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1. Introduction 

Liquid crystals (LCs) are intermediate phases between the solid and liquid states of matter 
whose interesting properties are owing mainly to two remarkable characteristics: i) they can 
flow as a conventional liquid, ii) they possess positional and orientational order just like 
those of the solid crystals (de Gennes & Prost, 1993). During the last five decades, LCs have 
been widely used in optoelectronical devices due to the great ability of changing their 
properties under the stimuli of external agents as temperature, pressure and electromagnetic 
fields. It is well known that the propagation of an electromagnetic wave through LCs is a 
phenomenon that exhibit unique optical properties and highly nonlinear effects (Zel'dovich 
et al., 1980; Tabiryan et al.,1986). 

It is an experimentally well established fact that a polarized and sufficiently intense laser beam 
may distort the initial orientation of a liquid crystal sample reorienting its molecules against 
the elastic torques producing a new equilibrium orientational configuration. This orientational 
transition of the same mesophase is the so called optical Freedericksz transition (de Gennes & 
Prost, 1993). For pure LCs this phenomenon occurs for linear, circular or elliptically polarized 
beams and, in the reorientation process, different nonlinear dynamical regimes may be 
achieved (Durbin et al., 1981). The understanding of the underlying physical mechanisms and 
the prediction of the ensuing changes in the optical properties of the liquid crystals is an active 
area of research nowadays (Khoo & Wu, 1993; Santamato et al., 1990). 

LCs are anisotropic materials and their linear optical properties are described by a 
symmetric dielectric tensor, instead of a scalar refractive index. Nonetheless, for liquid 
crystal films where an uniform orientation is achieved, the dielectric tensor is constant and 
light propagation through the fluid may be described by the usual laws of crystal optics 
(Born & Wolf , 1975). But for spatially inhomogeneous liquid crystal layers light propagation 
is much more difficult to describe, essentially due to the fact that there is no general method 
to solve Maxwell's equations for an arbitrary spatial dependence of the dielectric tensor. 
However, for important special cases such as the optical phenomena observed in the 
cholesteric phase, exact solutions and useful approximations have been worked out if light 
propagates along the helical axis (Oseen, 1933). For light propagation in an arbitrary 
direction relative to the helix, the description is more difficult. For this situation Berreman 
and Scheffer developed a numerical method to solve Maxwell's equations. This method can 
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be applied to any system where the director changes only in one direction, i. e., for a 
stratified medium (Berreman & Scheffer, 1970; Shelton & Shen, 1972). But since numerical 
methods give little insight into the physical features of the problem, approximate solutions 
of Maxwell's equations have been developed mostly in the context of light propagation in 
cholesterics. One of these cases is the geometrical optics approximation for LC. This 
approximation has been formulated in terms of the concept of adiabatic propagation for an 
arbitrary stratified medium (Allia et al., 1987), or for the case of normal incidence and small 
birefringence (Santamato & Shen, 1987). On the other hand, a rigorous treatment of the 
geometrical optics approximation in the special case of a stratified layer with its director 
oriented everywhere in the plane of incidence of the beam, was presented by Ong (Ong, 1987). 
But apparently, the generalization of the adiabatic or geometrical optics approximations have 
not been extended for two or three dimensional spatial variations of the director. 

When a high intensity beam is propagated in LCs whose configuration is not anchored to 
waveguide boundary conditions, give rise to spatial patterns and solitons as a result of the 
balance between the nonlinear refraction and the spatial diffraction. It is shown that for 
nematic LCs the electromagnetic field amplitude at the center of Gaussian beam (inner 
solution), follows a nonlocal nonlinear Schrödinger equation (McLaughlin et al., 1996). For 
cholesteric LCs and wavelengths outside of the bandgap, it is found that under special 
conditions the nonlinear coupled equations for the wavepackets in the sample reduces to an 
extended nonlinear Schödinger equation with space-dependent coefficients (Avendaño & 
Reyes, 2004 ), whereas for wavelengths within the bandgap (stationary waves) the vectorial 
equation reduces to an extended real Ginzburg-Landau equation (Avendaño &  Reyes, 
2006). In this system the energy exchanging among the four different modes generated in 
the sample due to linear and nonlinear coupling is also studied. 

It is worth mentioning that the analyses made in the above cited works, the nonlinear effects 
are obtained in regions of the system where both orientational and optical field have lost 
influence from the boundary conditions and they have to satisfy only certain mean-field 
matching conditions. Indeed, as long as the confining cell of the liquid crystal turns to be 
larger, the bias-free confinement is more notorious. 

If the boundary conditions are to be considered, the study of transverse magnetic (TM) 
nonlinear modes in nematic LC core waveguides can be realized by two different 
assumptions: i) by assuming hard anchoring boundary conditions for the nematic director, 
an iterative numerical scheme permits determine up to certain approaches the propagation 
constant as a function of optical power (Lin& Palffy-Muhoray, 1994), ii) by considering soft 
anchoring boundary conditions, a numerical but exact procedure allows to obtain the 
propagating parameters, transverse field distribution and nematic configuration as a 
function of the mode intensity (Avendaño & Reyes, 2010). It is shown that the anisotropy of 
the nematic and the intensity of the propagating beam causes simultaneously spatial 
redistribution of the field amplitude and the nematic configuration, as well as changes in the 
propagation constant and on the cut off frequencies. As said above, LCs change their 
properties under external stimuli, so that, it is expected that any external agent will permit 
us to control these nonlinear parameters. 

In next section we review some aspects of the propagation of light in inhomogeneous 
nematic liquid crystal waveguide consisting of an isotropic core and a quiescent nematic 
liquid crystal cladding. To this end an analytic and iterative solution of the nematodynamic 
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equations coupled to Maxwell's equations describing the propagation of a narrow 
wavepacket, is provided. To cubic order in the coupling between the optical field and the 
non-stationary reorientational states of the nematic, a perturbed Nonlinear Schrödinger 
Equation (NLS) is derived. This envelope equation that takes into account the dissipative 
effects due to the presence of hydrodynamic flow in a cylindrical fiber whose nematic 
cladding is initially quiescent, and the dissipation associated with the reorientation are also 
analyzed. 

In last section we are focussed in analyzing the effect of applying an axial uniform electric 

field Edc on the nonlinear TM modes, the propagating parameters and nematic core 

configuration by assuming soft anchoring boundary conditions within a cylindrical 

waveguide made of a nematic liquid crystal core and isotropic cladding. In order to achieve 

this goal, Maxwell equations are written for the proposed system and their corresponding 

boundary conditions. Then, we establish the set of nonlinear coupled equations governing 

the nematic configuration and the transverse field distribution by including the arbitrary 

anchoring conditions under the action of the uniform electric field applied axially. After this, 

we solve numerically the coupled nematic-electromagnetic field system and find 

simultaneously the distorted textures of the nematic inside the cylinder and the nonlinear 

TM modes as a function of Edc. We show that the correlation in the spatial distribution of 

nematic's configuration and nonlinear TM modes, the nonlinear cut-off frequencies and 

dispersion relations can be tuned by varying the external electric field Edc. 

2. Liquid crystal cladding waveguide 

We first consider a cylindrical geometry for an optical fiber that takes into account the 

nonlocal features of the reorientation dynamics. In what follows the coupled time evolution 

equation for both, the Transverse Magnetic TM modes and for the orientational 

configuration are derived in an explicit retarded form in terms of the coupling parameter q , 

which it will be defined later.  

Then, these general equations are solved to linear order in q  for the final stationary 

orientational configuration and are then used to construct the propagation equation of a 

wavepacket of TM modes. It is shown that the envelope of the wavepacket obeys a NLS 

equation which balances self-focussing, dispersion and diffraction in the nematic. For the 

soliton solution we calculate its speed, time and length scales, and nonlinear index of 

refraction. They are estimated by using experimental values for some of the parameters 

(Chen & Chen , 1994). 

2.1 Coupled dynamics  

Let us consider a cylindrical waveguide with an isotropic core of radius a , dielectric 

constant c  and a quiescent nematic liquid crystal cladding of radius b  satisfying planar 

axial boundary hard-anchoring conditions ˆ( , ) zn r a z e  . 

The nematic director is written in terms of the angle   as follows 

 ˆ ˆ ˆ( , ) sin cosr zn r z e e   , (1) 
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where ˆ
re  and ˆ

ze are the unit cylindrical vectors along the r and z  directions, respectively. 

If the reorientation process is isothermal, the equilibrium orientational configurations are 

determined by minimizing the corresponding total Helmholtz free energy (Frank, 1958) 

 

2 2 2
1 2 3

2 2 * *

ˆ ˆ ˆ ˆ ˆ(1 / 2) ( ) ( ) ( ) ( , ) ( , )

ˆ ˆ(1 / 2) ( ) ( ) ( , ) ' ( ', ') ( , ) ' ( ', ') ,
t t

t a

F dV K n K n n K n n t t

dV K n K n t dt t t dt t

           
 

           
  



  

D r E r

E r H r E r H r

 (2) 

where   is the chirality that we take null for a nematic. 1 2,K K and 3K are the splay, twist 

and bend constants of deformation. Here 1 2 3K K K K    is the elastic constant 

in the equal elastic constant approximation and the asterisk denotes complex  

conjugation. Here we have used the constitutive relation ( , ) ( , ) ( , )    D r r E r  with 

 0
ˆ ˆ) )), ( (( aI nn     r   , where ε0 is the permitivity of the vacuum, ||a    is the 

dielectric anisotropy, whereas that  and || are perpendicular and parallel dielectric 

constants to the optical axis, respectively, and which leads to the retarded relation between 

E and D given by 

  ( , t) '' , t '' ( , t'') ( , ) ( , )
t

t adt t D t t    E r r r E r E r , (3) 

 where Et and Ea are electric fields defined by the following nonlocal and retarded relations 

 
0 0

( , ')1 ( , ') 1
( , ) ' '' ,      ( , ) ' ''

ˆ ˆ( '' ')

( '' ')
t a a tt

t dt dt t dt dt
t t nn

t t  


 

 
   



H r'H r'
E r E r


  

. (4) 

In Eqs. (2), (3) and (4) we have substituted ( , )tD r  in terms of ( , )H r by using Ampere-

Maxwell's law without sources. For the specific geometry Eq. (2) takes the form 

 

2 2

* * * *

sin
(1 / 2) sin cos sin cos

( ) ( )1 1
' ' ' ' ,

t t t t
a a i i
r z r z

F rdr K r K
r z r r z

H rH H rH
E dt E dt E dt E dt

z r r z r r

   

       
                     

     
            



   
 (5) 

 If we now minimize Eq. (5) with respect to  , we find the following Euler-Lagrange equation 

 

2

2 2

2 * * * *

1 sin cos

( ) ( )cos2 1 sin2 1
' ' ' ' 0,

t t t t
a a i i
r z r z

F
x

x x x x

H xH H xH
q E dt E dt E dt E dt

x x x x z x x

   
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 

 


         
       
                    

   
 (6) 

Where /z a  , /x r a , 0 0/( )H H c E    with 1/2
0 01 /( )c    where 0 is the 

magnetic permeability of free space. 0/a
i iE E E , with ,i r z , are dimensionless variables 

and 2 2 2
0 0 /q E a K  is a dimensionless variable representing the ratio between electric 
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energy density and elastic one. Notice that we only use the final stationary state for   

defined by (6) due to the large difference between the time scales of reorientation and of 

time variations of the optical field. In this section we ignore all effects due to absorption. 

Since only the TM components are coupled with the reorientation, we assume that the 

optical field is a TM whose electric and magnetic component are ,r zE E  and H . Thus, H is 

governed in general by the nonlinear, nonlocal and retarded equation obtained by 

substituting Eqs. (4)  into Faraday's law, namely, 

 

2 2

2 222 2
2

2 2

2 2

( ')
( ') sin cos

' ' sin ( ')
( ', ')

( ') cos
' sin cos ( ')

a

a

H H
t t

xH H xHta
dt dt t t

r t t x xc t

H xHt
dt t t

t x x

 
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 

   
    

  
   

 



  
                   
  

    
     

 







 (7) 

Eq. (6) and (7) define a set of coupled equations for the nematic and optical field (Garcia et 
al., 2000). Next we solve them iteratively in the weakly nonlinear regime. 

2.2 Linear and weakly nonlinear dynamics 

The solution of Eq. (4) to zeroth order in q  and satisfying the axial boundary conditions 

defined above, is (0) 0  . Substitution of this solution into Eq. (7) and taking a 

monochromatic beam of frequency  , we obtain a linear equation for the zeroth order field 
(0)U H which is given by 

 
2 2

2 2
0

a U U
U x

c x x xx

    


 


                     
   (8) 

 Solving this equation by the method of separation of variables, its propagating solution is 
given by 

 
2

2 2 0
1 1

i a a
U e A K x a

c
   


 

         



, (9) 

where 1A  is an arbitrary constant to be determined by using the boundary conditions. Here 

1( )K x is the modified Bessel function of order 1. On the other hand, the monochromatic 

expression of ( , )cH r z  in the isotropic dielectric core (Jackson, 1984) finite at the origin is 

 
2

2 2 0
1 1

c i a
c

a
H e B J x a

c
 


 

         

, (10) 

where 1( )J x is the Bessel function of order 1 and 1B  is also an undetermined constant. To 

find the constants 1A  and 1B , it is necessary to impose the following boundary conditions 

over H  and its derivative at the boundary (Jackson, 1984), 
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 1
1 11 1

, / /c c
x xx x

H U dH dx dU dx     
  . (11) 

Thus, by substituting Eqs. (9) and (10) into Eq. (11) we obtain a transcendental equation for 

the allowed values of   corresponding to each of the permitted modes in the guide. 

To obtain the weakly nonlinear equations for   and H , we perform another iteration to 

find their next nonvanishing order corrections in q . For this purpose we first insert Eq. (9) 

into Eq. (6) to obtain 

 

2 22
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2

2 2
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2
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
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
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




 (12) 

and look for a solution of the form  

 
2(0) (1)2 ( , )U( , ) ( ) ...q A t x t r        (13) 

 where ( , )A t is a slowly varying function of its arguments. Hence the equation for (1)  

takes the form 

 
(1) (1)2

(1) 2 2
22

/ 2( / ) 0x
ax x aA e

xx

        
   

    (14) 

and its solution satisfying the hard anchoring hometropic boundary conditions 

( 1) ( / ) 0x x b a      may be written in terms of the exponential integral function; 

however, the resulting complicated equation can be approximated using the asymptotic 

expressions of these functions with the result is given by 

 

2
20

1

(1) (1 ) ( )2 2 2 2 2 2
2 2

( )

( , ) ( ) ( ( ) ) (1 )
( )

a c

a x a b

a J a a
c

x a b e b xa e a x
x a b

 

   

 
 

 



               
. (15) 

If we now insert this expression into Eq. (8) and expand the result up to first order in q , we 

arrive at an equation of the form 

 2ˆ ˆ( , , ) ( ) 0L x H q N H       (16) 

where the linear and nonlinear operators L̂  and N̂  are defined, respectively, by 

  
2 2

22 20
2 2

1ˆ( , , )
a

L x x a x x
c xx x

       
      



                    

 (17) 

and 
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2 (1)

(1) (1)( ) ( , ) U ( )ˆ U ( ) 3 ( ) U .a A U x d d x
N i a x x x x A

x dx dx
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 

 
   

  

 (18) 

2.3 Wavepacket 

The explicit Fourier representation of a monochromatic field as the one considered in last 

section, depends of the frequency as 0( )   , where   is the delta function. This suggests 

that a narrow wavepacket centered around the frequency 0  may be expressed in the form:  

 0( )
0 0( , , ) ( , ) U ( , ) .i aH x t A e x cc  

        , (19) 

where the function 0( , )A    characterizes the distribution of frequencies around 0 . We 

assume that this distribution has a small dispersion 0 0( ) /q     . Thus, if the amplitude 

( , , )H x    is expanded in a Taylor series around 0   and the inverse Fourier transform 

of ( , , )H x    is taken, we arrive at 

 0 0 0( ) ( )
0 0

0

1 1
( , , ) U ( , ) ( ) ( , ) ( ) .

2 !

n
i t i a i tn

n
n

d
H x t x A e d e cc

n d

     
         

 


  


       (20) 

Eq. (20) can be written in the more compact form 

 0 0( )
0( , , ) U ( , ) ( , ) .i a i tH x t e x iq A T cc

T
   

   
   


, (21) 

where ( , )A T  is the Fourier transform of 0( , )A     and is a slowly varying function of 

the variables q   and T qt . Due to the coupling between the reorientation and the 

optical field, it is to be expected that when a monochromatic TM mode propagates along the 

cell, higher harmonics may be generated. Therefore, we assume that the solution of Eq. (16) 

can be written as the superposition 

 0 0( ) (1) (2)2 3
0( , , ) U ( , ) ( , ) U U .i a i tH x t e x iq A T q q cc

T
   

   
     


 (22) 

The superindices identify the first, second, ..., harmonics. Note that the presence of the 

powers of q  implies that the contribution of the higher order harmonics are smaller than the 

dominant term which is itself a small amplitude narrow wavepacket.  

To describe the dynamics of the envelope ( , )A T we substitute Eq. (22) into Eq. (16) and 

identify the Fourier variables 2
0 1 2/ /a ai i q q         and 0 /i i iq T       , in 

consistency with a narrow wavepacket, and where 1 2Z q q     are the spatial scales 

associated with upper harmonic contributions. Expanding the resulting expressions and 

grouping contributions of the same order in q , we find the following expressions 

 
0 0 0

ˆ: ( , , )U ( , ) 0q L i a i x x A    . (23) 

0 (1)2
0 0 0 2 0 0 1 0 0

1

U ( , )ˆ ˆ ˆ ˆ: ( , , ) U ( , ) ( , ) ( , ) U ,
x

q L i a i x x L i a i L i a i A L
T T





      


     

             
 (24) 
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

 
   




     

  

      
   

  
       

 
  

   

(2)
0

ˆ ˆ(U ( , ) ) U ,A N x A L 


 


 (25) 

where 0 0( , )iL i a i  , 1,2i   denotes the derivative of 0 0( , )L i a i   with respect to its first 

or second argument. 

 Note Eq. (23) reproduces the usual dispersion relation 0 0 0( , ) ( , ) 0iL i a i U x    . Taking 

the first and second derivatives of Eq. (23) with respect to   we obtain an expression that 

will allow us to simplify Eqs. (24) and (25) to yield 

 (1)
1 0 0 0

1

ˆ ˆ( , ) ( , )
ad

L i a i U x A LU
d T


  


  
   

  
. (26) 

This expression is a linear inhomogeneous equation 1U , whose solution is assured to exist 

by imposing the so called alternative Fredholm condition (Zwillinger, 1989), which is 

fulfilled if 0( , ) 0LU r   and 0( , ) 0U r   as r  . In our case this condition reads 

explicitly (1) , 0LU U  and since (1) , 0LU U  , implies that 
1

0
ad

A
d T




  
  

  
, 

which expresses the fact that up to second order in q  the envelope A  travels with the 

group velocity /d d  . 

Similarly by taking the second derivative of Eq. (23), substituting the resulting expression 

into Eq. (25) together with 
1

0
ad

A
d T Z




  
  

  
  it leads to an explicit expression for  2

LU  

which upon using again the alternative Fredholm condition (2) , 0LU U  , we find 

 
2 2

2
2 2 2

2

2 0,
A d A

in A A ia
d T




 
  

 
 (27) 

where the dimensionless refraction index 2
2 2 0/n Kn a  is given by. 

 

3 (1)
0 0(1) 2

0 0 0

2

0 0

3 ( 4 ) (4 )3 3
2 3 2 2 2 2

1 0 2 2 2 2 2

( , ) ( , )
, ( , ) 3 ( , ) , ( , )

( , ), ( , )

1
.

4 ( )( )

a

a b a bb a
b a

a c a b

U x dU xdx
U x U x U x

x dx dx
n

U x U x

a ae ae be be
a J c e

c b a b e e

 
  

 

  
 

 

      


 

    
 

   
 

 


 
 
  

        





 (28) 
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2.4 Soliton dimensions 

Using the above expressions, we calculate the values of the properties of the wavepacket, 

such as the nonlinear contribution 2n  to the refractive index, its coefficient 2 2/d d  , the 

soliton typical length and time scales and its speed. 

For typical values of the dielectric permitivities, from (28) we get a set of values of 2n  

(Frank, 1958) corresponding to the allowed values of a . The value corresponding to 

229.59a   is  25 24
2 2.902 10 /CBn km V  which is several orders of magnitude larger 

than its value for glass, 20 28 2
2 1.2 10 ( / )Sin Km V  . This shows the existence of the giant 

optical nonlinearity expected for a liquid crystal (Reyes & Rodriguez, 2000). Another 

physical quantity is the coefficient 2 2( / )d d   of the wavepacket given by the third  

term of Eq. (27). Using: 0 1 2 2
21 /( )o o on n g      where 0 0.4136on  , 15

1 8.9 10 /rad s   ,  
15

2 6.68 10 /rad s   , 0 30 24.8 10 ( / )og rad s   and 2 30 21.66 10 ( / )og rad s   for 5CB from 

(Tabiryan et al., 1986), we find that 2 2 5 4 2( / ) 1.1 10 /
o

CB
nd k d ps Km   . Thus, the width of 

a picosecond pulse traveling in 5CB in the linear regime is doubled in a distance of 0.1 m; 

while for glass ( 2SiO ), 202 2 2( / ) 1.8 /
o

Si
nd k d ps Km  , it is doubled in a distance of 0.5 Km. 

This is consistent with the fact that liquids are considerably more dispersive than solids. 

Note that Eq. (27) can be rewritten as the NLS equation: 
2 2 2

2/ / 0iA A A i A T       , 

by using the dimensionless variables  2 0/Z    and 0/T T T , where 0 0 0A c E  is the 

amplitude of the optical pulse. Here 2 2
0 0/( )aZ K aA  , 2 2 2 2

0 0( / )2 /( )aT d d K A a    ) are 

the soliton length and time scales. As is well known, the NLS equation admits soliton type 

solutions given by (Moloney & Newell, 1992)  

 0 0 0 0( )
0 0 02 sec / / .ik Z Z i TTA A T Zdk d Z T e        (29) 

For a 500mW laser at 0.5 m  , with a beam waist of 10 m , the field amplitude is 
2 6
0 1.9 10 /A V m  . Then by using the materials values given above, the spatial and 

temporal scales for the pulse turn out to be 5
0 4.2 10Z m   and 11

0 0.21 10T s  . 

From Eq. (30) we find that the soliton propagates with the speed /v v c  

 
2 2

0 0 0 2( / ) / ( / ) / 2 / ,v Z T d dk n cA n d d       (30) 

which for the chosen values of the parameters yields 0.1nemv  , which is one order of 

magnitude smaller than the speed of light c  in vacuum, and roughly has the same value as 

for glass, 2 12.5 10SiOv   . The difference between nemv and 2SiOv  comes from the product 
2 2

2 0( ) /n d kn d  in Eq. (27), which measures the balance between nonlinearity and 

dispersion. 

3. Electrical control of nonlinear TM modes in cylindrical liquid crystal core 
waveguide 

It is important to stress that spatial solitons (Long et al., 2007) found in nonlinear systems 
are coherent structures formed in regions of the system where both orientational and optical 
fields have lost influence from the boundary conditions. In this sense, all these balanced and 

www.intechopen.com



 
Nonlinear Optics 

 

172 

robust profiles of energy, called solitons, are asymptotic solutions which are not to be forced 
by strict boundary conditions but they have to satisfy only certain mean-field matching 
conditions. In this section we are interested instead in analyze the role played by the 
boundary conditions within the optical- orientational non linear coupling of a liquid crystal 
cylindrical waveguide.  

Most of the optical calculations in waveguides have been done by assuming hard anchoring 
boundary conditions for the nematic director. This is inconsistent with the high intensity of the 
propagating TM mode since in the cylinder wall the electric force can be stronger than the 
surface elastic force as has been shown before for this geometry (Corella-Madueño et al., 2008). 
Moreover, when liquid crystals are confined to small cavities, its effect is found to be 
significant, particularly when elastic energies imposed by the confining volume compete with 
molecular anchoring energies (Corella-Madueño & Reyes, 2008). Hence we cannot ignore 
surface elastic terms compared with both bulk elastic terms and electric bulk contributions. 

In this section we analyze the behavior of a LC nematic confined within a cylindrical fiber of 
uniform dielectric cladding in which a high intensity TM mode is propagating and a 
transversal uniform electric field is axially applied on the system. Our aim is to discern how 
its propagating parameters, transverse field distribution and nematic configuration depend 
on the optical mode intensity and the external field amplitude, by assuming soft anchoring 
boundary conditions.  

3.1 Transverse magnetic field 

We assume homeotropic anchoring of the nematic LCs molecules at the cylinder wall. For 

infinite circular cylinders the symmetry implies that  only depends on the radial distance 

r  and the director is given by Eq. (1) (see Fig. 1). 

 

Fig. 1. Cylindrical fiber infiltrated by a nematic liquid crystal and subject to the action of an 

axial uniform electric field dcE applied along z – axis. Also, an optical field of incident 

electrical amplitude 0E  is propagating through the sample.  
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As usual, lmTM and lmTE propagating modes are considered in studying waveguides, 

nevertheless, as shown in (Lin & Palffy-Muhoray, 1994), for lmTE modes the anisotropy and 

inhomogeneity of the core does not enter into Maxwell's equations. For these modes the 

resulting equation is equivalent to that of isotropic and homogeneous cylindrical waveguide 

(Jackson, 1984). We concentrate on lmTM  modes for which the amplitudes of the transverse 

fields are azimuthally symmetric (l = 0). To find the equations governing the propagation of 

electromagnetic waves through the nematic fiber we assume monochromatic electric 

rE , zE and magnetic H fields propagating along the cylinder of the form: 

 ( )
r z( ,E ,H ) i z i t

r zE (e ,e ,h )e  
 

  (31) 

where the dimensionless field components are given by the following expression 

     r z 0 0 0 0( , , ) , , , / if
r ze e h E (G r k ,iG r k ,F r k c)e 


 

and 0E  is the incident electric field 

amplitude. Here we have explicitly separated the phase f  and real valued amplitudes 

 0,rG r k
, 

 0,F r k
 
of the mode components to simplify the resulting equations. Inserting 

these expressions into Maxwell's equations and separating real and imaginary parts we find 

(Corella-Madueño & Reyes, 2006): 

 
2

0
rrz

rr

pdG
k R F

dx






   (32) 

 
 

0

1 rr
z

d xF
G

k R x dx


 




 (33) 

 rz
r z

rr rr

pF i
G G

 
 

   (34) 

 0 rz

rr

df pk R

dx




 , (35) 

where /x r R , R is the cylinder radius and 0/p k , being   the propagation constant. 

Note that Eqs. (32) and (33) define a self-adjoint equation for F  so that their eigenvalues p  

are real, whereas Eq.(35) provides a phase proportional to the only non diagonal entry of  . 

To solve exactly the 0mTM modes we shall assume that the nematic cylinder is surrounded by 

an infinite homogeneous and isotropic cladding of dielectric constant c . In this way the 

electromagnetic fields should satisfy the boundary conditions analogous to those given by Eqs. 

(11):    0 01, 1, ;ch x k h x k        0 0e 1, 1,c
z x k e x k    and  00, 0h x k   . Where 

 0,ch x k  and  0,c
ze x k are the magnetic and electric fields in the cladding whose expressions 

are    2
0 1 0,c

ch x k AK xk R p  
 

and    2 2
0 0 0 0e ,c

z c cx k Ak R p K xk R p     , where  

 nK x is the modified Bessel function of order n . Note that, the condition  00, 0h x k    

can be derived by realizing that a Frobenius  series  of  the solution of Eq. (32) and (33) has a 

vanishing independent term. Then, inserting these definitions into boundary conditions, it 

turns out to be  
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    
 
   

2
0 0

2
0

2
1 0

1 1 0    and   0 0
c

z c

c

K k R p
G F k R p F

K k R p
 


  





   


  (36) 

The boundary value problem defined by Eqs. (32)-(35),  and (36) is twofold: first, it involves 
coefficients which are real valued functions, and second, it is written in terms of self-adjoint 
differential operators. Thus, its eigenvalues and eigenfunctions are real. 

3.2 Nematic configuration 

The continuous medium description of the director is governed by the total free 

energy F containing the elastic and the optical contributions given by Eq. (2) and the external 

electric energy after integrating this expression over the cylindrical volume. Then, the free 

energy per unit length: 

 
 
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  

       

    







 

 (37) 

Where the elastic moduli 1K ,
 

2K  and 3K  describe the splay, twist and bend deformations, 

respectively. 24K is called the surface elastic constant because it is the coefficient of a 

divergence term which can be transformed to a surface integral by using Gauss theorem. 

This elastic constant has to be included because analysis of the Frank free energy for 

nematics confined to cylindrical regions indicates that the director pattern is dependent on 

the surface elastic constant K24 if there is weak normal anchoring and escape along the 

cylinder axis (Crawford et al., 1992) 3 1/K K  , 1 24 1/ / 1RW K K K     and Wθ 

denotes the strength of interaction between the liquid crystal and the confining surface in 

units of energy per area. Finally, 2 2
0 1/aq R E K , as seen in section 2, define the ratio 

between the optical energy and the elastic one; 2 2
1/dc

aR E K   is another important 

dimensionless parameter representing the ratio of the external electric and elastic energies; 

for 1   the influence of the applied field is weak, whereas for 1  the field essentially 

overcomes the Van der Waals forces between the molecules. To illustrate the order of 

magnitude of the electromagnetic fields involved, we shall calculate the optical power 

corresponding  to 1q  . Let us assume a fiber radius of 10R m . This assures a strong 

dependence of both texture and electromagnetic fields on the boundary conditions. This 

leads to an electric amplitude 5
0 1.3 10 /E V m   which has an irradiance equal to 

7 2
0 / 2 2.25 10 /I c E W m   . If this energy density is distributed across the transverse 

area of the cylindrical fiber 2R  we shall obtain a laser power 2 37 10P R I W    . The 
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stationary orientational configuration  x  is determined by minimizing the free energy. 

This minimization leads to the Euler-Lagrange equation in the bulk 

 

 

22 2
2 2 2 2 2

2

2 2
2 2 2

2

sin 2
0 (cos sin ) ( 1)sin 2 (cos sin )

2 2

sin 2 sin 2
    

22
z

rr

d d x d
x x

dx dxdx

x x
q p F G

          

   
 

        
 

   

 (38) 

to the condition  0 0x    in the core and to the arbitrary anchoring boundary condition 

at the surface 

 2 2
1 1

/ ( / 2)sin 2 /(cos sin )
x x

d dx     
   (39) 

where we have inserted the conditions Eqs. (33) and (34) in the Euler-Lagrange equation. 

3.3 Solutions 

We solve this boundary value problem by using the shooting method in which we employ a 

Runge Kutta algorithm to solve simultaneously Eqs. (32), (33) and (38) by using as initial 

conditions the right expression of Eq. (36) and arbitrary value for  0zG in order to search 

the value of p  and 
0

/
x

d dx    for which the conditions stated in Eqs. (36) and (39) are 

satisfied. Numerical solutions of Eq. (38) were calculated for 5CB at 10INT T C    with the 

transition temperature 35INT C  ,  22 1.33c cn   , 2.2201  , 0.636a  , 1.316  , 

4  , 11
1 1.2 10K N  , 1

1/ 40W K m    and 24 1/ 1K K  (Crawford et al., 1992). 

Previous works (Lin & Palffy-Muhoray, 1994) solved separately the electromagnetic 

boundary problem and the orientational one by following an iterative scheme. Nevertheless, 

this procedure does not allow to observe the strong correlation in the spatial distribution of 

nematic's configuration and the transverse modes and hides the dependence of both fields 

on the optical field intensity, which is related to the parameter q . In addition to this, our 

procedure permits to observe the influence of the external electric field intensity, which is 

related to  , on the optical modes.  

3.3.1 Electrical control of linear TM modes 

Notice that by setting 0q   in Eq. (38), we are considering the regime of the linear TM  

optical modes, for which, the textures of the LC are not distorted due to the propagating 

wave. Then, by varying the parameter  we have the possibility of controlling electrically 

the linear TM modes and their propagating parameters. 

As it is well known, below a certain values of frequencies c , which are called cut-off 

frequencies, the different optical modes are able to escape from the core and they cannot 

propagate through the sample. Cut-off frequencies 0k R  as function of the parameter   are 

plotted in Fig. 2.  Notice that, as   augments, the cut-off frequencies increases as well. This 

means that we can electrically control the frequencies for which the modes can be 

propagated. In fact, any particular propagating mode can be suppressed (or stimulated) by 

increasing (or decreasing) the external field.  
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Fig. 2. Cut-off frequencies 0k R  for the zeroth (solid line), first (dashed line), second (dotted 

line) and third (dot-dashed line) modes versus  .  

In Fig. 3 we plot the slope   of the angle   at the cylinder axis as function of  . From this 

graphic, we see that the values of  are degenerated, i.e., they adopt the same value of   

for each of the different modes. Additionally, the slope decreases as the external field 

increases, reaching a limit value, 0  , for values greater than 19.3  .  
 

 

Fig. 3.  0 /d dx  against   for the first fourth modes. These modes coincide for each of 

the values of  . 
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As expected, near the axis, the original escaped configuration, 0  , has a higher slope than 

in the case when the electric field is applied on the waveguide. The effect of the axial electric 

field dcE on nematic’s molecules is to align them along z  axis, in such a way, as dcE gets 

greater, the slope of  0x   becomes smaller each time. 

Fig. 4 shows the zeroth mode solutions F , rG , zG  and   as function of the variable x  at 

cut-off frequency for different values of  . Notice how in general, inside the cylinder,   

diminishes as   increases, which implies that the effect of electric field over the initial 

configuration has major effect for soft anchoring than for strong one. This effect is so 

notorious that, for sufficiently high values of  , the nematic configuration   goes to zero 

for any value of x . This fact agrees with the Fig. 2, for which, the slope   is approximately 

equal to zero, at the nematic axis, for high electric fields. It is clearly shown that as  gets 

larger, the amplitudes of F  and rG  gets larger as well: in the former case, the maximum 

amplitude of transverse magnetic field moves to the waveguide axis. This is equivalent to 

have a higher concentration of energy near the waveguide cladding by augmenting  . 

Finally, the Fig. 5 shows the dispersion relation for the first four modes parametrized by  . 

The minimum value of vertical axis takes place at the value 1.33cp n  for which the 

modes  cannot  propagate, i. e., at cp n  the  corresponding  values 0k R  are  the  cut-off  

frequencies. Particularly, for 0,2,4  , the first mode cut-off frequencies are 

0 2.7,2.75,2.84k R  , respectively. 

 

Fig. 4. Dimensionless magnetic and electric fields F , rG , zG  and director configuration  , 

at the cut-off frequencies, as function of x  for different values of  : 0  (solid line), 

4  (dashed line), 8  (dotted line), 14  (dot-dashed line) and 19  (large dashed 

line).  
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Fig. 5. Dispersion relation p  vs 0k R  for the first four modes at intensities 0  (solid line), 

2  (dashed line) and 4  (dotted line).  The minimum value of vertical axis takes places 

at  1.33cp n  .  

These results imply that the parameter   plays an important role in controlling the 

propagating modes. In fact, as  increases 0k R  does as well. Thus, for applications in 

technology, this external electrical control will permit to design waveguides whose 

propagating modes can be excited or suppressed by varying the external uniform electric field. 

3.3.2 Nonlinear TM modes 

Nonlinear propagating TM modes can be obtained by arbitrarily increasing the intensity 

value q . In effect, for values 0q  , the nematic configuration given by Eq. (38) depends on 

the electromagnetic wave amplitude. In this subsection we consider the special case 0  , 

for which, the electric field dcE  is absent. 

Fig. 6 shows the cut-off frequencies c  against q for the first four modes. As q  increases, the 

cut-off frequencies diminish; and the influence of q  on the cut-off frequencies is sharper for 

smaller q -values. Usually, for frequencies c  , the corresponding TM mode is not 

propagating. Thus, by enlarging the intensity of the TM mode q , this can be conducted by the 

guide for lower frequencies than for smaller values of q . However, its influence is reduced 

when q is larger than certain value and c tends asymptotically to the values shown in this 

plot. We also notice, by observing Fig. 8, that the influence of q  on the configuration of   is 

sharper for small values of q , and hence on the cut-off frequencies. It is worth mentioning 

that, as mentioned in previous section (see Fig. 2), cut-off frequency values gets larger as 

external electric field   increases, whereas, cut-off frequencies diminishes as q augments. 
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Fig. 6. Cut-off frequencies 0k R  for the zeroth (solid line), first (dashed line), second (dotted 
line) and third (dot-dashed line) modes versus q . As  it can be seen, the  cut-off frequencies 

0k R  gets smaller as optical intensity parameter q  gets larger. 

Fig. 7 shows the slope   of the angle   at the cylinder axis as function of q . Note that, as 

expected, when the electromagnetic field is absent, 0q  , we obtain only one value for 

 0 /d dx  , corresponding to the equilibrium configuration of nematic known as 

escaped configuration. For 0q   the mode amplitude first grows and then decreases against 

q  for different values of the field for each mode. This happens because for small q -values 

the electric field starts to distort the initial escaped configuration, mostly around 1 /2x  . 

However, once the electric force overcomes the surface elastic force at the cylinder wall 

( 1x  ), the texture is also deformed at the cylinder border and in turn   is also increased. 

This causes  0 /d dx   to diminish since   is fixed at zero due to the great amount of 

bulk elastic energy accumulated by the defect of the configuration in the origin.  

In Fig. 8 we plot zeroth mode functions . F ., rG , zG  and   as function of the variable x  at 

cut-off frequency for different values of q . As we can see, the maxima of amplitudes of 

electric field rG  and zG  moves to the cylinder axis,  whereas the maximum of amplitude of 

magnetic field F  displace to the cylinder border. However, the relative variations of both 

F , rG  and zG  versus q  is negligible in comparison with that of  . This can be understood 

on the fact that F , rG  and zG  fulfill hard boundary conditions whereas   satisfies soft 

boundary conditions. In other words, by increasing q , the stationary orientational 

configuration  x  at the cylinder border gets larger. Particularly, for 400q  , the angle 

 x  ranges from  0 0x     to  1 90x    , that is, like a homeotropic configuration; 

while, for 0.001q   the angle   is approximately 74  at the cylinder wall. In other words, 

as light power increases, the nematic molecules align perpendicular to the cylinder wall. 

This behavior means that for arbitrary anchoring conditions the field has major effect over 
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the configuration than for hard-anchoring. In addition to this, we see that away from the 

axis r zG G , and the director tends to align in the radial direction as q  grows. 

 

Fig. 7.  0 /d dx  against q  for the same modes of Fig. 6. Notice that, when the 
electromagnetic field is absent, 0q  , we obtain only one value for  0 /d dx  , in 
agreement with Fig. 3. 

 

Fig. 8. Dimensionless magnetic and electric fields F , rG , zG  and director configuration   at 

the cut-off frequencies, as function of x  for five values of q : 0q  (solid line), 50q  (dashed 

line), 100q  (dotted line), 200q  (dot-dashed line) and 400q  (large dashed line). 
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Fig. 9 depicts the dispersion relation for the first four nonlinear modes at three different 

values of q . As expected, for all modes, the minimum value of parameter p  is 1.33cn  . 

This occurs just at cut-off frequencies, for which, the ratio 0/ k  is simply equal to cn . For 

particular cases q  equal to 0, 5 and 10, the cut-off frequencies 0k R  for the zeroth mode are 

2.7, 2.67 and 2.65, respectively. For practical cases, the waveguides are designed so that they 

can support only the zeroth mode; Fig. 9 can be used for determining some of these useful 

parameters.  

Finally, we mention that, the opposite effect to what we have just said can be seen in Fig. 5, for 

which the cut-off frequency values gets larger as external electric field  increases. Therefore, 

our results show that we can control the propagating or not propagating modes  in the 

waveguide by changing two different parameters: wave amplitude and external electric field. 

 

Fig. 9. Dispersion relation p  vs 0k R  for the first four modes at intensities 0q  (solid line), 

5q  (dashed line) and 10q  (dotted line).  The minimum value of vertical axis takes places 

at  1.33cp n  .  

3.3.3 Electrical control of nonlinear TM modes 

In the most general case in which 0  and 0q   we are able to tune nonlinear TM modes 

by varying the uniform electric field represented by dcE . It is expected that, nematic 

configuration, propagating modes, dispersion relation and cut-off frequencies can be 

adjusted by modifying the applied electrical field and by modulating the amplitude 0E  of 

propagating optical field. As said above, while the cut-off frequencies depend directly on 

 , c  depend inversely on parameter q (see Fig. 2 and Fig. 6). This influence is also 

observed over the dispersion relation for two different cases: i) the curves acquire larger 
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values of frequencies 0k R  as external electric field  increases (see Fig 5), whereas ii) the 

curves adopt smaller values of frequencies as q gets higher (Fig. 9). These two controlling 

parameters have specific roles on the tuning of the different optical properties of the 

cylindrical waveguide.  

In Fig. 10, we plot the same curves of Fig. 5 but now for nonlinear TM modes for which 10q  . 

Notice how the influence of applied field over the relation dispersion is modest in comparison 

to that of Fig. 5 whose curves were clearly modified by the parameter  . In  this particular 

case, the strength of transverse modes are striving against axial uniform electric field. This 

result permit us the tuning of optical nonlinear modes in a more precise manner, since the 

tuning range of  for changing cut-off frequencies is wider than for the linear mode. 

 

Fig. 10. Dispersion relation p  vs 0k R  for the first four modes at intensities 0  (solid line), 

2  (dashed line) and 4  (dotted line). The minimum value of vertical axis takes places 

at  1.33cp n  .  
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