in 5,000 kg.ha-1, those obtained by the best producers only reach 3,000 kg.ha-1, 
and the average in the region ranges in 1,800 kg.ha-1 (Dosio & Aguirrezábal 2004). These 
differences could possibly be due to the inability of current hybrids to keep their green leaf 
area for long periods, which would allow greater use of the incident radiation during the 
grain filling period which plays an important role in determining the yield and oil 
concentration in sunflower (Dosio et al. 2000; Aguirrezábal et al. 2003). 

Besides autonomous (internal) factors as age, reproductive stage and phytohormone levels, 
leaf senescence is hardly affected by environmental factors. Among these environmental 
factors, including extreme temperature, drought, shading, nutrient deficient and pathogen 
infection, the most limiting ones are water and nutrient availability (Gan & Amasino 1997; 
Sadras et al. 2000; Sadras et al. 2000; Dosio et al. 2003; Lim et al. 2003; Aguera et al. 2010). 

During leaf senescence, critical and dramatic changes occurred in a highly regulated manner 
following a genetically programmed process of high complexity. Chlorophyll degradation, 
nutrient recycling and remobilization are preceded or paralleled by RNA and protein 
degradation. Even though leaf senescence has been widely recognized and accepted as a 
type of Programmed Cell Death (PCD) (Noodén & Leopold 1987), the onset and progression 
of senescence is accompanied by global changes in gene expression. Thus, deep extensive 
efforts have been achieved to reveal relevant molecular process by identifying and analysing 

www.intechopen.com



 
Senescence  

 

70

Senescence Associated Genes (SAGs) as prior tags to disclosure the core of this complex 
process (Kim et al. 2007). SAGs genes have been extensively studied in model plant species 
(Audic & Claverie 1997; Gepstein et al. 2003; Balazadeh et al. 2008; Hu et al. 2010) and in 
some agronomical relevant crops (Andersen et al. 2004; Conesa et al. 2005; Espinoza et al. 
2007). Yet, although senescence and ageing might be considered synonyms, a distinct 
reference was previously discussed because the former comprises all those degenerative 
changes and cellular degradation occurring with little or non-reference to death, whereas 
the latter is considered the final developmental stage culminating in death (Nooden & 
Leopold 1988; Shahri 2011). In the last year, considering this limitation, many efforts are 
being achieved to disclosure and obtain genomic information for this oil crop (Kane et al. 
2011) but complete sequence information are still no available.  

Sunflower (Helianthus annuus L.) is one of the most relevant crops as  source of edible oil and 
many efforts have been achieved to build up useful functional genomics tools for cultivated 
sunflower involving transcriptional and metabolic profiles (Fernandez et al. 2003; Cabello et 
al. 2006; Paniego et al. 2007; Fernandez et al. 2008; Peluffo et al. 2010). Although, molecular 
studies focused on the onset of the senescence process in sunflower leaf are scarce 
(Fernandez et al. 2003; Dezar et al. 2005; Manavella et al. 2006; Jobit et al. 2007; Paniego et al. 
2007; Fernandez et al. 2008; Manavella et al. 2008; Peluffo et al. 2010; Fernandez et al. 2011). 
Thus, two different approaches are envisage for studying molecular events occurring during 
leaf senescence: the first strategy relays on the identification of sunflower SAGs based on a 
candidate gene approach while the second approach involves concerted gene expression 
studies based on high density oligonucleotide microarrays, whole transcriptome shotgun 
sequencing and microRNA detection by RNA-seq (Buermans et al. 2010; Dhahbi et al. 2011).  

Leaf senescence is a complex and highly coordinated process (Noodén et al. 1997). Although 
symptoms have been explored, the involved processes and the mechanisms that control it 
have not been characterized yet (Buchanan-Wollaston et al. 2003). The distinctive symptom 
of leaf senescence is the breakdown of chloroplasts, therefore the decrease in chlorophyll 
content becomes a key indicator of the process (Hörtensteiner 2006). Both, the beginning and 
the rate of senescence may be affected by autonomous and environmental signals. 

Environmental factors such as light (Weaver & Amasino 2001), nutrient availability, 
concentration of CO2, abiotic and biotic stresses caused by disease (Sadras et al. 2000) may 
affect the rate of senescence. A previous work (Pic et al. 2002) showed that the sequence of 
certain events at macroscopic, biochemical and molecular level in pea leaf senescence were 
not modified in leaves of different age, or under conditions of moderate water stress. Since 
some of the environmental conditions that affect senescence have important effects on 
carbon metabolism, previous works assigned to sugar content in leaves an integrating role 
of environmental signals, regulating leaf senescence (Wingler et al. 2006). Reproductive 
growth is mentioned as a factor that usually impacts  on leaf senescence, and particularly in 
sunflower, the lack of sinks delays the onset of senescence (Sadras et al. 2000). Control of 
senescence by growth of reproductive structures was not observed in Arabidopsis thaliana 
(Noodén & Penny 2001). Moreover, determining the onset of senescence is complex because 
there is no a "symptom" indicating this moment. Visual parameters are often used to assess 
these processes, but both the variation in chlorophyll content and yellowing or necrosis of 
leaves, are detectable long after the signalling cascade of senescence process is activated. 
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Senescence studies are generally based on the accumulation of messenger RNA coding for 
enzymes involved in degradation of structures, however, this process has a high degree of 
interaction between endogenous and environmental signals, involving different genes 
whose expression is induced or inhibited in different stages of the process (Gan & Amasino 
1997). On the other hand, there are relevant studies that inversely correlate senescence with 
a high level of nitrogen in soil. According to these evidences a high nutritional nitrogen 
performance along soil profile should lead to a delay  leaf senescence in sunflower, avoiding 
the pronounced symptoms occurred for chlorophyll content (Aguera et al. 2010). 

2. Candidate gene approach to identify SAGs in sunflower 

Senescence Associated Genes (SAGs) refer to genes whose expression level is up-regulated 
during senescence, in contrast with Senescence Down-regulated Genes (SDGs). These genes 
could be classified into two classes depending on their expression patterns: Class I genes are 
those whose expression is only activated during senescence (senescence-specific) whereas 
class II are those that maintain a basal level of expression during early leaf development, but 
this level increases when senescence begins (Gan & Amasino 1997). The expression patterns 
of these genes may change in response to different conditions of plant growth. Many of 
these genes can be shared by different regulatory pathways whereas others may belong to a 
particular pathway. Thus, the inactivation or overexpression of many SAGs may not 
exhibits significant effect, suggesting a complex regulatory network in leaf senescence 
process. SAGs can be grouped into several categories based on their predictive function, 
including macromolecular degradation and recycling, amino acid transport, metabolism, 
detoxification, regulatory genes, among others (Gepstein et al. 2003). 

The main objective in sunflower to open new insights into the early leaf senescence process 
focuses in the identification and characterization of genetic sequences and metabolic 
pathways involved in the onset and evolution of the leaf senescence process. This aim 
involved the analysis of transcriptional and metabolic profiles in leaves from plants growing 
under different conditions that may alter the senescence rate, concomitant with  studies of 
physiological and biochemical aspects. The specific items involved in this work include:  

1. Study of the evolution of leaf area, chlorophyll and sugar content in leaf of different 
ages in a traditional sunflower hybrid subjected to treatments that alter the senescence 
under both field and greenhouse conditions. 

2. Identification in public sunflower databases of gene sequences orthologous to 
Senescence Associated Genes (SAG) or Senescence Down-regulated Genes (SDG). 

3. Identification of new candidate genes through a sunflower microarray expression 
analysis. 

4. Verification and quantification of the expression profiles of these genes under 
conditions that accelerate or delay the senescence process. 

5. Study of metabolic changes that occurred during the senescence process. 
6. Integration of metabolic and transcriptional profile analysis and physiological variables 

for the detection of useful biomarkers for application in sunflower breeding. 

Following a candidate genes strategy, a preliminary assay to detect putative SAGs in 
sunflower was achieved by selecting few candidates previously described for Arabidopsis 

thaliana, due to the fact that this was the very first model plant for which a large-scale SAG 
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transcriptome was available (Gepstein et al. 2003). For this purpose six candidate SAGs  
were selected  from this plant model (Moschen 2009) to search for orthologous genes in the 
sunflower EST database using the tblastx algorithm (Altschul et al. 1990), employing 
bioinformatics tools locally installed and developed. Sequences showing significant 
similarity parameters were selected and confirmed. Specific oligonucleotides were designed 
to amplify fragments of approximately 150 bp for further evaluation by quantitative PCR. In 
a previous study, we have reported the evaluation and identification of a panel of eight 
reference genes for their application to transcriptional analysis of the leaf senescence 
process, thus enabling the use of genuine reference genes in ongoing expression studies 
(Fernandez et al. 2011). Exploratory studies of senescence by qPCR comparing two 
treatments which affect the rate of leaf senescence were performed: water stress and head 
excision, relative to a control condition.  Samples were taken from two leaves of different 
ages, leaf 15 and 25 in order to identify functional markers for this process. Two of the 
selected genes, a gamma vacuolar processing enzyme (AN At5g60360) (D3 gene) involved 
in the maturation and activation of vacuolar proteins and an aleurain protease AALP, (AN 
At1g18210) (D4 gene), belonging to the cystein-protease family are classified in the group of 
macromolecular degradation and recycling; the third gene, a calcium binding protein (AN 
At4g32940) (R2 gene) belongs to the group of regulatory genes (Gepstein et al. 2003). 
Furthermore two reference genes were evaluated against these conditions for relative 
expression studies, Elongation Factor 1-α (AN) and α-Tubuline, selected from a previous 
study of the performance of different reference genes against these experimental conditions 
in sunflower (Fernandez et al. 2011). Alfa tubuline (α-Tubuline) showed the most stable 
behavior; therefore, it was selected as internal control in further analysis of expression of 
these SAGs (Figure 1). 

 
Fig. 1. Average Cq of analyzed SAGs genes normalizing against a-TUB as RG. Error bars 
show standard deviation (Fernandez et al. 2011). 
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The three selected genes did not show significant differences between the evaluated 
conditions at the sampling times tested (63 days post-emergence) (Table 1). It is worth 
noting that the target genes showed high expression levels even in controls plants with 
values close to the water stressed samples. Thus, these genes were probably induced by 
internal plant factors at an early time point, prior to the tested time in that assay. On the 
other hand, sampling for the incidence of head excision assessment on senescence could be 
consistent with an early stage of bud development in which there would be no evident 
differences between the two conditions (Zavaleta-Mancera et al. 1999a; Zavaleta-Mancera et 
al. 1999b; Thomas & Donnisson 2000). 

 

  SAGs genes (Gepstein et al. 2003) RGs genes (Fernandez et al. 2011) 

  
R2 

(AN At4g32940) 
D3 

(AN At5g60360) 
D4 

(AN At1g18210) 
α-TUB 

(AN AF401481.1) 
EF-1 

(AN CAA37212.1) 

Treatment Samples Cq CV Cq CV Cq CV Cq CV Cq CV 

C.L1 3 30.49 2.5 31.06 5.0 28.74 3.9 33.69 1.7 30.08 2.6 

C.L2 3 30.00 0.8 30.19 3.8 27.42 4.5 34.20 1.9 25.57 7.2 

FE.L1 3 30.46 3.9 28.96 4.3 26.42 6.6 33.52 2.9 27.16 1.7 

FE.L2 3 29.28 0.6 29.13 1.1 24.84 2.7 33.32 2.6 26.73 12.9 

D.L1 3 30.45 2.1 30.31 1.7 26.10 5.1 33.67 0.2 27.80 6.7 

D.L2 3 29.75 2.0 29.12 5.5 24.98 1.5 33.38 4.5 30.07 5.7 

Table 1. Average Cq and CV value for R2, D3 and D4 genes and the two best ranked RGs for 
three biological replicates per treatment (Fernandez et al. 2011). 

As a result from these analyses, the adjustment of the sampling time and frequency turns 
out as a highly critical point in studying gene expression profiling of candidate genes, 
according to the treatments on evaluation. Earlier samplings are necessary to detect the 
trigger moment of different candidate genes for leaf senescence process in sunflower. 
Considering Table 1, it is worth mentioning that relative quantification of a putative SAG 
would be overestimated if EF-1 (AN CAA37212.1) would have been used as a single 
reference gene, which reinforces the importance of normalizing against two or more 
experimentally validated RG when quantifying transcripts (Fernandez et al. 2011). In order 
to reach a wider search of new candidate genes, an additional set of new published genes 
were considered and their predicted functionality was evaluated with the aim to give new 
insights into this process. For a preliminary detection of potential SAGs, classical 
macromolecular degradation SAGs were discarded of our analysis because they are 
probably not associated with early leaf senescence, but with induced changes later in the 
time course of the process. In this sense, Chlorophyll-Binding Proteins (CBP) were first 
isolated in soybean (Guiamet et al. 1991) whereas SAGs N4 and SAG12 were detected by 
differential screen of Arabidopsis leaf senescence cDNA libraries (Gan & Amasino 1995; Park 
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et al. 1998). They encode an apparent cysteine proteinase and their expression is highly 
senescence specific (Lohman et al. 1994; Gan & Amasino 1995; Martinez et al. 2007) mainly 
localized in small senescence associated vacuoles (Saeed et al. 2003; Otegui et al. 2005). 
However, neither SAG12 nor SEN4 match any full sequence in sunflower with a high 
identity score level. For this reason, a second set of candidate SAGs (OsNAC5, WRKY6, 
ORS1 YUCCA6, among others) (Ülker & Somssich 2004; Balazadeh et al. 2011; Kim et al. 
2011; Song et al. 2011) was compared against Helianthus annuus unigene collection but a low 
score level to Helianthus annuus sequences was detected. Therefore, other candidate genes 
were added to be functionally tested for early leaf senescence in sunflower. The special case 
of transcription factors (TFs) as crucial regulators of gene expression by binding to distinct 
cis-elements, generally located in the 5’ upstream regulatory regions of target genes, were 
specially considered to detect early senescence leaf makers (Balazadeh et al. 2008). NAC 
transcription factors related to senescence have been recently identified in model species 
and they play a relevant role in the regulation of development of leaf senescence related to 
programmed cell death (Olsen et al. 2005; Kim et al. 2009; Balazadeh et al. 2010; Hu et al. 
2010; Nuruzzaman et al. 2010; Balazadeh et al. 2011). A single one NAC gene (AtNAP), also 
called NAC2 or ANAC029 (Guo & Gan 2006), has been the main one identified to control 
leaf senescence, although approximately 20 NAC genes in Arabidopsis shown high 
expression in senescing leaves (Guo et al. 2004; Lin & Wu 2004). ROS reagents acting as 
senescence stimulus were also reported within a narrow cross talk involving hormones and 
TFs both in natural and stress-related senescence (Rivero et al. 2007; Khanna-Chopra 2011), 
indicating that elevated ROS levels might be detected as a potential signal of senescence 
induction. Under this assumption ORE1, a NAC transcription factor that has been 
extensively studied in recent years, has been described as strongly related to leaf senescence, 
probably coevolving genes with ORS1 (Ooka et al. 2003). This TF can be considered a new 
further positive regulator of senescence in conjunction with AtNAP (Balazadeh et al. 2011), 
controlling leaf senescence in Brassicaceae. In Arabidopsis, ORE1 mutants show a delay in leaf 
senescence whereas overexpression through an inductive promoter, accelerates senescence 
in relation to wild type plants (Balazadeh et al. 2010) and the forest tree Populus trichocarpa 
in which approximately 2,900 TFs were reported (Hu et al. 2010) and will be soon tested for 
sunflower candidate SAG detection. Microarray studies showed that 46% of up regulated 
genes in Arabidopsis ORE1 overexpression lines, are known as senescence-associated genes, 
including many genes previously reported as senescence regulated, suggesting an important 
role in the development of the senescence process (Balazadeh et al. 2010). In wheat, it was 
reported that NAC TFs not only accelerate senescence but also improve nutrient 
remobilization by increasing protein, iron and zinc content (Uauy et al. 2006). ORE1 
expression is under control of the ethylene signaling pathway and is subjected to regulation 
by miRNA164, being negatively regulated. When the leaf is young, miR164 transcripts 
remain at high levels regulating the expression of ORE1 but during the leaf aging process, 
its expression gradually decreases, thus increasing the expression of ORE1 (Kim et al. 2009). 

In sunflower, a sequence similar ORE1 has been detected in the Helianthus annuus  
unigene collection developed at INTA (ATGC Sunflower Database: 
http://bioinformatica.inta.gov.ar/ATGC) with a Blast score of 96 and E-value of e-10 
(Altschul et al. 1990). Expression profiles studies at different sunflower developmental 
stages showed a significant increase of putative ORE1 transcripts in samples close to 
anthesis stage, prior to the start of the first symptoms of senescence, when the critical period 
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of grain filling has already begun (Figure 2). These results are consistent with  
those observed in Arabidopsis, and turn this gene a potential functional marker of the 
progress of senescence, representing an important tool for future implications in the 
sunflower crop improvement (Moschen et al. 2010). In order to confirm in-situ the 
functionality of this putative ORE1 gene in sunflower, a comparative bioinformatics analysis 
has been performed using the Blastx algorithm (Altschul et al. 1990), searching for proteins 
in the database at the National Center for Biotechnology Information NCBI 
(http://www.ncbi.nlm.nih.gov/), using as query the nucleotide sequence of putative 
sunflower ORE1. These results showed a high similarity with ORE Arabidopsis protein (GI 
15241819) suggesting a possible role of this gene as NAC transcription factor. Moreover, 
searches for functional protein domains in Pfam (http://pfam.sanger.ac.uk/) revealed that 
main protein domain in sunflower ORE1-like gene sequence corresponds to the family of 
NAM transcription factors (No Apical Meristem) (pfam02365), as well as the Arabidopsis 
ORE1 sequence pfam02365. Figure 3 shows Arabidopsis alignments and putative sunflower 
ORE1 proteins against Pfam NAC domain. Others relevant in-silico candidates for a putative 
sunflower SAG are: RAV1 gene, a transcription factor whose expression is closely associated 
with leaf maturation and senescence (Woo et al. 2010), which has been detected with a high 
score level and statistically low E-value, and CAT2, a member of a small gene H2O2 
detoxifying enzyme family, widely characterized in Arabidopsis (Gergoff et al. 2010; 
Smykowski et al. 2010), although not yet tested in sunflower. 

 
Fig. 2. Differential expression of putative sunflower ORE1 gene in subsequent samplings, 
taking as control condition sampling number 1 and referred to α-TUB expression level 
(Moschen et al. 2010). 
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Fig. 3. Arabidopsis NAM domain and putative sunflower ORE1 protein alignment 
(pfam02365) (http://www.ncbi.nlm.nih.gov/cdd/). 

As mentioned above, the execution of the senescence process consists of multiple 
interconnecting pathways which regulate and/or modulate this series of orderly steps; 
therefore different transcription factors play an important role as regulators of these 
pathways. Recently, a list of transcription factors that regulate leaf senescence in Arabidopsis 
has been published (Balazadeh et al. 2008). The search for tentative orthologous genes in the 
Helianthus annuus unigene collection, using Blast algorithm, led to the identification of 42 
genes with a significant score value to  transcription factors like NAC, MYB, WRKY, ARP 
among others, some of these genes are being studied their expression patterns by qPCR. 

3. Concerted gene expression studies to elucidate sunflower senescence 
process 

Although  microarray technology started a new era of high-throughput transcriptomic 
analysis approximately ten years ago, starting with 8,000 printed genes by Affymetrix in 
Arabidopsis thaliana (Zhu & Wang 2000) and later on  scaling up to 45,000 printed genes in rice 
(Jung et al. 2008) and 90,000 in Brassica (Trick et al. 2009), next generation sequencing (NGS) 
technologies are nowadays opening a new era of even deeper understanding of genomics and 
transcriptomics in different species . However, for the foreseeable future both technologies will 
coexist each focusing on different tasks, or by complementing biological and value information 
(Fenart et al. 2010) or by designing dedicated oligonucleotide arrays to support functional 
studies on a specified pathway/developmental stage (Kusnierczyk et al. 2008; Cosio & 
Dunand 2010; Ott et al. 2010). One obvious application of microarray technology is the 
transcriptional profiling in species that have neither their own genome sequenced nor a 
reference genome from a closely related species. For some of these species a commercial 
microarray based on an existing own-design are available (Agilent, Affimetrix, Nimblegen, 
etc) (Close et al. 2004; Li et al. 2008; Martinez-Godoy et al. 2008; Mascarrell-Creus et al. 2009; 
Trick et al. 2009; Booman et al. 2010; Curtiss et al. 2011). Sunflower is a species that fits into this 
framework, even though a genome sequence initiative is in progress (Kane et al. 2011), there is 
no reference genome available. In this case, the only source of functional information is limited 
to ESTs databases, which in the case of cultivated sunflower is rather extensive, more than 
133,000 ESTs are publicly available (http://ncbi.nlm.nih.gov/dbEST/dbEST_summary.html) 
covering libraries prepared from several lines and cultivars (Table2). However, it should also 
be noted that ESTs libraries tend to be significantly contaminated with vector sequences and 
chimeras, and have relatively low quality DNA information derived from the library 
sequencing strategy which prioritizes obtaining a large number of single pass sequences, being 
necessary to standardize a set of bioinformatics routines in order to clean and decontaminate 
public raw sequences (Figure 4). 
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Microarrays using ESTs and full length gene sequences allowed SAGs identification during 
leaf senescence at the genome-wide scale in Arabidopsis and other plants (Lim et al. 2007). In 
parallel, other high-throughput system has been assayed in other species: cDNA macro and 
microarray were developed for sunflower to study sunflower seed development (Hewezi et 
al. 2006) and the response to biotic (Alignan et al. 2006), and abiotic stresses (Hewezi et al. 
2006; Roche et al. 2007; Fernandez et al. 2008).  This last work reported for the first time, a 
concerted study on gene expression in early responses to chilling and salinity using a 
fluorescence microarray assay based on organ-specific unigenes in sunflower. These two 
strategies, although useful, are limited to the analysis of a limited set of genes. Currently, the 
shortage of candidate genes underlying agronomically important traits represents one of the 
main drawbacks in sunflower molecular breeding. In this context, functional tools which 
allow concerted transcriptional studies, as high density oligonucleotide microarray, strongly 
support the discovery and characterization of novel genes. Oligonucleotide-based chips not 
only allow the analysis for a whole transcriptome but they are also considered more 
accurate than cDNA-based chips due to the reduction of manipulation steps (Larkin et al. 
2005; Lai et al. 2006). The possibility to implement this technology on any custom array 
system like Agilent, Nimblegen, and others, has the potential to create a very useful tool for 
gene discovery in orphan crops (Nazar et al. 2010; Ophir et al. 2010). In addition, the use of 
longer probe format represents a major advantage of Agilent oligonucleotide microarrays 
over others technologies based on a higher stability in the presence of sequence mismatches, 
being consequently, more suitable for the analysis of highly polymorphic regions 
(Hardiman 2004). 

In general, the analysis of complex biological processes based on a gene by gene approach 
seldom leads to limited or erroneous conclusions requiring an alternative approach based 
on systemic association studies. Under this assumption, new insights into molecular 
senescence events might be cleared up by high-resolution microarray data, for example, 
considering different points of leaf development (Breeze et al. 2011) or predicting putative 
SAGs by tissue and functional categories (Thomas et al. 2009). In our lab, a public and 
proprietary datasets of H. annuus L. ESTs have been used to create a comprehensive 
sunflower unigene collection. This dataset comprises 34 cDNAs libraries available from 
different cultivars, various tissues and anatomical parts, from plants grown at different 
physiological conditions.  

Figure 4 describes the routines applied for the H. annuus L unigene collection design.  

A Digital Gene Expression Profile (Audic & Claverie 1997) was assayed with the EST public 
data in order to detect any bias that would be pseudo-enriching the gene index by full 
representation of one library over another considering full public ESTs derived from public 
collections (Table 2). This analysis (“digi-Northern”) detected that ESTs were equally 
represented among differential cDNA libraries, showing that the H. annuus unigene 
collection generated would be fully represented by different transcripts, lacking of a 
potential enrichment or overestimation among organ-specific ESTs libraries. This unigene 
collection was used to design the first custom sunflower oligonucleotide-based microarray 
based on Agilent technology as a main goal for functional genomics approaches, generated 
within the frame of a collaborative project involving Argentinean research sunflower groups 
(Sunflower PAE Consortium), Facultad de Agronomía (UBA) and the Bioinformatics facility 
at the Principe Felipe Institute, Valencia , España. A Chado-based database (Mungall et al. 
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2007) and a visualization tool call ATGC (Clavijo et al., unpublished) was developed to 
integrate and browse sunflower transcriptome information. Figure 5 shows the output of the 
ATGC interface for one functional annotated sunflower unigene.  

 
Fig. 4. Bioinformatics routines applied to design Helianthus annuus unigene collection 
(http://bionformatica.inta.gov.ar/ ATGC/). 

Sunflower gene expression chip probes were designed using eArray® web application 
(Agilent Technologies). For this instance, two probe sets were designed: one including non-
control specific probes for the sequences of sunflower unigene collection and a second 
control probe set consisting in 74 probes derived from 80 differentially expressed sunflower 
genes identified in a previously work (Fernandez et al. 2008). The latest group was used as 
‘Replicate Controls’ with 10 replicates each. To utilize the full capacity of the microarray, 
probes were randomly selected to be represented in duplicate in the final design, which also 
included Agilent Technologies' standard panel of quality control and spike-in probes. This 
design was then used to manufacture microarrays using Agilent SurePrint™ Technology in 
the 4 x 44 format. Agilent’s microarrays include the Spike-In Kit that consists of a set of 10 
positive control transcripts optimized to anneal to complementary probes on the microarray, 
minimizing self-hybridization or cross-hybridization. This work contemplates the 
microarray validation through diverse differential expression analysis in order to analyze 
early senescence in sunflower through a classical approach and a pipeline-based 
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methodology. Differential gene expression was also carried out using the limma package 
(Smyth 2004). Multiple testing adjustments of p-values was done according to Benjamini 
and Hochberg methodology (Benjamini & Hochberg 1995). Gene set analysis was carried 
out according to the Gene Ontology terms using FatiScan (Al-Shahrour et al. 2007) 
integrated in Babelomics suite (Al-Shahrour et al. 2005). 

 
 

Library ID Developmental stage

HaSSH  Molecular characterization of phosphorus-
responsive genes in sunflower

CCF (STU)  EST sequences from several different 
strains/cultivars

QH-RHA 280/QH_ABCDI 
sunflower RHA801

shoots/hulls/flowers environmental 
stress/chemical induction

CHA(XYZ) common wild 
sunflower  girasol silvestre (wild sunflower) 

HaHeaS  heart-shaped embryo vs cotyledonary embryo 
HaHeaR  heart-shaped embryo
HaCotR  cotyledonary embryo
HaGlbR  globular embryo
HaDevS1  4 days after self-pollination embryo
HaDevS2  7 days after self-pollination embryo
HaDevR1  leaves
HaDevR2  terminal bud
HaDevR3  stem
HaDevR6  embryo
HaDevR5  4 days after self-pollination embryo
HaDevR8  15 days after self-pollination embryo
HaDis  unknown/cotyledons/ (Genoplante)
HaSemS4  hypocotyl
HaDpsR1  hypocotyl
HaDplR2  hypocotyl 1-5 days
HaDplR  protoplast
HaERF  embryo
HaERS  embryo
HaR  INTA: organ-specific cDNA libraries (root) 
HaT  INTA: organ-specific cDNA libraries (stem) 
HaEF  INTA: organ-specific cDNA libraries (early flower) 
HaF  INTA: organ-specific cDNA libraries (flower) 
HaH  INTA: organ-specific cDNA libraries (leaf) 

Table 2. Public cDNA libraries deposited in GenBank for which H. annuus unigene collection 
was designed. 
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Fig. 5. ATGC view for an annotated sunflower unigene. 
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4. Conclusions and perspectives  

Knowing the time of onset the the cascade of events that trigger senescence could determine 
the causes of this process and generate molecular tools to facilitate future interventions on it, 
useful for application in assisted breeding of this crop with major growing oil impact in the 
world. 

The sunflower chip, designed within a PAE  Consortium made up of six laboratories and 
one private company working in different areas of research and development, was validated 
by means of the analysis of global changes in gene expression profiles in response to water 
deficit as a physiological event which induces senescence, taken as a model experiment, for 
which reference genes have also been previously identified (Fernandez et al. 2011). This 
high-throughput transcriptome tool will allow the discovery, identification and analysis of a 
new set of putative SAGs for sunflower which would bring novel insights for this process. 
The integrated analysis of transcriptional and metabolic profiles will allow the identification 
of concerted regulation of distinct metabolic pathways facilitating the discovery of robust 
candidate genes and key metabolic pathways involved in the outbreak of the early 
senescence process in sunflower leaves. We expect that the integration of the information 
generated by this project will allow the construction of the quantitative predictive model of 
senescence in sunflower, under field and greenhouse conditions, which is required to 
interpret the regulation of the underlying complex biological processes. There will also be 
practical applications in directed gene discovery for other important agronomic traits 
involving plant responses to biotic and abiotic stresses. Finally, this project will have impact 
based in the establishment of microarray technologies and metabolic analysis, as well as on 
the knowledge of appropriated statistical and bioinformatics procedures supporting 
functional genomics ranging from the transcriptome to the metabolome. 
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