
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322408464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


9 

The Health Care Access Index as a  
Determinant of Delayed Cancer Detection 

Through Principal Component Analysis 

Eric Belasco1, Billy U. Philips, Jr.2 and Gordon Gong2 
1Montana State University, Department of Agricultural Economics and Economics, 

2Texas Tech University Health Sciences Center, F. Marie Hall Institute of Rural 
Community Health,  

USA 

1. Introduction  

In the past two decades, cancer mortality declined significantly in the United States (Byers, 
2010). Although the reasons for the decline have not been well-established, many factors 
such as the reduction in the number of smokers, increased cancer screening, and better 
treatment may have played an important role (Byers, 2010, Richardson et al. 2010). 
However, disparities in cancer mortality persisted among different ethnic groups and social 
classes (Byers, 2010). Health status and health disparities among different social and ethnic 
groups are to a large degree determined by socioeconomic status and living conditions in 
general (Pamies and Nsiah-Kumi, 2008; World Health Organization [WHO], 2008). For 
example, life expectancy worldwide increased from 48 years in 1955 to 66 years in 2000 
mainly as a result of improvement of overall living conditions in addition to advancement in 
medical science and large-scale preventive interventions (Centers for Disease Control and 
Prevention [CDC], 2011). Large health disparities exist between poor and rich countries or 
within any given rich or poor country (WHO 2008). In the case of cancer mortality due to 
delayed detection, socioeconomic status may determine health insurance coverage status, 
which in turn affects health behaviour including regular check-ups and participation in 
cancer surveillance among high risk groups. Regular cancer surveillance is critical for cancer 
control (Byers, 2010, Richardson et al. 2010). Lack of health insurance due to economic 
hardship may result in the delay in cancer detection.  

A vexing question is how to determine socioeconomic status. Early studies associated cancer 
mortality with single socioeconomic indicators such as individual income, education level, 
below or above poverty level among others. For example, Ward et al. (2004) used the 
percentage of the population below the poverty line as a socioeconomic indicator and found 
that cancer mortality rate was 13% and 3% higher in men and women, respectively, among 
U.S. counties with ≥ 20% of the population below the poverty line as compared with those 
with < 10% below the poverty line from 1996 to 2000. On the other hand, Clegg et al. (2009) 
used education level as an indicator, and reported that lung cancer incidence was 
significantly higher among Americans with less than a high school education than those 
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with a college education. Clegg et al (2009) also used family annual income as an indicator 
and found that lung cancer incidence rate was 70% higher in those with less than $12,500 
annual income compared with those with incomes $50,000 or higher.  

An alternative approach to assessing socioeconomic status is to build a composite index 
based on many aspects of socioeconomic status using readily available census data, which is 
then employed to predict health status using information from disease (e.g., cancer) 
registries. For example, Singh (2003) used 17 socioeconomic indicators (such as household 
income, median home value) derived from US census data to build a composite index for 
socioeconomic deprivation by factor analysis and principal component analysis (PCA). Such 
a composite index is believed to reflect socioeconomic status more thoroughly with multiple 
indictors, while PCA address the issue of inter-correlation among factors. Such a composite 
index tends to have a high reliability coefficient (α equal to 0.95) (Singh, 2002). The 
composite index is then used to predict health status. For example, Singh (Singh, 2003) 
reported that US mortality of all-causes was significantly and positively correlated with a 
deprivation index derived from US census data. Crampton et al. (1997) developed a 
relatively simple socioeconomic status index termed the New Zealand Index of Relative 
Deprivation (NZDep91) which was constructed based on nine socioeconomic variables from 
New Zealand census data. The NZDep91 is subsequently used to predict hospital discharge 
rate and all-cause mortality (Salmond et al. 1998). Albrecht and Ramasubramanian (2004) 
(Henceforth, A&R) modified the NZDep91 and developed a Wellbeing Index (WI) by 
principal component analysis using ten socioeconomic variables from US Census 2000 data. 
The WI is recently shown to be highly correlated with delayed cancer detection (as assessed 
by the ratio of late- to early-stage cases) of female genital system (FGS), lung-bronchial and 
all-type cancers at diagnosis among Texas counties (Philips et al., 2011).  

One of the main purposes of the current study is to determine whether the percentage of 
late-stage cancer incidence is correlated with a newly developed index of health 
accessibility, which is an extension of the previously mentioned WI. We term the new index 
the Health Care Accessibility Index (HCAI), which is derived from principal component 
analysis of ten socioeconomic indicators derived from US Census Bureau’s 2005-2009 
American Community Survey plus two additional factors that are more closely related to 
health, i.e., health insurance coverage and physician supply. By examining the relationship 
between HCAI and late-stage cancer detection, we are able to establish whether health 
inequities exist in certain communities that can be related to access to health care. A high 
percentage of late-stage cancer cases is problematic for communities due to the often 
relatively low survival rates of costly procedures. The derived HCAI is compared with WI 
in their association with delayed cancer detection in Texas counties to determine the optimal 
model by the Akaike’s Information Criteria (AIC) (Akaike, 1974) and Schwartz Information 
Criteria (SIC) (Schwartz, 1978). Another difference between WI and HCAI is that the ten 
socioeconomic variables for computing the HCAI includes a new variable, the median 
income of a county and excludes the percentage of people with disability (because of its 
absence in the US Census Bureau’s 2005-2009 American Community Survey database). 

This study also addresses several practical statistical issues regarding the choice of 
socioeconomic variables in association with delayed cancer detection. Firstly, A&R 
arbitrarily classify the WI rankings as the deciles of the first component scores retrieved 
from PCA. It is quite frequent for groupings to be assigned based on terciles, quartiles, or 
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deciles, which may or may not produce a proper classification. If ad hoc metrics are used to 
denote an optimal number of groups to be used in any particular index, then the inference 
that derive from the index might not have meaning and might even add uncertainty to the 
representativeness of the index. For example, the grouping used for Texas might be 
substantially different from Delaware, given the different sizes and regional dynamics. We 
propose to use AIC and SIC to find the optimal number of groups and compare the 
goodness-of-fit between models. Secondly, it has not been statistically demonstrated that 
using the composite WI is superior to using each of the 10 individual socioeconomic 
variables in their correlation with health status such as delayed cancer detection. The 
optimal model of the two (a composite vs. multiple variables) will also be determined by 
AIC and SIC. Thirdly, we also propose the use of raw principal component scores in a 
regression in order to improve goodness-of-fit and compare these results to the previously 
mentioned models based on AIC and SIC. Using these proposed methods, we look to 
characterize the relationship between late-stage cancer detection with the HCAI in order to 
identify the existence or lack of existence of economically-rooted health inequities. 

2. Review of PCA in regression analysis 

2.1 Review of creating indices using PCA 

Using PCA in economics is particularly appealing for applications where comparisons are 
warranted that comprise over a collection of variables. This method is particularly 
convenient and informative when the researcher is interested in the “ability” of a model to 
characterize a collection of variables rather than the marginal impacts between one variable 
and another (Greene, 2012, pg. 93). Further, the assumption of an exogenous shock is often 
used when evaluating marginal impacts, which are unrealistic with covariates that are 
highly correlated. For example, in evaluating the relative wealth or poverty in developing 
counties, asset indices are often built to reflect the relative wealth in order to make cross-
country comparisons. For example, Booysen et al (2008) conducted a transregional survey in 
sub-Saharan Africa to evaluate the movement of poverty across regions over a particular 
time span. While “poverty” is a loosely defined term, this line of research commonly utilizes 
an asset index in order to evaluate the ability of citizens in each country to consume durable 
goods. Another example is Gwatkin et al. (2000) who use data from the Demographic and 
Health Survey (DHS) program to evaluate socio-economic differences between developing 
countries. They create a socio-economic status (SES) index, which was also used in studies 
such as Vyas and Kumaranayake (2006).  

SES indices have also been developed in order to evaluate health outcomes in developing 
counties in studies such as Deaton (2003), where it is argued that health outcomes and the 
utilization of health services are largely different across different socioeconomic classes. 
Ruel and Menon (2002) create a child feeding index using responses in the DHS survey to 
assess the influences on child feeding practices. As in many related studies, the creation of 
an index is used to identify problem areas that need improved policy design or 
interventions.  

Ewing et al. (2008) develop a sprawl index in order to evaluate the relationship between 
urban sprawl and health-related behaviours. As in the case of other index variables, urban 
sprawl can be defined only when many factors are combined. The main four factors that are 
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include are residential density, mixture between homes, jobs, and services, strength of 
business centers, and accessibility of the street network. Data were from the Behavioral Risk 
Factor Surveillance Systems (BRFSS) from 1998 to 2000 to evaluate health activity and 
lifestyle. On a similar topic is a study by Pomeroy et al (1997) who evaluated perceptions 
and the factors that led to the appearance of a successful resource management program.  

While many of these indices include continuous variables, Koenikov and Angeles (2009) and 
Filmer and Pritchett (2001) explore ways to incorporate discrete data into PCA. Savitry 
(2005) provides a comprehensive overview of all multivariate methods used in  
developing indices. 

2.2 Review of using PC scores in regression analysis 

While the developments of a reliable and robust index are quite extensive in the literature, 
little research has been done to evaluate the impact of incorporating an index into a 
regression. This is precisely because usually the index itself is the primary interest. For 
example, in the identification of poverty traps, one needs only an index for identification. 
However, if one were interested in the impact of a poverty trap on say personal liberties, 
then a regression would likely be needed.  

There are many studies that conduct PCA to create an index that is used in a secondary 
regressions (Everitt and Hothorn, 2011; Everitt, 2011; Vyas and Kumaranayake, 2006). One 
method that is used is to rescale the principal component values. For example, Ewing et al. 
(2008) scale the raw principal component scores to have a mean of 100 and a standard 
deviation of 25. This is similar to normalizing the principal components. However, the 
distribution of scores might not be normal. Vyas and Kumaranayake (2006) report finding 
scores that are different distributions by county that include counties with normal and 
uniform distributions along with distributions that possess negative or positive skewness. 
Their results suggest that the characterization groups might be different across cases, which 
leads one to consider a data-driven approach. Pomeroy et al (1997) use the raw and unscaled 
principal component scores as the dependent variable. While marginal impacts are not 
easily interpreted, they can loosely be discussed directionally. 

Another common approach is to use cut-off points. For example, Filmer and Pritchett (2001) 
split their sample into three populations based on cut-off points at the 60th and 20th 
percentile of the principal component scores. They define these groups to be ‘low’, 
‘medium’, and ‘high’ socioeconomic groups. Cut-off points can also be defined a bit more 
arbitrarily. For example, A&R use deciles (ten groups) to define different ranges of socio-
economic status. The implicit assumption made is that each group is distinctly different 
from the other. However, just as Vyas and Kumaranayake (2006) found differences by 
country it might also be possible to find that some populations need more grouping than 
others. Others, such as Booyens et al (2008) use quintiles in breaking up the population.  

Other approaches that are more data-driven include the use of cluster analysis, which is 
described in some detail in Everitt et al. (2011).  However, one limitation of cluster analysis 
as well as the previously discussed methods is that the existence of an observation in a 
particular group is mutually exclusive of other groups. This means that each observation 
must with certainty fit into a single category. However, an evolving area of research 
includes latent class analysis where the residency within each group is treated as an 
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unobserved factor that is estimated with some probability, rather than absolute certainty. 
However, these models are also with their own set of limitations. For example, the number 
of classes must be defined a priori. Additionally, the models have been shown to be highly 
non-linear and can often have difficulty finding optimized values when many classes  
are added.  

3. Data and application 

3.1 Data summary and description 

This study was approved by Texas Tech University Health Sciences Center Institutional 
Review Board with exemption for review because of its use of published data. 

3.2 Cancer data 

Cancer stage data from 2004 to 2008 were provided by the Texas Cancer Registry, Cancer 
Epidemiology and Surveillance Branch, Texas Department of State Health Services (note that 
cancer data from 2008 are the latest data available). This database provides cancer data by 
year, age, county, Hispanic origin (Hispanic vs. Non-Hispanic) as well as population size for 
each county. We used cancer data between 2004 and 2008 cancer data (the latest available data 
is the 2008 data) to match the five years of American Community Survey data although there 
is a one-year lag. The five most common categories of cancer are studied including breast, 
colorectal, FGS, lung-bronchial, and prostate cancers. Female genital system includes cervix 
uteri, ovary, corpus and uterus, vagina, vulva and others. We pool the five-year (2004-2008) 
data to calculate the numbers of age-adjusted late- and early-stage cancer cases per unit 
(100,000) population using 2000 USA standard population (National Cancer Institute, NCI, 
n.d.). We use the percentage of late-stage cases among all staged cancer cases in our analysis. 
The number of unstaged cancer cases is not included in the denominator because the 
percentage of unstaged cases varies significantly by cancer type as well as by county, and 
inclusion of such cases in the denominator would result in uncertainty in estimating the 
percentage of late-stage cancer cases. Carcinoma in situ and localized cancers are considered as 
early-stage while cancers defined as “regional, direct extension only”, “regional, regional 
lymph nodes only”, “regional, direct extension and regional lymph nodes”, “regional, NOS” 
and “distant” are considered as late-stage (Philips et al. 2011).  

3.3 Socioeconomic status data 

Socioeconomic status data are derived from the U.S. Census Bureau’s (n.d.) 2005-2009 

American Community Survey. Since this survey does not provide percentage of people with 

disability, the present study uses the remaining nine of the 10 socioeconomic variables 

originally used to build the Wellbeing Index (WI) developed by A&R and are listed in Table 

1. We add median income (from the 2005-2009 American Community Survey) so that the 

total number of socioeconomic variables is still ten in the current study. 

3.4 Data of factors more closely related to health 

Data for the percentage of uninsured and percentage of obese individuals are obtained from 
Texas State Data Center (n.d.). The number of physicians and estimated population size in 
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each county from 2004 to 2008 are derived from Texas Department of State Human Services 
(DSHS, n.d.). Physician supply is the number of physicians per 1,000 residents in each 
county. Physicians considered are those with medical doctor (MD) and/or doctor of 
osteopathy (DO) degrees who worked directly with patients. Residents and fellows; 
teachers; administrators; researchers; and those who were working for the federal 
government, military, retired, or not in practice were excluded from the total of physicians 
by DSHS (n.d.). 

 

 
Description 

Weighted 
Mean 

Std 
Error 

Min Max 

% Single Parent 
% people in single parent 

households 
18.89 0.54 0.00 27.55 

% No High 
School 

% people over 18 without high 
school 

21.38 1.17 2.60 53.59 

% Unemployed % people unemployed 6.87 0.15 0.00 21.58 
% Income 
Support 

% people with income support 28.20 1.47 0.00 66.64 

% Below 
Poverty 

% people in households below 
poverty level 

15.90 0.88 0.00 46.81 

% No House 
% people not living in own 

home 
34.19 1.74 11.88 70.83 

% Few Room 
% people living in homes with 

too few bedrooms 
4.97 0.47 0.00 15.79 

% No Phone 
% people in households 

without phone 
5.33 0.20 0.00 18.23 

%No Car 
% people in households 

without car 
6.55 0.40 0.00 17.55 

Median Income Median Income (in $1,000s) 49.63 1.73 20.38 82.55 

%Uninsured 
% people without health 

insurance 
24.47 1.07 14.20 38.10 

Physician 
supply 

Number of physicians per 
1,000 residents 

0.16 0.01 0.00 0.33 

% Obese % people with BMI above 30 28.90 0.33 23.80 32.80 
% Hispanic % Hispanic 35.60 3.19 2.44 97.15 
Population Population (in 1,000s) 636.02 218.75 0.02 1,912 

Table 1. Description and weighted summary statistics of relevant covariates 

4. Statistical analysis and results 

4.1 Computing the health care accessibility index 

While access to health care may be determined by socioeconomic status in general, health 
insurance coverage and health care services (number of physicians and or hospitals relative 
to local population) may more directly impact on health as discussed above. In this study 
we add the latter two variables to the 10 socioeconomic indicators for a principal component 
analysis to build Health Care Accessibility Index (HCAI).  
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There are two well-known benefits to creating an index rather than including all of the 
components in the index into a regression. First, the index itself can serve as a variable of 
interest to identify (in our study) areas of extreme health care obstacles. Second, the index 
can significantly reduce the degrees of freedom in a regression while preserving information 
from the variables. In this study we also find a third benefit, which is that if we are careful 
about how we use the index in regression analysis, we can also improve goodness-of-fit.  

While the A&R study presents an appealing start to our research, it lacks two important 
components. First, it only includes socioeconomic variables that are intended to provide an 
index for wellbeing or economic deprivation. While their index provides a good basis to 
evaluate the ability to pay for health services, it lacks health-specific variables. Second, the 
study presents a less than appealing method for incorporating the index into regression by 
ranking the first principal component scores into deciles. This essentially groups the 
observations into 10 different bins which, may or may not be the optimal number of bins to 
use in grouping regions. To fix the second issue of rank ordering, we use AIC and SIC to 
determine the optimal number of bins (more discussion on this follows in the  
next subsection).  

In order to fix the first issue, we add three components which are essential to access to 
health care services which include median income, the percentage of the uninsured, and the 
number of physicians per 1,000 residents. All variables are computed at the county-level. 
These variables are intended to account for the access residents within a county have to 
health care services. Lack of health care insurance in clearly a hurdle in obtaining affordable 
health care services and is another factor included in this analysis. Finally, the number of 
physicians allows for an evaluation into geographic access to health care services. Does the 
county in question have an adequate medical infrastructure to prevent and detect illness 
when it arises? Some Counties in Texas (particularly in the western region) are 
geographically isolated. If adequate care is not geographically close to residents, the 
economic cost to receiving care increases in terms of time off work and travel costs.  

In compiling the twelve variables, we are able to derive an index for access to health care 
services through the use of PCA. While the goal is to consolidate a group of many variables 
into a smaller set of linearly related variables (principal components), it is often the case that 
multiple principal components are needed to explain a substantial proportion of the variation 
in the independent variables. Results from the initial PCA is shown below in table 2. 

The first principal component explains 41% of all variation in the variables included in the 
index. The influence is also spread across relatively evenly across all included variables, 
with the exception of direct patient physician supply (DPC). The principal component scores 
from this regression are used as the HCAI. Notice the negative score associated with median 
income, which is consistent with a negative relationship between income and obstacles to 
receiving health care services. The second principal component explains an additional 16% 
of the variation in the variables and is largely influenced by physician supply, percent 
uninsured, percent without their own house, and percent of single parents. 

These results provide us with a couple of items. First, we have the first five principal 

components, which can be used rather than the original 13 variables in order to shrink the 

necessary variables while still preserving almost all of the variation in the variables. One 

notable and helpful point in this analysis is that each component is orthogonal to the others,  
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Principal Component Score 

Variable 1 2 3 4 5 

% Single Parent 0.31 0.22 0.22 0.01 0.21 

% No High School 0.36 -0.13 -0.36 -0.03 0.15 

% Unemployed 0.24 0.05 0.31 0.71 -0.43 

% Income Support 0.18 -0.56 0.23 -0.05 0.28 

% Below Poverty 0.39 -0.08 0.09 0.00 -0.02 

% No House 0.18 0.45 0.21 -0.30 -0.24 

% Few Room 0.27 0.17 -0.48 0.24 0.17 

% No Phone 0.28 0.09 -0.04 -0.50 -0.48 

%No Car 0.36 -0.03 0.22 0.12 0.05 

Median Income -0.35 0.31 -0.18 0.26 -0.08 

%Uninsured 0.31 0.24 -0.41 0.07 0.11 

DPC -0.01 0.47 0.37 -0.04 0.57 

Eigenvalue 4.89 1.94 1.36 0.76 0.74 

Difference 2.95 0.58 0.60 0.02 0.11 

Proportion 0.41 0.16 0.11 0.06 0.06 

Cumulative 0.41 0.57 0.68 0.75 0.81 

Table 2. PCA results from variables in health access index 

meaning the independent variables will be uncorrelated and avoids the issue of 

multicollinearlity which arises from including all 13 variables into the regression. A notable 

problem when multicollinearity is particularly acute is that it is difficult to isolate marginal 

relationships between competing variables, which often leads to high standard errors. 

Second, the first principal component scores can be used to develop the index of interest in 

the following way. The index is created by recognizing that the first principal component 

can be written as a linear combination of the original variables such that 

 鶏堅件券な 噺 欠怠,怠捲怠 髪 欠怠,態捲態 髪 ⋯ 髪 欠怠,怠戴捲怠戴 (1) 

where 欠怠 噺 岫欠怠,怠, 欠怠,態, … , 欠怠,怠戴岻 include the parameter estimates in table 2 and 捲 噺岫捲怠, 捲態, … , 捲怠戴岻 include the 13 parameters used in the index from table 1. 鶏堅件券な is then 

computed for each observation and can be ranked to present a ordering of health 

accessibility.  The second component is then derived based on the remaining variability and 

results in 欠態 which leads to 鶏堅件券に. The second component is derived based on the restriction 

that 欠態嫗 欠怠 噺 ど so that 系剣堅堅岫鶏堅件券な, 鶏堅件券に岻 噺 ど.	Additional components can be derived in the 

same fashion so that they are uncorrelated with all prior components. 
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The rankings associated with the first principal component, 鶏堅件券な, is used as the basis of our 
HCAI. To illustrate the regional dynamics of this new index, we present figure 1 below. 

 

Fig. 1. Map of ordinal ranking of Texas counties by HCAI 

Figure 1 shows that the counties that have poor health care access are focused along the 

Mexican border. These counties tend to have a large percentage of Hispanics in the 

population. Other counties further north are also found to have high HCAI rankings. Some 

of the better HCAI rankings are in the more urban areas of Texas that are near the largest 

metropolitan areas of Dallas, Fort Worth, Houston, San Antonio, and Austin. The large size 

of Texas, as well as its diversity in the variables used in this study, provides an opportunity 

to evaluate the how these factors influence late-stage cancer detection.  

In the present study, the percentage of late stage cancer cases is hypothesized to correlate 

with the developed HCAI. Figure 2 below shows a scatter plot of the dependent variables 

along with the first component scores of HCAI for each cancer type that is evaluated in this 

study. Given the principal component scores shown in table 2, it is clear that a county that 

has a low degree of health access will possess a high component score. These same areas 

with a low degree of health access correspond to high rankings. Given this, it is not 

surprising that some of the slopes shown in figure 2 are significantly positive. Lung cancer is 

one example where the positive slope is particularly striking. On the other hand, the 
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relationship with the HCAI is shown to be positive but relatively flat for colon and prostate 

cancers. Given the different speeds of progression in different cancers, it should not be 

surprising that the relationships differ across cancer types. 

 

Fig. 2. Plot of the percentage of late-stage cancer cases with HCAI first principal component 
score, by cancer type 

4.2 Weighted tobit regression model 

The dependent variable of interest used in this analysis is the log of the sum between one 
and the percentage of late-stage cancer cases among all staged cancer cases. Some counties 
experienced no late-stage cancer cases and other experiences all late-stage cancer cases. 
These are all from relatively small counties. However, this does mean that censoring is an 
issue that will need to be dealt with in this study. As shown in table 3, there is some degree 
of censoring for all regressions in our analysis. For example, the percentage of late stage 
breast cancer cases was lower censored at 0 in four cases and upper censored in two cases. 
In the lower censoring case, the county experienced no late-stage cancer cases but 
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experienced only early-stage cases. Alternatively, some counties experienced only late-stage 
cases resulting in an upper bound of 100%. This double-bounded censoring occurred for all 
cancer types to varying degrees.  

If censoring is not accounted for and usual least squares methods are used, we are assured 

of biased estimates (Amemiya, 1973). So, in order to obtain unbiased parameter estimates, 

we use the Tobit model (Tobin, 1958) to correct for censoring.  The Tobit model assumes the 

dependent variable, 桁, is a partially observed derivative of a latent variable, 桁∗. When 

censoring occurs at zero, the two are related with the following relationship, 桁 噺 max	岫ど, 桁∗岻. 

In this particular application of a double-bounded Tobit model, we assume a latent variable, 桁∗, with the following relationship to the observed variable, 桁. 

 桁 噺 崔 ど 件血	桁∗ 隼 ど									桁∗ 				件血	ど 判 桁∗ 判 などどなどど 件血	桁∗ 伴 などど					  (2) 

A more comprehensive discussion on the Tobit model can be found in Amemiya (1974). 

Residuals are weighted by population size in order to account for the wide variety in the 

size of counties. Weighted statistics provide a more accurate representation of the 

population of interest, which is the state of Texas in this application. 

 

Type Weighted Mean Std Error Min Max Limit obs. 

Lower Upper 
Breast 40.46 0.48 0.00 100.00 4 2 
Colon 57.92 0.81 0.00 100.00 4 5 

Prostate 14.45 0.41 0.00 48.87 18 0 
Lung 79.28 0.59 44.98 100.00 0 20 
FGS 50.69 0.55 0.00 100.00 13 13 

Table 3. Percentage of late-stage cancer cases, by cancer type 

4.3 Incorporating the index into regression analysis 

While the selection of principal components is well established and can be found in most 

intermediate econometrics text books, the usage of that information in a regression is less 

understood. For this reason, we use five separate regressions for each cancer type to 

compare different methodologies that could be used to integrate an index or information in 

an index within a regression context. We use AIC and SIC to compare model fit and include 

two additional variables that are hypothesized to influence the percentage of late stage 

cancer cases. These variables include the log of the percentage of obese individuals and the 

log of percentage of Hispanic individuals. The five models of interest include the following 

specifications:  

Model 1. The composite ordinal WI (from A&R) based on deciles according to the first 

principal component scores 

Model 2. All 12 variables in the composite HCAI 

Model 3. The raw scores of the first two principal components using variables in HCAI 
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Model 4. The composite ordinal HCAI based on grouping of the first principal component 
scores that minimizes AIC 

Model 5. The composite ordinal HCAI based on grouping of the first principal component 
scores that minimizes SIC 

The first method uses the method proposed by A&R, which assumes the use of deciles to 
group the ordered WI. This model provides a prior baseline under which to evaluate all of 
the proposed models. As A&R point out, once the index is used to define groups, those 
groups are compared in an ordinal manner, implying the se of ordinal and not continuous 
variables in a regression. Model 2 does not make use of PCA and places all the variables 
used in the HCAI directly into the regression. This model also provides another baseline 
model in that we can compare the methods used in PCA to that of this model which simply 
uses the variables without any PCA. In order for PCA to be effective in our analysis, it will 
need to demonstrate an improvement over model 2. In our original analysis we included 
two additional regressions that were omitted from our final analysis because they were not 
found to improve upon the utilized models. These models included (1) the raw WI variables 
and (2) decile grouping from the HCAI. Using raw WI variables was consistently 
outperformed by model 2, while the decile grouping of HCAI was consistently 
outperformed by models 4 and/or 5 unless they selected 10 groups (as occurred in a couple 
of instances).  

The final three models make use of the PCA results based on the HCAI. These are the 
models of interest in the sense that we hypothesize that they will improve upon Models 1 
and 2. Model 3 uses the raw scores of first two principal components in the regression. The 
scores of first two components are used since they minimize both AIC and SIC in all of the 
used regressions. Component scores are fitted values using the parameter values listed in 
table 2 and the associated variables for each observation. Therefore, each observation will 
contain a unique component score. The first two principal component scores explain 57% of 
the total variation in the used variables based on the results in table 2. While it might seem 
more appropriate to include say the first five principal components in order to explain 81% 
of the total variation, the final three components tend to be significant are the model does 
not fit the data as well (in terms of AIC and SIC) as when only the first two scores are 
included. This model provides a set of continuous variables that can be used to determine 
late-stage cancer detection. Models 4 and 5 use AIC and SIC to find the optimal number of 
groups to be used for HCAI. This search method is conducted by running all models up to 
40 groups in order to find the single model that minimizes AIC or SIC. Observations are 
evenly divided across the selected number of groups which are used as categorical variables 
in our analysis.  

These five models are then compared by using AIC and SIC metrics to assess goodness-of-
fit. In order to declare one of the proposed models as an improvement, it will need to have 
values of both AIC and SIC that are lower than models 1 and 2. Since maximum likelihood 
methods are commonly used to estimate Tobit estimates, an appealing goodness-of-fit 
measure is that of AIC and/or SIC since they are both easily derived from maximum 
likelihood outputs. The two can be expressed as follows 

 畦荊系 噺 に倦 伐 に詣詣 (3) 
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 鯨荊系 噺 倦健剣訣岫倦岻 伐 に詣詣 (4) 

where 倦 is the number of parameters and 詣詣 is the maximized log-likelihood value that 
corresponds with the optimal parameter estimates. Both information criteria measure are 
composed of two parts, which include two times LL and the penalty for adding new 
parameters. For models that contain more than 8 parameters (倦 伴 8), SIC provides a heavier 
penalty for adding new variables. For this reason, AIC tends to support more overfit models 
while SIC tends to support more underfit models. Both AIC and SIC provide a basis upon 
which to select from nested models by minimizing the associated criteria. However, Koehler 
and Murphree (1988) point out that in their analysis the two criteria indicate different 
models 27% of the time. Their research suggests that SIC is often preferred due to the 
improved predication accuracy from SIC-preferred models. However, as pointed out by 
Kuha (2004), the preference for AIC or SIC can often rely on the data generation process and 
when AIC and SIC both select the same model, it is shown to be a more robust result. With 
these points in mind, we proceed by using AIC and SIC criteria separately to determine the 
appropriate model and determine whether our proposed models provide an improvement 
on past models. 

A&R suggest that when using their index of socioeconomic deprivation, one should rank the 

first principal component then group this ranking into deciles, so that groupings will occur 

at 10% intervals. For example, if a county receives a grouping of 1, it is found to be in the 

lower 10% with regard to the index. We find this ranking method to be arbitrary and 

therefore suggest the use of AIC/SIC to determine the optimal number of deciles. This is 

achieved by re-running each model with the number of groups changing every time starting 

with 1 group (or rather no grouping at all) and up to 40 groups. Forty groups were selected 

because AIC and SIC did not show significant improvement after that point. With such a 

large and diverse state as Texas, it seems that the same rank grouping would be 

substantially different than for some smaller state. Of importance for this study is the 

generalizeability of our study to other areas. For example, does the method that we propose 

provide a general enough method on which to evaluate any region?  While the selection of a 

specific grouping may work best in one situation, a more data-driven approach (such as the 

one we propose) will provide more flexibility in evaluating different situations. 

Also included in each model will be two additional variables in order to evaluate the impact 

of different specifications on parameter estimates, since typically marginal inference is an 

important component of any analysis (particularly in economics). These variables include 

the log of percentage of Hispanic and the log of percentage classified as obese. Both 

variables are likely to have some degree of correlation with the index ranking but to varying 

degrees. This provides a look at two variables that have varying relationships with the index 

in question.  

4.4 Empirical results 

4.4.1 Model selection 

The first tasks in the empirical section of this analysis is to determine grouping based on the 

candidate model that minimizes AIC and SIC (models 4 and 5) for all 5 cancer types models 

(as outlined in section 3.2). The selected numbers of groups are shown in table 4.  
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AIC SIC 

Breast 11 5 

Colon 10 1 

Prostate 9 1 

Lung 34 8 

FGS 1 1 

Table 4. Number of groups determined based on minimum AIC and SIC criteria for models 
4 and 5 

The variability in the selected number of groups, suggests that arbitrarily extracting a 
grouping number might not be optimal. For example, in our analysis, lung cancer makes use 
of many groups while FGS cancer suggests only 1 group (which means no group 
distinctions at all). To illustrate the meaning of a group, the use of 34 groups implies there 
are 34 groups (each with 7-8 observations). In the regression, this implies that 33 new 
classification variables are added which are evaluated relative to the omitted group. Each 
model is run using the weighted Tobit model to assess the goodness-of-fit as well as 
parameter estimates of variables outside of the proposed index for all 5 cancer-types as well 
as with all cancer types. The regression results are below in table 5. 

Table 5 shows the five models used in this study along the column headers, while row 

headers provide space for AIC and SIC measures for each cancer type. The purpose of this 

analysis is to evaluate the newly developed models (3-5) and compare them to two baseline 

models (1-2). Recall that in order for models 3-5 to unambiguously improve the baseline 

models 1-2, they must improve both AIC and SIC measures. Each model that improves 

upon the baseline models is shaded in grey in table 5. 

For each cancer type, at least one of the three proposed models improved over the baseline 

models. Additionally, the use of a data-driven method such as AIC or SIC provides a clear 

improvement over the baseline models in each cancer-type. It is interesting to note that the 

best fitting model is not unambiguously from using AIC or SIC. This is a common problem 

that has been discussed in other studies such as Koehler and Murphree (1988). The only 

instance when AIC does not improve upon the base models is in the case of lung cancer, 

which suggests the use of 34 groups, which is unusually high based on the other selections. 

Alternatively, SIC provides a heavier penalty for new variables and tends to support lower 

parameterized models. This is clearly the case when SIC suggests the use of 1 group 60% of 

the time, where no group distinctions are provided. In two out of those three instances, SIC 

provided a clear improvement over baseline models. The use of raw principal component 

scores are also considered in model 3 and are shown to clearly improve on the baseline 

models in breast and FGS cancer types. In the case of breast cancer, it is interesting to note 

that this model provided the lowest AIC and SIC, making it a robust selection for best 

model fit.  

The results from regressions on colon cancer provide some interesting insights. First, AIC 
suggests the use of deciles, which is in line with A&R. While this research makes the 
argument that deciles will not always be satisfactory, it can be optimal in some situations. It 
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is also worth noting that model 4 improves in both AIC and SIC over model 1. These two 
models are identical with the exception of the new index that is used in model 4, which 
indicates its improved predictive power over the WI. The model suggested by SIC is to 
include only 1 group, which are really no group distinctions at all. This also presents the 
possibility that when an index might not always provide valuable information for a model, 
which can only be detected through the use of a data-driven method, such as information 
criteria. However, model 5 is not the favored model in this scenario as it does not improve 
upon the earlier models. For this reason, model 4 is the preferred model for colon cancer. 
 

WI HCAI 

Deciles All Vars 
Prin 

Scores 
Optimal 

AIC 
Optimal 

SIC 

Type Model 1 2 3 4 5 

B
re

as
t 

AIC -384.601 -389.795 -404.036 -392.419 -383.926 

SIC -338.822 -333.451 -382.907 -343.118 -355.755 

C
o

lo
n

 

AIC -397.097 -405.139 -395.164 -408.757 -392.295 

SIC -351.266 -348.732 -374.011 -362.926 -378.193 

P
ro

st
at

e 

AIC -24.605 -23.846 -25.446 -34.810 -28.660 

SIC 21.174 32.498 -4.318 7.447 -14.574 

L
u

n
g

 

AIC -859.488 -855.730 -851.945 -878.167 -869.566 

SIC -813.554 -799.195 -830.744 -747.431 -830.699 

F
G

S
 

AIC -132.891 -131.983 -144.948 -143.995 -143.995 

SIC -87.269 -75.833 -123.891 -129.958 -129.958 

Table 5. Weighted Tobit goodness-of-fit regression results from 5 alternative models, by 
cancer type (Dependent variable: logged sum of one plus percentage late-stage cancer cases) 

Based on figure 3, lung cancer is one particular type of cancer that is expected to be highly 
correlated with the HCAI. Because of the high degree of positive correlation, it is not 
surprising that AIC and SIC both suggest relatively high grouping values. For example, AIC 
suggests using 34 groups, while SIC suggests the use of 8 groups. However, while the AIC 
selected model has a very low AIC value (-878.167), SIC is not as impressive given the 
relatively large penalty factor for each of the 34 groups. Thus, the SIC selected group is able 
to improve over the base models in terms of AIC and SIC and is therefore the preferred 
model for lung cancer. 

Many variables under study are inter-correlated. For example, figure 3 shows that 
percentage of the uninsured in Hispanic is significantly higher than that in non-Hispanic 
populations in Texas. Figure 4 shows that the percentage of late-stage cancer cases in 
Hispanics is higher than non -Hispanics in Texas. Hispanics also tend to have higher 
percentage obese individuals and socioeconomically deprived individuals. These facts 
suggest the necessity to adjust for covariates in assessing the association between the HCAI 
and delayed cancer detection. This will also allow determination of the role of ethnicity in 
the delayed cancer diagnosis. 
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We acknowledge in this research that not all types of cancer will have a significant 
relationship with the HCAI index. While the types of cancers that do have a correlation 
show health inequities, not all cancer types are thought to have inequities. In particular, we 
expect for cancers where detection is at a high cost (such as breast, colon, and lung cancer) 
to be particularly susceptible to health inequities. For example, in order to detect lung colon 
cancer, a costly colonoscopy is necessary which will have a lower compliance rate in 
individuals with poor access to health care services. 

 

Fig. 3. Percentage of the Uninsured in Hispanic and Non-Hispanic populations in Texas. 

 

Fig. 4. Percentage of late-stage cancer cases in Hispanics and non -Hispanics in Texas. 
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4.4.2 Regression results 

Below are included the parameter estimates resulting from the optimally selected model 
based on the criteria stated above. In all four cases, at least one of the newly proposed 
models outperformed the baseline models in terms of AIC and SIC. In the case of breast 
cancer, late-stage cancer detection was best determined using the raw principal component 
scores. Parameter estimate results are listed in table 6. 

Variables Estimate SE p-value 

Intercept 2.800 0.691 <.0001 

log(% Hisp) -0.039 0.019 0.040 

log(% Obese) 0.325 0.218 0.136 

Prin1 0.024 0.005 <.0001 

Prin2 -0.021 0.006 0.001 

Sigma 0.106 0.005 <.0001 

Table 6. Weighted Tobit regression results of parameter estimates of the % late-stage cases 
for breast cancer, using raw principal component scores from composite HCAI (model 3). 

Based on the parameter estimates in table 2, it is clear that a high principal component score 
is associated with lower health care access. For this reason, it’s not surprising to see a 
positive and significant parameter estimate of the %late-stage breast cancer cases on 鶏堅件券な. 
However, 鶏堅件券に is negatively associated with % late-stage breast cancer cases. Percent 
Hispanic appears to have a negative impact on late-stage cancer detection. As shown in 
Figure 3, Hispanics, as a group, actually have a higher percentage of late-stage cancer cases 
relative to non-Hispanics. However, once we control for obesity and access to health care, 
we see that a 10% increase in the % Hispanics in a population is associated with a 0.39% 
decrease in late-stage breast cancer cases. As shown in figure 3, the percentage of uninsured 
(which is included in HCAI) is much higher in Hispanic populations than non-Hispanic 
populations. This speaks to the high degree of correlation between HCAI and % Hispanic 
variables. Obesity appears to have an insignificant impact, although it is worth noting that 
obesity is highly correlated with % Hispanic as well as the HCAI.  

Table 7 shows the results for late-stage colon cancer incidents, where the use of deciles 
based on model 4 was selected based on its low AIC and SIC. Paradoxically, counties with 
the worst degree of access to health care (rank9) have a lower percentage of late-stage cancer 
cases. After detection of adenomatous polyps (not carcinoma yet) by screening, 
polypectomy is generally performed before the polyps evolve to early-stage cancer (Philips 
et al., 2011). Since counties with better health care accessibility tend to have higher CRC 
screening rate, many would-be early stage CRC cases are eliminated by polypectomy, 
resulting in a reduction in early-stage CRC cases. This may explain the paradoxical negative 
association between the percentage of late-stage CRC cases and HCAI. In order for the 
HCAI to be more useful in finding areas that are problematic in late-stage colon cancer 
determination, the data necessary needs to include the finding of colon cancer precursors, 
which is not present in our data. 
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Variables Estimate SE p-value 

Intercept 2.592 0.710 0.001 

log(% Hisp) 0.026 0.020 0.182 

log(% Obese) 0.390 0.220 0.076 

rank1 0.106 0.041 0.009 

rank2 0.119 0.043 0.006 

rank3 0.104 0.038 0.006 

rank4 0.021 0.039 0.582 

rank5 0.079 0.051 0.120 

rank6 0.076 0.047 0.106 

rank7 0.053 0.032 0.092 

rank8 0.121 0.027 <.0001 

rank9 0.062 0.047 0.189 

Sigma 0.102 0.005 <.0001 

Table 7. Weighted Tobit regression results of % late-stage colon cancer cases, composite 
HCAI grouping based on 10 groups (model 4). 

The parameter estimate results for table 8 are shown below for prostate cancer. Almost all of 
the included parameter estimates are insignificant, which is consistent with previous results 
likely for the same reason (Philips et al., 2011).  

 

Variables Estimate SE p-value 

Intercept 2.395 1.420 0.092 

log(% Hisp) 0.014 0.041 0.731 

log(% Obese) 0.077 0.443 0.862 

rank1 -0.009 0.080 0.916 

rank2 -0.005 0.089 0.964 

rank3 -0.046 0.074 0.538 

rank4 0.054 0.084 0.522 

rank5 0.095 0.107 0.374 

rank6 0.044 0.064 0.495 

rank7 0.139 0.062 0.024 

rank8 -0.056 0.058 0.338 

Sigma 0.214 0.010 <.0001 

Table 8. Weighted Tobit regression results of % late-stage cases for prostate cancer, 
composite HCAI grouping based on 9 groups (model 4). 
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Table 9 shows the results for late-stage lung cancer detection. Based on figure 2, the 

relationship between lung cancer and HCAI has the strongest correlation. Based on this, it is 

not surprising to see so many significant variables in the results. For example, groups 1, 2, 

and 6 are statistically lower than the reference group 8 (omitted). Relative to the other 

groups, the omitted group (8) has the worst access to health care. It is worth mentioning that 

as the ranking group increases, the estimate decreases in general. Given that the HCAI also 

captures socioeconomic factors, it is also likely that counties with high HCAI have higher 

smoking rates than other counties given the relationship between income and the 

prevalence of smoking (Laaksonen et al., 2005). 

 

Variables Estimate SE p-value 

Intercept 4.469 0.275 <.0001 

log(% Hisp) 0.002 0.008 0.894 

log(% Obese) -0.018 0.085 0.836 

rank1 -0.073 0.016 <.0001 

rank2 -0.019 0.017 0.266 

rank3 -0.048 0.015 0.001 

rank4 -0.025 0.016 0.115 

rank5 -0.020 0.017 0.226 

rank6 -0.040 0.011 0.001 

rank7 0.004 0.011 0.777 

Sigma 0.042 0.002 <.0001 

Table 9. Weighted Tobit regression results of estimate of % late-stage cases for lung cancer, 
composite HCAI grouping based on 8 groups (model 5). 

Finally, table 10 shows the parameter estimates associated with late-stage detection for FGS 

cancer. While the optimal model does not contain any information for the HCAI, the results 

show significant relationships with the percentage of Hispanics (a negative association) and 

obese (a positive association) individuals. The latter finding is consistent with previous 

report that obesity is a risk factor for endometrial cancer (a type of FGS cancer), while the 

former again suggests that the higher percentage of late-stage FGS cancer in Hispanics  

(Fig. 3) is due to their lack of access to health care and or socioeconomic deprivation. 

 

Variables Estimate SE p-value 

Intercept 0.996 0.910 0.274 

log(% Hisp) -0.080 0.031 0.010 

log(% Obese) 0.955 0.296 0.001 

Sigma 0.177 0.008 <.0001 

Table 10. Weighted Tobit regression results for female genital system (FGS) cancer with no 
HCAI grouping (models 4 and 5). 
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5. Final discussion 

These results demonstrated in the previous section suggest that data-driven methods such 

as AIC and SIC as well as the use of raw principal component scores show significant 

improvement in terms of model-fit when explaining the percentage of late stage cancer 

cases. Additionally, the newly developed HCAI improves upon the index derived by A&R 

when evaluating late stage cancer detection. These findings add insight into future studies 

that will hopefully more effectively utilize PCA in different applications. 

The use of data-driven techniques clearly has the ability to provide more flexibility in using 

PCA in a variety of applications without using rigid rules for grouping ordered indices. 

While some indices may be appropriately developed, the usage of this information in a 

regression or grouping context still desires some advances. Using this methodology, we 

found that the HCAI is positively correlated with the percentage of late-stage cases for 

breast and lung cancers. This research identifies that in order to promote early cancer 

detection policy makers should increase the rate of health access as defined in the HCAI. 

Additionally, the relative lack of explanatory power for the other cancers in this study 

points to some necessary areas for future research. First, in the case of colon cancer, more 

detailed data are needed. In order to properly assess colon cancer, data are needed that take 

account for pre-cancer detection of polyps and adenomas. Without that information, late- 

and early-stage cancer cannot be properly identified because early detection in the case of 

colon cancer is detection before it is cancerous. For prostate and FGS cancers, the index was 

not very explanatory which indicates a lack of health inequality in these areas that can be 

traced back to health access. Without a doubt, each cancer type is different and in this 

research we have identified a few types of cancers (breast and lung primarily) where health 

inequalities exist. These cancers tend to have relatively high costs associated with detection. 

The issue of creating an index of health accessibility to explain disparities in health 

outcomes is an area of much importance in developing and developed counties. The present 

study shows that health care accessibility as measured by the HCAI impacts delayed 

detection of several cancers consistent with the results based on data in 2000 (Philips et al., 

2011). The positive correlations between the two variables are statistically significant or 

marginal for all these cancers studied after controlling for several other potential 

determinants. This finding suggests that socioeconomic deprivation, health insurance 

coverage and health care service significantly impacts delayed detection of these cancers 

independent of percentage of Hispanics or percentage of obese individuals in counties of 

Texas which is one the states with most severe physician shortage and lowest health 

insurance coverage. Thus, we not only have for the first time proposed the HCAI but also 

for the first time validated its utility in its correlation with delayed cancer detection.  

Previous study showed that WI was significantly associated with delayed detection 
(assessed by the ratio of late- to early-stage cancer cases similar to the percentage of late-
stage cases) of FGS and lung-bronchial cancers but not breast cancer (Philips et al., 2011) in 
contrast to the results of the current study. The difference in the results is due to difference 
in study design with which several covariates are entered in the regression in the current 
study. Particularly, the HCAI covers not only socioeconomic variables but health insurance 
and health service (physician supply) as well.  
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It is of interest to note that Hispanics have higher percentage of late-stage cancer cases and 

also have higher percentages of obese individuals, higher percentages of uninsured 

individuals. In our multiple regression analysis, we find that delayed cancer detection is 

actually negatively associated with Hispanic after adjusting for socioeconomic status, 

physician supply, and percentage of uninsured, which are all included in the HCAI, and 

percentage of obese individuals. This suggests that their delay in cancer diagnosis is likely 

due to these factors rather than Hispanic culture per se or genetic predisposition.  

These findings provide the evidence-base critical for decision makers to establish policies to 

promote early detection for effective cancer control targeting specific berries such as 

physician shortage, lack of health insurance and to improve socioeconomic conditions  

in general. 

One promising avenue that was not undertaken in this study is that of latent class models in 
grouping. Latent class models provide a couple of advantages over the methods used here: 
(1) class identification is treated as an unknown variable, which is different from the 
mutually exclusive technique use in most studies; and (2) classes need not be similar sizes. 
One major limitation of finite mixture models is that they have been shown to be highly 
non-linear when more than a few groups are used. In our particular application, this would 
be a major obstacle given the high number of classes suggested by some models.  
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