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1. Introduction 

1.1 Definitions of major «omics» in molecular biology and their goals 

The «omics» era, also called classically the post-genomic era, is described as the period of 

time which extends the first publication of the human genome sequence draft in 2001 

(International Human Genome Sequencing Consortium, 2001; Venter et al., 2001). Ten years 

after that milestone, extensive use of high-throughput analytical technologies, high 

performance computing power and large advances in bioinformatics have been applied to 

solve fundamental molecular biology questions as well as to find clues concerning human 

diseases (cancers) and aging. Principal «omics», such as Gen-omics, Transcript-omics, Prote-

omics and Metabol-omics, are biology disciplines whose main and extremely ambitious 

objective is to describe as extensively as possible the complete class-specific molecular 

components of the cell. In the «omics» sciences, the catalog of major cell molecular 

components, respectively, genes, messenger RNAs and small interfering and regulatory 

RNAs, proteins, and metabolites of living organisms, is recorded qualitatively as well as 

quantitatively in response to environmental changes or pathological situations. Various 

research communities, organized in institutions both at the academic and private levels and 

working in the «omics» fields, have spent large amounts of effort and money to reach. 

standardization in the different experimental and data processing steps. Some of these 

«omics» specific steps basically include the following: the optimal experimental workflow 

design, the technology-dependent data acquisition and storage, the pre-processing methods 

and the post-processing strategies in order to extract some level of relevant biological 

knowledge from usually large data sets. Just like Perl (Practical Extraction and Report 

Language) has been recognized to have saved the Human Genome project initiative (Stein, 

1996), by using accurate rules to parse genomic sequence data, other web-driven. 

programming languages and file formats such as XML have also facilitated «omics» data 

dissemination among scientists and helped rationalize and integrate molecular biology data.  

Data resulting from different «omics» have several characteristics in common, which are 

summarized in Figure 1: (a) the number of measured variables n (SNP, gene expression, 

proteins, peptides, metabolites) is quite large in size (from 100 to 10000), (b) the number of 

samples or experiments p where these variables are measured associated with factors such 

as the pathological status, environmental conditions, drug exposure or kinetic points 
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(temporal experiments) is rather large (10 to 1000) and (c) the measured variables are 

organized in a matrix of n x p dimensions. The cell contents of such a matrix usually record a 

metric (or numerical code) related to the abundance of the measured variables. The observed 

data are acquired keeping the lowest amount of possible technical and analytical variability. 

Exploring these «omics» data requires fast computers and state-of-the-art data visualization 

and statistical multivariate tools to extract relevant knowledge, and among these tools PCA is 

a tool of choice in order to perform initial exploratory data analysis (EDA). 

 

Fig. 1. General organization of raw «omics» data represented in a n x p matrix.  

Rows contain the measured quantitative variables (n) and columns contain the samples or experimental 
conditions tested (p) from which variables n are measured and for which grouping information or 
factors is generally present. Each cell (i,j) of this matrix contains a measured quantitative information 
which is usually the abundance of the molecule under study. 

1.1.1 Genomics and genetics data are different 

Genomics and genetics data are of different types. Genomics data are related mainly to the 

collection of DNA sequences modeled as linear strings composed of the four nucleotides 

symbolized by the letters A, C, G and T (bases). These strings are usually obtained following 

large sequencing efforts under the supervision of academic and private consortia. NextGen 

sequencing technologies are used to acquire the data and, specialized softwares are used to 

assemble sequences in one piece in order to complete an entire genome of thousands of 

megabases long. The final result of these extensive and costly efforts is the establishment of 

the genome sequence of all living organisms and particularly the human genome. Genomics 

has been particularly successful these last few years in determining micro-organism 

genomes such as bacteria and viruses. Genomics is regularly used in academic research and 

even proposes on-demand service for the medical community to obtain emerging 
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pathological genomes (SRAS, toxic strains of Escherichia coli …) that allow a fast medical 

response. Genomics aims to attain the technical challenge of obtaining 99.99% accuracy at 

the sequenced nucleotide level, and completeness and redundancy in the genome sequence 

of interest. However, the understanding or interpretation of the genome sequence, which 

means finding genes and their regulatory signals as well as finding their properties collected 

under the name “annotations”, are still the most challenging and expensive tasks.  

Genetics data, or genotype data, are related to the sequencing efforts on the human genome, 
particularly at the individual level. Genetics data record that the status of some nucleotides 
found at a certain position in the genome are different from one person to another. These base- 
and position-specific person-to-person variations are known as SNP or Single Nucleotide 
Polymorphism. When the frequency of the variation in a population is greater than 1%, this 
variation is considered as a true polymorphism possibly associated with traits (phenotypes) 
and genetic diseases (mutations). Moreover this information is useful as a genetic biomarker 
for susceptibilities to multigenic diseases or ancestrality and migration studies. 

1.1.2 Transcriptomics data 

Transcriptomics data consist in the recording of the relative abundance of transcripts or 

mature messenger RNAs representing the level of gene expression in cells when submitted to 

a particular condition. Messenger RNAs are the gene blueprints or recipes for making the 

proteins which are the working force (enzymes, framework, hormones…) in a cell and allow 

the cell’s adaptation to its fast changing environment. Transcriptomics give a snapshot of the 

activity of gene expression in response to a certain situation. Generally mRNA abundances are 

not measured on an absolute scale but on a relative quantitative scale by comparing the level 

of abundance to a particular reference situation or control. Raw transcriptomics data 

associated with a certain gene g consist in recording the ratio of the abundances of its specific 

gene transcript in two biological situations, the test and the control. This ratio reveals if a 

particular gene is over- or under- expressed in a certain condition relative to the control 

condition. Moreover, if a set of genes respond together to the environmental stress under 

study, this is a signature of a possible common regulation control (Figure 2). Furthermore, 

transcriptomics data are usually organized as for other «omics» data as large tables of n x p. 

cells with p samples in columns and n genes in rows (Figure 1). A data pre-processing step is 

necessary before analyzing transcriptomics data. It consists in log2 intensity ratios 

transformation, scaling the ratios across different experiments, eliminate outliers. Multivariate 

analysis tools, particularly PCA, are then used to find a few genes among the thousands that 

are significantly perturbed by the treatment. The signification level of the perturbation of a 

particular gene has purely statistical value and means that the level of measured variation in 

the ratio is not due to pure chance. It is up to the experimentalist to confirm that it is truly the 

biological factor under study, and not the unavoidable variation coming from technical or 

analytical origin inherent to the acquisition method, that is responsible for the observations. To 

estimate this significance level it is absolutely necessary to measure ratios on a certain 

replicative level, at least three replicates per gene and per situation. ANOVA and multiple 

testing False Discovering Rate (FDR) estimates are generally used. Further experimental 

studies are mandatory to confirm transcriptomics observations. Moreover, Pearson correlation 

coefficient and different linkage clustering methods are used for each gene in order to perform 
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their hierarchical clustering and to group genes with similar behavior or belonging to the same 

regulation network. 

 

Fig. 2. A picture of a DNA microarray used in high-throughput transcriptomics. 

DNA chip of 18 x 18 mm In size containing 6400 yeast gene Specific sequences organized as a matrix in 
which gene coordinates (x,y) are known. After hybridization with transcripts labeled respectively with 
green and red fluorochromes from two situations (treated versus untreated), 2 images in red and green 
fluorescence are recorded and superposed. Spot intensity seen on this image is then mathematically 
converted to a ratio of relative abundance of gene expression in the two situations under study (DeRisi 
et al., 1997). 

1.1.3 Proteomics and metabolomics data 

Proteomics and metabolomics data consist in measuring absolute or relative abundances of 
proteins and metabolites in the organism, tissue or cells after their proper biochemical 
extraction. These two fundamental and different classes of molecules are important for 
preserving cell integrity and reactivity to environment changes. These molecules are 
generally recognized and their abundances measured by mass spectrometry technologies 
after a liquid (HPLC) or gas (GC) chromatographic separation is performed to lower the 
high complexity level of analytes in the sample under study. Proteins have the large size of a 
few thousands of atoms and weigh a few thousands of Daltons (1 Dalton is the mass of a 
hydrogen atom) in mass, contrary to metabolites that are smaller molecules in size and mass 
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(less than 1000 Daltons). Mass spectrometers are the perfect analytical tool to separate 
physically ionized analytes by their mass-to-charge ratio (m/z) and are able to record their 
abundance (peak intensity). Mass spectrometry data are represented graphically by a 
spectrum containing abundances versus m/z ratios or by a table or a peak list with two 
columns containing m/z and abundances after performing a de-isotopic reduction step and 
a noise filtration step. 

Because of the large size of protein molecules, entire proteins should be cut in small pieces, 
called peptides, of 10-15 amino acids by using a protease enzyme trypsin. These peptides 
then have the right size to be analyzed directly by mass spectrometers. Peptide abundances 
are recorded. and their sequences even identified by collision-induced fragmentation (CID) 
breaking their peptide bonds, which some mass spectrometers instruments can perform 
(Triple Quadrupole mass spectrometrer in tandem, MALDI TOF TOF, Ion traps). 

Raw data from metabolomics and proteomics studies originating from mass spectrometry 

techniques have the same basic contents. However, contrary to previous «omics», analytes 

are first separated by a chromatographic step and one analyte is characterized by its unique 

retention time (rt) on the separation device, its mass-to-charge ratio (m/z) and its 

abundance (a). This triad (rt - m/z - a) is a characteristic of the analyte that is measured 

accurately and found in the final «omics» data matrix n x p. Because of the separation step, 

multiple chromatography experiments should be normalized on both the scale of abundance 

and the scale of retention time to be further compared. A relevant multiple alignment of the 

chromatographic separations of different p samples is necessary and is performed by using 

sophisticated methods and models (Listgarten & Emili, 2005). This alignment step consists 

in recognizing which analyte is recorded in a given retention time bin and in a given m/z 

bin. Analytes found in common in the chosen bin are by definition merged in intensity and 

considered to be the same analyte. The same m/z analyte is recorded across multiple 

chromatographic steps and should be eluted at the same rt with some degree of tolerance 

both on rt (a few minutes) and on m/z (a few 0.1 m/z). The rows in the prote- and metabol- 

«omics» final matrix n x p contain the. proxy “m/z_rt,” or “feature” and on the columns are 

the samples where the analytes come from. The cell content of this matrix record the 

abundance. “m/z_rt” is a set of analytes which have the same m/z with the same retention 

time rt, hopefully only one. Data can also be visualized as a 3D matrix with 3 dimensions: rt, 

m/z and abundances (Figure 3). For convenience it is the “m/z_rt” versus the 2D sample 

matrix which is further used in EDA for sample comparisons. The absolute value of 

intensity of the m/z analyte with retention rt corresponds to the mass spectrometry 

response given by its detector (cps).  

1.2 Technologies generating «omics» data, their sizes and their formats 

1.2.1 Genetics data format 

Genome-wide studies using genetics data consist in recording the status of a particular 
DNA position or genotype in the genome called SNP or Single Nucleotide Polymorphism 
among few thousand of genes for a certain number of samples. The SNP status is obtained 
by accurately sequencing genomic DNA and recording its sequence in databases such as 
Genbank (www.ncbi.nlm.nih.gov/genbank). The SNP status is then coded by a simple 
number, 0, 1, 2, according to the nature of the nucleotide found at the genome’s particular  

www.intechopen.com



 
Principal Component Analysis – Multidisciplinary Applications 26

 

Fig. 3. A 3D representation of a mass spectrum of a liquid chromatographic separation in 
LC-MS typical analysis of proteomics and metabolomics data. 

(A) Urinary native peptides without noise filtration and (B) with noise filtration are shown on a smaller 
time scale (20 to 34 minutes). These spectra were obtained using MZmine 2.1 with raw data converted 
first to the mzxml format (Pluskal et al., 2010). 

position. It is not rare for the n x p matrix used in genetics data to have for dimension 
n=500000 SNP positions recorded for p=1000 individuals grouped according to ethnical, 
geographical or disease status. SNP positions, sequence, type and frequencies are 
maintained and accessible on different websites such as dbSNP (www.ncbi 
.nlm.nih.gov/projects/SNP), the International HapMap project (hapmap.ncbi.nlm.nih.gov), 
the SNP consortium (snp.cshl.org), the Human Gene Mutation Database or HGMD 
(www.hgmd.org), the 1000 Genomes project (www.1000genomes.org), the 
Pharmacogenomics database PharmGKB (www.pharmgkb.org) and the genotype-
phenotype association database. GWAS Central (www.gwascentral.org). This information is 
particularly relevant in order to attempt SNP associations to disease status or health 
conditions. In recent human genetic studies, genotype data have been harvested, consisting 
in collecting for a few thousand human samples of different classes (ethnic groups, disease 
status groups, and so on) all the SNP profiles for particular genes (or even better all the 
genome). Algorithms such as EIGENSOFT suite is used to find statistically acceptable 
genotype-phenotype associations (Novembre & Stephens, 2008; Reich et al, 2008). The suite 
contains the EIGENSTRAT tool which is able to detect and correct for population bias of 
allele frequency, also called stratification, and suggests where the maximum variability 
resides among the population. PCA was demonstrated as a. valuable tool for detecting 
population substructure and correcting for stratification representing allele frequency 

www.intechopen.com



 
Principal Component Analysis in the Era of «Omics» Data 27 

differences originating from ancestry between the considered population before associating 
SNPs profile and disease status (Price et al., 2006). These studies were recently published for 
making qualified inferences about human migration and history. 

1.2.2 Transcriptomics data formats 

In order to analyze in parallel the large population of mRNAs or transcriptomes that a cell is 

expressing, a high-throughput screening method called DNA microarrays is used today. 

These DNA chips, some of which are commercially available (ex: Affymetrix), contain 

imprinted on their glass surface, as individualized spots,. thousands of short nucleic acid 

sequences specific of genes and organized in matrices to facilitate their location. (Figure 2) 

Pangenomic DNA chips contain sequences representing ALL the genes known today for a 

certain species (a few tens of thousands). These chips are hybridized with equal quantity of 

mRNA or complementary DNA copies of the mRNA prepared from control and treated 

samples, including fluorescent red (treated) and green (control) nucleotide analogs, in order 

to keep track of the sample origin. After subsequent washing steps, green and red 

fluorescence signals present on the chip are measured and the red-to-green ratio is 

calculated for each gene. The colors of the spots are from red (treated) to green (control) 

indicating over- and under- abundance of gene expression in the treated condition. A yellow 

color indicates an equal abundance of gene expression (no effect of condition) and a black 

spot indicates absence of gene expression in both conditions. Major free-access 

transcriptomics databases are the Stanford microarray database (smd.stanford.edu) and the 

NCBI GEO omnibus (www.ncbi.nlm.nih.gov/geo). The size of these arrays depends on the 

gene population under study. It is not rare to study transcriptomics on n= 7000 genes (yeast) 

or more on pangenomic arrays n = 20000 – 30000 (Arabidopsis, humans, mice …). The 

number of DNA microarrays p is generally of the order of a few tens to a few hundreds, 

taking into account experimental replicates.  

Alternative techniques exist to study gene expression, but they are not applied on a large- or 
genomic-wide scale as DNA microarrays,. and they are used in order to confirm hypotheses 
given by these later experiments. Among them, the technique using qRT-PCR or 
quantitative Reverse Transcription Polymerise Chain Reaction or its semi-high throughput 
variant called microfluidic cards (AppliedBiosystems) allow to quantify gene expression 
focused on 384 selected genes in one sample. 

1.2.3 Proteomics and metabolomics data formats 

Numerous mass spectrometry technologies are available today to perform proteomics and 
metabolomics analyses in specialized laboratories. These «omics» have not yet attained the 
mature status and the standardization level that transcriptomics has now attained, 
particularly at the level of data acquisition, data storage and sharing, as well as data 
analysis. However, some consortia, such as the human proteomic organization HUPO 
(www.hupo.org) and PeptidesAtlas (www.peptidesatlas.org), are spending a considerable 
amount of efforts and money to find standardization rules. One of the main difficulties in 
working with these «omics» data resides in maintaining intra- and inter-laboratory 
reproducibility. The second difficulty is that few mass spectrometers associated with the 
chromatographic separation devices are able to record a quantitative signal that is directly 
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proportional to analyte abundance. Semi quantitative data are generally obtained with 
matrix-assisted laser desorption ionization (MALDI) and quantitative signal is better 
obtained with electrospray ionization (ESI) methods. The use of relevant working strategies 
is necessary to lower technical and analytical variabilities, and this is also accomplished 
through the use of numerous replicates and internal standards with known or predictive 
mass spectrometry behaviors. The third difficulty is inherent to the commercially available 
instruments for which data acquisition and processing use computational tools and 
proprietary data formats. There are, however, a few format converters that are accessible, 
among them OpenMS (open-ms.sourceforge.net) and TransProteomicPipeline 
(tools.proteomecenter.org). These techniques are used extensively with the aim of detecting 
and quantifying biomarkers or molecular signals. specific to drug toxicity, disease status 
and progression, sample classification, and metabolite pathways analysis. The size of 
proteomics and metabolomics matrices depends on the accuracy level measured on the 
analytes mass and the range of mass under study. n varies from a. few hundreds to a few 
tens of thousands of m/z analytes and the p dimension of experiments or samples is largely 
dependent on the biological question. (a few tens).  

Alternative techniques to confirm proteomic expression use protein chips and 
immunoprecipitation techniques that are antibody dependent. Another mass spectrometry 
technique, which is Liquid Chromatography coupled to Selected Reaction Monitoring (LC-
SRM), is also used to confirm the level of expression of a particular analyte focusing on its 
physico-chemical properties as well as its chemical structure. In this case a high specificity 
and sensibility are generally obtained because the mass spectrometer records the signal 
related to both occurrences of the presence of one analyte mass (precursor ion) and the 
presence of one of its specific fragments obtained by collision-induced dissociation (CID). 

2. Exploratory data analysis with PCA of «omics» data  

2.1 The principles of PCA in «omics»  

The original. n x p matrix (Figure 1) or its transposed p x n (Figure 4) contains raw data with 
n generally much larger than p. The data should be preprocessed carefully. according to the 
nature and accuracy of the data. In the «omics», particularly proteomics and metabolomics, 
autoscaling and Pareto normalizations are the most used (Van der Berg et al, 2006). 
Autoscaling is the process of rendering each variable of the data (the «omics» item) on the 
same scale with a mean of 0 and a standard deviation of 1. PCA consists in reducing the 
normalized n x p matrix to two smaller matrices, an S score matrix and an L loading matrix. 
The product of scores S and the transposed loadings L’ matrix plus a residual matrix R gives 
the original n x p matrix X according to the formula X = S*L’ + R. PCs are the dimension (d) 
kept for S and L matrices and numbered PC1, PC2, PC3…. according to the largest variance 
they capture. PC1 captures most of the variability in the data followed by PC2 and PC3 
(Figure 4). PCA helped originally to detect outliers. PCA axis capture the largest amount of 
variability in the data that scientists in the «omics» fields want to interpret and to relate to 
biological, environmental, demographic and technological factors (variability in replicates). 
Therefore variance in the higher PCs is often due to experimental noise, so plotting data on 
the first two to three PCs not only simplifies interpretation of the data but also reduces the 
noise. The scoring plot displays the relationship existing between samples, meaning that 
two similar samples will be distantly close in the PC space. Furthermore, the loading plot 
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displays the relationship between the «omics» items (genes, peptides, proteins, metabolites, 
SNPs). A strong correlation between items will be expressed by a linear arrangement of 
these points in the loading matrix. Moreover PCA biplots representing score and loading 
scatter plots superposed together are useful to detect the importance of particular loadings 
(«omics» measured items) responsible for separating these sample clusters.  

 

Fig. 4. Relationship between the X «omics» data matrix X, the S score matrix and the L 
loading matrix in principal component analysis.  

Here the original «omics» matrix has been transposed for convenience, with n=6 being the number of 
omic items experimentally measured and p = 10 being the number of samples considered. d=3 is the 
number of PCs retained in the model, facilitating its graphical exploration. The highlighted row in X 
and column in L show what is required to generate a PC1 score for sample 4. 

PCA could reveal main patterns in the data but can detect some systematic non-biologically 
related or unwanted biologically related bias defined as batch effects. The existence of batch 
effects in «omics» data is being more and more recognized to frequently misguide biological 
interpretations. A large number of softwares can calculate these S and L matrices for large 
data sets. A PLS toolbox from Eigenvector research (www.eigenvector.com) running under 
MATLAB (www.matworks.com) contains representative 2D or 3D graphics of PCs space. 
Moreover, statistical indexes such as Q residues allow to estimate the disagreement behavior 
of some variables (samples) in the model, and Hotelling’s T2 indexes measures the 
multivariate distance of each observation from the center of the dataset. R (cran.r-
project.org) contains, in the statistical package included in the basic R installation, the 
prompt() function, which performs PCA on the command line. Particular «omics» -specific 
softwares containing sophisticated normalization, statistics and graphic options for 
proteomics and metabolomics data are available, such as DAnteR (Poplitiya et al., 2009) and 
MarkerView (www.absciex.com).  
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2.2 Interactive graphic exploratory data analysis with Ggobi and rggobi  

Scatter plots are still the simplest and most effective forms of exploratory analyses of data 
but are limited to a pairwise comparison with just two samples in any one scatterplot 
diagram. Ggobi (www.ggobi.org) and rggobi, an alternative of ggobi with R GUI interface 
(www.ggobi.org/rggobi), are free tools that allow doing a scatter plot matrix with some 
limitation, as they graphically display a small number of explicative variables (less than 10). 
Ggobi and rggobi have an effective way of reducing a large multivariate data matrix into a 
simpler matrix with a much smaller number of variables called principal component or PCs 
without losing important information within the data. Moreover, this PC space is 
graphically displayed dynamically as a Grand Tour or 2D tour. Moreover, samples can be 
specifically colored or glyphed by using a “brushing” tool according to their belonging to 
some factors or categorical explicative variables (patient status, sample group, and so on…). 
Moreover, unavailable measurements (NA) are managed by Ggobi by using simple value 
replacements (mean, median, random) as well as sophisticated multivariate distribution 
modeling (Cook & Swayne, 2007). 

2.3 PCA for «omics» data  

2.3.1 PCA for genetics data  

PCA was used almost 30 years ago by Cavalli-Sforza L.L in population genetics studies to 
produce maps summarizing human genetic variation across geographic regions (Menozzi et 
al., 1978). PCA is used also in genotype-phenotype association studies in order to reveal 
language, ethnic or disease status patterns (Figure 5). Recently it has been shown that these 
studies are difficult to model with PCA alone because of the existence of numerous 
unmeasured variables having strong effects on the observed patterns (Reich et al., 2008; 
Novembre & Stephens, 2008). When analyzing spatial data in particular, PCA produces 
highly structured results relating to sinusoidal functions of increasing frequency with PC 
numbers and are sensitive to population structure, including distribution of sampling 
locations . This observation has also been seen in climatology. However PCA can reveal  

 

Fig. 5. The EIGENSTRAT algorithm from the EIGENSOFT suite. 
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some patterns on the data, and reliable predictions require further genetic analysis and 

integration with other sources of information from archeology, anthropology, epidemiology, 

linguistic and geography (François et al., 2010). 

Genotype data consists of a n x p matrix where p individuals are recorded for their n SNPs. 

in their genomes. PCA is applied to infer continuous axes of genetic variation. A single axis 

of variation is indicated here. A genotype at a candidate SNP and phenotype are 

continuously adjusted by amounts attributable to ancestry along each axis. A 2 show here 

no significant association for this particular SNP (Price et al., 2006).  

2.3.2 PCA for transcriptomics data 

Gene expression array technology has reached the stage of being routinely used to study 

clinical samples in search of diagnostic and prognostic biomarkers. Due to the nature of 

array experiments, the number of “null-hypotheses” to test, one for each gene, can be huge 

(a few tens of thousands). Multiple testing corrections are often necessary in order to. screen 

non-informative genes and reduce the number of null-hypotheses. One of the commonly 

used methods for multiple testing control is to calculate the false discovery rate (FDR) which 

is the ratio of the number of false rejections among the total number of rejections. FDR 

adjustment on raw p-values is effective in controlling false positives but is known to reduce 

the ability to detect true differentially expressed genes.  

In transcriptomics studies, PCA is often used for the location of genes relative to each other 

in a reduced experiment space. Genes are plotted with respect to the two orthogonal linear 

combinations of experiments that contain the most variance (Lu et al., 2011). 

Transcriptomics also use other multivariate tools for classification and clustering (Tibshirani 

et al., 2002). A very fast and effective classification strategy is linear discriminant analysis. In 

classification problems there are positive training examples that are known members of the 

class under. study and negative training examples that are examples known not to be 

members of the class. The test examples are compared to both sets of training examples, and 

the determination of which set is most similar to the test case is established. In this process 

the test example is “classified” based on training examples. Clustering is a commonly used 

categorizing technique in many scientific areas using K-means grouping technique. Using 

this approach the user can cluster data based on some specified metric into a given number 

of clusters. Users can cluster arrays or genes as desired into a pre-specified number of 

clusters. The algorithm has a randomized starting point so results may vary from run to run. 

2.3.3 PCA for proteomic and peptidomic data 

2.3.3.1 Urinary peptides and biomarker discovery study 

PCA was used in order to distinguish urine samples containing or not pseudo or artificial 

spiked-in analytes or pseudo biomarkers (Benkali et al., 2008). The objectives were to 

analyze variations in the data and distinguish their sources. These variations could arise 

from (a) experimental variations due to changes in the instrument or experimental 

conditions, (b) real variations but of no interest in the primary objective, such as male versus 

female subjects, drug treatments, metabolites of a therapeutic agent… and (c) relevant 
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differences that reflect changes in the system under study (spiked-in or not spiked-in). The 

experiment consisted in using human urines from 20 healthy volunteers splitted in two 

groups of ten, one which was spiked-in with few synthetic peptides at a certain variable 

concentration and the other without. Urines were processed using the same peptide 

extraction solid phase extraction (SPE) protocol, by the same experimentalist, and peptide 

compositions were recorded by off-line nanoLC-MS MALDI TOF/TOF. Data were 

processed with MarkerView software version 1.2 (www.absciex.com). PCA preprocessing 

consisted in using Pareto scaling without weighing and no autoscaling because Pareto 

scaling is known to reduce but not completely eliminate the significance of intensity, which 

is appropriate for MS because larger peaks are generally more reliable and all variables  

are equivalent. Different scaling methods are worth trying because they can reveal  

different features in the data with peak finding options and Pareto normalization (Van der 

Berg et al., 2006). 

More than 5000 features (or m/z analytes) were retained from which respective abundances 

were observed. The n x p matrix contains n= 5000 and p = 20 samples. Scores and loading on 

PCs were calculated with 3 PCs capturing 80.4% of total data variability. Figure 6 shows PC1 

(70.6%) versus PC2 (7.4%) (Figure 6A), as well as. PC1 (70.6%) versus PC3 (2.4%) (not shown). 

Sample points in the scoring scatterplot were colored according to. their group assignment 

before analysis (unsupervised). PCs scores on the PC1-PC2 projection axis allowed us to 

define the A9 sample as an outlier behaving as an unspiked B group sample (labeling tube 

error perhaps). We had to discard this sample for the rest of the analysis. This analysis was 

carried out on samples blinded to categorical label (spiked and unspiked) and the coloring 

of samples on the graphic was only carried out after the PCA. Spiked samples (A samples) 

are in red color and unspiked samples in blue color (B samples). The high positive value of 

loadings (green points) in the PC1 and PC2 axes are associated with features (or m/z 

analytes) most responsible to discriminate the two sample groups. The relative abundance 

of the spiked analyte of m/z = 1296.69 and its two 13C. isotopically stable labeled variants, 

1297.69 and 1298.69, is shown in the spiked group (A samples, red points) and in the 

unspiked group (B samples, blue points). Moreover they tend to lie close to straight lines 

that pass through the origin in the loading plots (Figure 6A). These points (green points) are 

correlated because they are all the isotopic forms of the same spiked compound. The same is 

observed for other spiked analytes (904.46, 1570.67, 2098.09 and 2465.21). Finally superposed 

mass spectra from 20 samples of both groups show the relative abundance of analytes (panel 

B and insert focused on m/z = 1296.69 analyte and its natural 13C isotopes). 

Variables with large positive PC1 loadings are mainly in group A (spiked samples) and 

absent or at lower intensities in group B. PC1 separates both groups but PC2 seems to 

separate both groups A and B in two half-groups (Figure 6A). What is the nature of the 

variation captured by PC2 where some loadings (900.40, 1083.54 and 1299.65) give high 

positive PC2 values and negative PC1 values ?. The examination of Figure 7 shows that these 

analytes show a progessive increase in their intensity with a gradient following the order of 

their analysis in the instrument. The data were acquired in the order they are displayed 

(from left to right) and group A members were acquired before members of group B, which 

introduces a bias or a batch effect in these data. To avoid this effect, the samples should be 

acquired in a random order,. with group members mixed. 
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Fig. 6. PCA of 20 urine samples spiked or not spiked with synthetic peptides (pseudo 
biomarkers). 

(A) Scores and loadings plots of PC1 and PC2 axes show a good separation of group A (spiked,. colored 
in red) from group B (not spiked, colored in blue). The A9 sample (black arrow) is an outlier and 
behaves as a B member group. It should be removed from the analysis. Loading plots show the 5000 
analytes (green points) from which the majority are not contributing to the variability (0,0). Some 
analytes contribute to the large positive variation in the PC1 axis (spiked peptides) and to the positive 
PC2 (bias effect). (B) Superposition of the 20 spectra of urine samples after their alignment. with. a 
symbol (*) indicating the m/z of spiked peptides. The insert corresponds to the enlargement of the 
spectra located at the red arrow in the spectra, showing the abundance of. the 1296.69. and their 13C 
isotopes among the 20 samples, particularly in the A group.  
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Fig. 7. A variation. recognized in the PC2 axis probably due to a batch effect in the sample 
processing. Analytes. 900.38, 1083.52 and 1299.63. responsible for the positive value of scores 
in the PC2 axis (Figure 6, panel A) see their intensity increase slightly during their acquiring 
time (from left to right), signaling a probable batch effect. 

2.3.3.2 Microbial identification and classification by MALDI-TOF MS and PCA 

MALDI-TOF MS mass spectrometry has recently been used as a technique to record. 

abundance of proteins extracted from different phyla of bacteria with the aim of finding 

phylum-specific patterns and use them to classify or recognize these bacteria in a minimum 

culture time. Sauer, S. has pioneered the technique of rapid extraction of proteins from 

alcohol, strong acid treatment or direct transfer from single colonies of bacteria, with or 

without the need to cultivate them (Freiwald & Sauer, 2009). Ethanol/Formic acid extraction 

of proteins of two clones of each. 6 bacteria strains, Klebsiela pneumonia (KP), Acinetobacter 

baumanii, (AB), Lactobacillus plantarum (LP), Pseudomonas aeruginosa (PA), Escherichia coli MG 

(MG), Bacillus subtillis (BS) were prepared. Mass spectra of proteins were recorded in five 

analytical replicates in the range 4000 to 12000 Daltons (Figure 8A). Major extracted proteins 

come from abundant ribosomal proteins. The natural variants in their amino acid sequence 

are responsible for the differences of masses in the peaks observed in the spectra, and their 

abundance is characteristic of the bacteria. Moreover, 6 bacteria clones (X1 to X6) were 

blindly analyzed in triplicate. PCA was used in order to distinguish the axes of greater 

variability in the data.  
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Fig. 8. MALDI TOF MS spectra of protein extracts of 6 bacteria strains and PCA. 

(A) MS spectra of Escherichia coli MG clone proteins extracted with 3 different methods, direct transfer, 
ethanol/Formic acid (FA). and Trifluoroacetic acid(TFA). Peak abundances. may vary according to the 
extraction methods, from bacteria strains and from analytical variability. (B) Scores of PC1 versus PC2 
and PC1 versus PC3 of the full 6 bacteria dataset,. including unknown X1 to X6 samples. (black points). 
(unpublished Maynard & Gastinel, 2009).  
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For this analysis, PC1 takes 28.2% of variability, PC2 20% and PC3 15%, for a total of 63.2% 

captured in the model (Figure 8B). The PC1 axis separates LP and PA bacteria strain. from. 

KP, MG, BS and AB strains. The PC2 and PC3 axes separate. KP and LP from BS , AB and PA. 

but not so well for the MG strain. Moreover, X samples are 100% separated in their correct 

respective clusters. The broad distribution of samples in the score plot is probably due to the 

relatively poor analytical reproducibility in the ionization of. MALDI TOF MS analysis. 

From the loading score plots (not shown) few proteins of particular m/z responsible for this 

bacteria strain separation have been recognized in protein databases by their annotation. 

Among them, the 5169 Daltons protein is attributed to the 50S ribosomal protein annotated 

as L34 of Acinetobater baumanii. 

2.3.4 PCA for metabolomics data 

Humic acids are one of the major chemical components of humic substances, which are 
the major organic constituents of soil (humus), peat, coal, many upland streams, 
dystrophic lakes, and ocean water. They are produced by biodegradation of dead organic 
matter. They are not a single acid; rather they are a complex mixture of many different 
acids containing carboxyl and phenolate groups so that the mixture behaves functionally 
as a dibasic acid or, occasionally, as a tribasic acid. Humic acids can form complexes with 
ions that are commonly found in the environment, creating humic colloids. Humic and 
fulvic acids (fulvic acids are humic acids of lower molecular weight and higher oxygen 
content than other humic acids) are commonly used as a soil supplement in agriculture, 
and less commonly as a human nutritional supplement. Humic and fulvic acids are 
considered as soil bioindicators and reflect an equilibrium between living organic and 
non-organic matters.  

Mass spectrometry has been used to estimate signature analytes and patterns specific to 

some soils (Mugo & Bottaro, 2004). Fulvic acids were prepared from a soil using different 

extraction protocols resulting in 5 samples,. H1, H1H2, EVM1, EVM2 and EAA. Are these 

extraction protocols similar and which analytes are they extracting more efficiently? 

MALDI MS spectra from 150 to 1500 m/z range were recorded in the presence of the 

MALDI matrix alpha-cyano-4-hydroxycinammic acid (CHCA). Normalization of 

intensities were done with the 379 m/z analyte in common to these samples, and Pareto 

scaling was chosen during the alignment process performed by MarkerView. Figure 9A 

shows that the PCA analysis reveals poor separation of samples with PC1 explaining 

25.8%, PC2 18.7% and PC3 14.8%. of variability (a total of 59.3% captured). Samples are not 

so well separated by the first PC axis, demonstrating the large influence of factors other 

than soil extraction differences (chemical precipitation, physical precipitation, filtration). 

Discriminant Analysis associated with PCA (supervised PCA-DA) was attempted to 

further separate these known 5 groups (Figure 9B). This supervised technique means that 

it uses class information based on the assigned sample group to improve their separation. 

Figure 9B shows a dramatic improved separation but this may be based on noise. Peaks 

which are randomly more intense in one group as compared to another can possibly 

influence the results, and careful examination of loading plots as well as analyte profiles 

across the samples is necessary to avoid batch effects. This analysis is also affected by 

samples incorrectly assigned to wrong group and outliers. 
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Fig. 9. Mass spectrometric study of fulvic acids profiles in the range 150 to 1000 m/z present 
in 5 sample preparations and analyzed in five analytical replicates by PCA. 

(A) Unsupervised PCA and (B) PCA-DA or supervised PCA with group information included before 
reducing data. Only the first and second PC axes are shown for the score plots. (unpublished Basly & 
Gastinel, 2009). 

In Figure 9, PCA (A) and PCA-DA (B) show a different pattern of the variability in the 

dataset. PC1. axis does not discriminate H1H2 (green) , EVM1 (blue) and EAA (violet) as for. 

the PC2 axis. The PC2 axis discriminates however EVM2 (pale green). and H1 (red). Keeping 

these 5 different protocols as 5 different classes, PCA-DA (Figure 9B) however discriminates 

quite well these these 5 preparation analyses in quintuplicates. EVM1 and EAA are still the 

closest group. Loading score plots reveal which analytes are the most favored in a particular 

extraction method relative to another.  

3. How can PCA help to reveal batch effects in «omics» data? 

3.1 What are batch effects? 

Batch effect is one overlooked complication with «omics» studies and occurs because high-

throughput measurements are affected by multiple factors other than the primary tested 

biological conditions (Leek et al, 2010; Leek & Storey, 2008). These factors are included in a 

comprehensive list among which are laboratory conditions, reagents batches, highly trained 

personnel differences, and hardware maintenance. Batch effect becomes a problem when 

these conditions vary during the course of an experiment, and it becomes a major problem 

when the various batch effects are possibly correlated with an outcome of interest and lead 

to incorrect conclusions (Ransohoff, 2005; Baggerly, et al., 2004). Batch effects are defined as 
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a sub-group of measurements that have qualitatively different behaviors across conditions 

and are primarily unrelated to the biological or scientific variables under study. Typical 

batch effect is seen when all samples of a certain group are measured first, and when all 

samples of a second group are measured next. Batch effect occurs too when a particular 

batch of reagent (ex: Taq polymerase enzyme for PCR experiments) is used with all samples 

of the first group, and another reagent batch is used with all samples of the second group. 

Typical batch effects are also seen when an experimentalist/technician acquires all samples 

from the first group and a different experimentalist/technician works with the other group 

or when the instrument’s characteristics (example for MALDI mass spectrometry: laser or 

detector replacements) used to acquire the data have been deeply modified. Data 

normalization generally does not remove batch effect unless normalization takes into 

account the study design or takes into account the existence of a batch problem. 

3.2 How to find evidence of batch effects 

The first step in addressing batch and other technical effects is to develop a thorough and 

meticulous study plan. Studies with experiments that run over long periods of time, and 

large-scale, inter-laboratory experiments, are highly susceptible to batch effects. Intra-

laboratory experiments spanning several days and several personnel changes are also 

susceptible to batch effects. Steps necessary to analyze batch effects require different. levels 

of analysis, according to the recent review of Leek J.T (Leek et al., 2010). What follows are 

some of the recommended actions:. Performing a hierarchical clustering of samples that 

assigns a label to the biological variables and to the batch surrogates estimates, such as 

laboratory and processing time; plotting individual features (gene expression, peptides or 

metabolites abundances). versus biological variables and batch surrogates using ggobi for 

example; calculating principal components of the high-throughput data and identifying 

components that correlate with batch surrogates. If some batch effects are present in the 

data, artifacts must be estimated directly, using surrogate variable analysis (SVA) (Leek et 

al., 2007). Recently, the EigenMS algorithm has been developed and. implemented within a 

pipeline of bioinformatic tools of DanteR in order to correct for technical batch effects in MS 

proteomics data analysis (Polpitya et al., 2008; Karpievitch et al., 2009). The algorithm uses 

an SVA approach to estimate systematic residual errors using singular value decomposition 

taking account primary biological factors and substracting those estimates from raw data in 

the pre-processing data analysis. The estimated/surrogate variables should be treated as 

standard covariates in subsequent analyses or adjusted for use with tools such as Combat 

(Johnson & Li, 2007). After adjustments that. include surrogate variables (at least processing 

time and date), the data must be reclustered to ensure that the clusters are not still driven by 

batch effects. 

3.3 How to avoid batch effects  

Measures and steps must be taken to minimize the probability of confusion between 
biological and batch effects. High-throughput experiments should be designed to distribute 
batches and other potential sources of experimental variation across biological groups. PCA 
of the high-throughput data allows the identification of components that correlate with 
batch surrogate variables.  
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Another approach to avoid and prevent batch effects is to record all parameters that are 
important for the acquisition of the measures and the relevant information related to 
demographic and grouping factors. The structure of a database under MySQL with 
attractive web graphic user interface (GUI) should be conceived at the same time as the 
study design is defined. Such a database was constructed for a mass spectrometry based 
biomarker discovery project in kidney transplantation in a French national multicenter 
project. The BiomarkerMSdb database structure contains 6 linked tables: Demographic data, 
Peptide Extraction Step, Liquid Chromatography Separation, Probot Fractionation, 
Spectrometry Acquisition and Data Processing. Figure 10 shows the details of the form that 
the user must complete to record demographic data of patients enrolled in this project. This 
approach, with an internet interface used to facilitate data exchange between laboratories 
enrolled in the project, allows to keep track of essential parameters that could interfere with 
future interpretations of the results. At minimum, analyses should report the processing 
group, the analysis time of all samples in the study, the personnel involved, along with the 
biological variables of interest, so that the results can be verified independently. This is 
called data traceability. 

 

Fig. 10. Extract of the internet form used to interact with BiomarkerMSdb, a relational 
database under MySQL constructed to record essential parameters involved in a biomarker 
discovery project using LC-MS strategies. This form is used to fill one of the 6 tables of the 
database called. “Demographic Data”(unpublished Moulinas & Gastinel, 2011). 

4. Conclusion and perspectives 

Observational and experimental biology is confronted today with a huge stream of data or 

“omics” data acquired by sophisticated and largely automated machines. This data is 

recorded under a digital format that has to be stored safely and shared within the scientific 

community. One of the challenges of modern biologists is to extract relevant knowledge 
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from this large data. For that purpose, biologists not only should be acquainted with the use 

of existing multivariate and statistical data mining tools. generally used by meteorologists, 

economists, publicists and physicists but also should conceive their own specific tools. 

Among the tools available for multivariate analysis of «omics» data, Principal Component 

Analysis (PCA) as well as PLS and PCA-DA derivatives have demonstrated their utility in 

visualizing patterns in the data. These patterns consist sometimes in detecting outliers that 

spoiled data and that could be removed from them. PCA quantify major sources of 

variability in the data and allows to show which variables are most responsible for the 

relationship detected between the samples under study. Moreover, unwanted sources of 

variability can be revealed as batch effects and partially corrected by surrogate variable 

analysis (SVA) and EigenMS approaches. However, there are some limitations to using PCA 

in “omics” data. These limitations result from the large choice of methods of the data pre- 

and post-processing and the technical difficulty in displaying graphically all the data. Ggobi 

and rggobi allow to display quite large data using Grand tour and 2D tour, showing 

dynamic projections with the ability to color and glyph points according to factors 

(brushing). PCA is an invaluable tool in the preliminary exploration of the data and in 

filtering or screening them according to noise, outliers and batch effects before using other 

multivariate tools such as classification and clustering. An appropriate educational program 

should be pursued in universities in order to expose the theory and praticability of these 

tools to future biologists. 
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