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1. Introduction

Supply chain is a set of activities involving a group of commercial actors to create a product
or a service to satisfy a customer demand. The actors are the ones who form the supply
chain, they are suppliers, transporters, manufacturers, distributors, retailers, customers. The
objective of every supply chain is to maximize total supply chain profitability.

The Supply Chain puts in interaction a set of entities to provide to the final client the
right product (or service) at the right time. Raw material suppliers, manufacturers of parts
and components, assemblers, original equipment manufacturers, distributors, retailers, and
customers are the main interacting entities of supply chain (SC) systems (Forrester, 1961).

In this chapter, we model Supply Chain as Complex Adaptive System (CAS) (Holland,
1996). CAS postulates that the activities of the constituting entities contribute to a specific
emergence which corresponds to a global behaviour. Thus, the system is composed by active
and adaptive intelligent agents. Their behaviours, interactions and adaptations lead to the
emergence of the system behaviour.

We propose to study activities of storages in a warehouse of chemical substances. Then,
this warehouse is subject to restriction in business processes executed every day: operators
must respect a segregation strategy which consists in avoiding any mixing of incompatible
chemicals. To reproduce the actions of forklift operators, we propose a Multi-Agent System
which is the support of CAS modelling. Then, during agent movements for handling pallets
from their reception into their storage locations, we define a dynamic graph where the vertices
represent agents in activities and edges measure the distance between agents. The study of
this dynamic graph shows that the average mean distance remains weak meaning that agent
are often close each other. From this observation, we deduce a strategy for a dynamic risk
management that gives the priority to agents whose betweenness is superior to the other
agents that handle pallets of incompatible chemicals.

This chapter is organised as follows. In section 2, we present the main features of a Complex
Adaptive Supply Chain and notably the existing support to simulate such a Supply Chain
through Multi-Agent System. In section 3, we describe the existing solutions to reproduce
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2 Will-be-set-by-IN-TECH

Fig. 1. Emergence from local interactions in Complex Adaptive Systems.

the activities of storages in a warehouse of chemical substances. In particular, we highlight
the JADE framework for Multi-Agent simulations. In section 4, dangerous goods in logistics
are studied and also the current regulation that warehouse must comply with. In section 5,
we present our solution to reproduce the activities of storages in the studied warehouse by
implementing a Multi-Agent system. In section 6, we study the dynamic graph resulting from
agents handling actions and we deduce a dynamic risk management strategy.

This work is funded by German BMBF and French ANR as part of ReSCUeIT project.

2. Complex Adaptive Supply Chain

The theory of Complex Adaptive Systems (CASs) is presented by Holland (Holland, 1996)
as a new paradigm to study the organizations and the dynamics of multi-scale systems
whose evolution and adaptability leads to a global behaviour. A CAS can be considered as a
multi-agent system with seven basic elements. According to Holland, the first four concepts
are aggregation, nonlinearity, flow and diversity. They represent the characters of agents and
influence the adaptability and the system evolution. The last three concepts, tagging, internal
models and building blocks, are specific mechanics for agents to communicate with each other
and also with the environment. The environment is itself subject to evolution notably because
of the agent interactions which compete or cooperate from a same resource or for achieving
a specific goal. As well, since the environment changes, the agents’ behaviour evolve as
consequence.

The main remarkable property which characterizes a CAS is the emergence of highly
structured collective behaviour over time from the interactions of simple entities (Holland,
1996). The emergence of a complex adaptive behaviour from the local interactions of the
agents is illustrated in Fig. 1. Then, the CAS and its environment evolve in the same time in
order to maintain themselves in a state of quasi-equilibrium.
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A Dynamic Risk Management in Chemical Substances Warehouses by an Interaction Network Approach 3

Considering a CAS consists in studying non-linear phenomena, non-exhaustive knowledge,
a large state numbers and dynamic changes in environment. The main challenges when
we reproduce a CAS are to produce a global behaviour by emergence under unpredictable
conditions.

2.1 Complex Adaptive Systems as Multi-Agent Systems

In a Complex Adaptive System, CAS, a global behaviour emerges over time into a coherent
form, adapting and organizing themselves without any singular entity controlling or
managing the global structure or node interactions (Holland, 1996).

Complex Adaptive Systems are commonly implemented and simulated by Multi-Agent
System, MAS, (Julka et al., 2002; Kwon et al., 2006; Swaminathan et al., 1997) which represents
a general and flexible framework to describe and model autonomous systems including their
interactions. An agent is basically a self-directed entity with its own goals and has a means to
interact or to communicate with other agent.

2.1.1 Multi-Agent Systems

A MAS is formed by a network of computational agents that interact and typically
communicate with each other.

The approach described by MAS consists in representing explicitly the individuals or the
entities which compose the studied population. The system can then be ecological, social
economic, etc. The goal is to produce a model for the entities, for the environment and for the
mutual interactions. When the entities and their interactions are modelled, it remains to study
the evolution of the relation through the simulation of their collective behaviour.

The understanding of the global MAS dynamic is viewed according to two levels, the
microscopic (the study of the individual dynamics) and the macroscopic (the observation of
the collective behaviour resulting of the entities interactions).

In (Conte, 1999), the authors propose two conceptual approaches deduced from the modelling
of social phenomena:

• The top-down approach, which enables to deduce the microscopic phenomena, the goals
or the individuals’ motivations starting from the macroscopic observations;

• The bottom-up approach in which the hypothesis are established on the individual
behaviours, their motivation or their way of interacting. The observation of their
collective behavior is then compared to the macroscopic phenomena observed in the
modelled system to eventually discuss the hypothesis formulated at a microscopic level
(Epstein & Axtell, 1996). The bottom-up approach is specific to the most individual
based models which propose such models to explain or characterize observed collective
behaviours.

2.1.2 The agent properties

The agents considered in MAS are used in a broad variety of applications and are defined by
the following way (Ferber, 1999):

The term ’agent’ denotes a hardware or (more usually) software-based computer system, that
has the following characteristics (Casterfranchi, 1995):

453A Dynamic Risk Management in Chemical
Substances Warehouses by an Interaction Network Approach

www.intechopen.com



4 Will-be-set-by-IN-TECH

• Autonomy: an agent acts without any intervention from its environment and possesses
rules to control its action and internal states;

• Social ability: an agent interacts and communicates with other agents using a specific
agent-communication language;

• Reactivity: an agent perceives its environment and is able to answer to any solicitations;

• Pro-activeness: an agent is not only reactive to a stimulus from its environment, it is also
able to exhibit goal-directed behaviour by taking the initiative.

2.1.3 The type of agents

Agents are defined by their capacities and according to these properties, different levels of
complexity characterize agents. Such complexity depends on the task that agents have to
carry out and on the environment surrounding them. In (Ferber, 1999), agents are classified
according to their architectures:

• Simple reflex agents: These agents are basic because their actions depend on stimulus. Their
act are then subject to specific conditions. The past is not considered and none memory
influence the present reactions.

• Model-based reflex agents: These agents cannot perceive their whole environment but
keep track of their environment they cannot currently observe. Then, they possesses an
internal representation of their environment called ’model of the world’ to evaluate the
environment evolution and the impact of the agent’s actions on this environment. These
agents select their action according to condition-action rules. The conditions only depends
on the model of the world, and not on the current perception of the environment.

• Model-based, goal-based agents: These agents have goals describing desirable situations to
choose an action because the current state of the model of the world is not always enough
to select an action efficiently. The model of the world represents a state from which the
agents evaluate how the world would be after an action. The action is chosen in order to
the agent goals are satisfied and the model of the world state is a parameter taken into
account.

2.1.4 Applications of Multi-Agent Systems

MAS are commonly exploited to model and simulate one of the three followings types of
applications:

• MAS for studying complexity. These studies regroup social models such as the segregation
model of Schelling (Schelling, 1971) artificial life simulation with the Sugarscape
(Epstein & Axtell, 1996) and Reynold’s Boids models (Reynolds, 1971) and also logistics
models (for example traffic simulations (Burmeister et al., 1997)). These models are built
with simple reactive agents and a set of rules without any need of resource planning or
coordination. The simulations are monitored relying on qualitative measures (emergent
communities, emergent flocking, emergent behaviour) and/or quantitative (average
generation, average agent movements, average awaiting time). These models are then
studied as well from a top-down approach than with a bottom-up approach.

• MAS for studying Distributed Intelligence. These studies are relative to planning
(Pollack & Ringuette, 1990) and particularly cognitive social interactions Doran (n.d.);
Gilbert (2005); Sun (2001). The main goal is to reproduce human cognition through
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A Dynamic Risk Management in Chemical Substances Warehouses by an Interaction Network Approach 5

cognitive agents (Sloman & Logan, 1999). These developed models use complex, situated
and communicating agents to study the behaviour of cognitive formalism (Taatgen et al.,
n.d.; Wray & Jones, n.d.).

• Application development with MAS. Existing toolkits provide technical tools to develop
software agents described in (Jennings et al., 1998). Software agents are then Semantic
Web agents, Beliefs-Desires-Intention (BDI) agents in expert systems, or agents for network
metamanagement. These toolkits include a development environment to implement MAS,
it can be considered equivalent to a simulation engine.

Further, in this chapter, software agents are used and the JADE platform is used as framework
for the development.

3. Multi-Agent System to study warehouse activities

The activities of modelling and simulating offer applications in scientific and industrial fields.
These works improve the understanding and the reliability of design of various systems.

In the context of supply chain, the study of warehouse activities is motivated by the following
goals:

• test by a software a virtual version of a warehouse before implementing and using the real
system;

• collect information to support discussion with the customer;

• simulate the warehouse activities to improve business or security procedures;

• generate reproducible error situations.

In this chapter, we are interested in simulating storage activities in a warehouse of
dangerous goods to evaluate the segregation policies efficiency and to propose a reliable risk
management to maintain these segregation strategies.

3.1 Existing softwares in warehouse simulations

Over the years, different tools have been developed to help designers and users to
model and simulate warehouse activities. Existing tools can be divided in three
groups: GUI-based simulation softwares, framework libraries and specialized programming
languages (Colla & Nastasi, 2010).

There is few simulation tools designed for the application of supply chain activities. Among
them, we can cite the commercial tools eM-Plant. It can be used for visualization, planning
and optimization of production and logistics. FlexSim (Flexsim Simulation Software, n.d.) is
another commercial software which enables fast and easy modeling, clear visualization as
well as reuseability of models.

The agent-based approach appears to be a powerful tool for the development of complex
systems and is exploited in industrial applications (Weiming et al., 2000). This approach is
used in many fields such as manufacturing, process control, telecommunication, air traffic
control, transportation systems, information management, electronic commerce, etc.

Among the existing agent-based applications for the simulation of supply chain activities, we
can cite Repast, SeSAm, NetLogo, SDML or AnyLogic.
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Fig. 2. Description of Agent Framework.

3.2 Existing frameworks for Multi-Agent warehouse simulations

It exists many different types of frameworks dedicated to the agent development. They are
built from different theories and principles and allows then their classification. The definition
of an agent framework is the following: an agent framework is a dedicated structure or
platform to the development of software agents and based on a specific technical architecture.

An agent framework covers a set of missions relative to agents development, platform
development, agent architecture and agent behaviour models as shown by Fig. 2. Then,
an agent development platform is a structure which encompasses and support the entire life
cycle of agents and provide in the same time a communication interface for agent interaction.
This agent development platform commonly provides an API that defines the manner an
agent communicate within the platform (Bellifemine, Caire, Trucco & Rimassa, 2007). As
well, the agent architecture constitutes itself a framework for creating behaviour models. A
behaviour model represents the architecture content and usually represents different forms
of knowledge. The behaviour can be viewed as the result of the architecture and its content
(Lehman et al., 2006).

The Java Agent Development Environment (JADE) is an agent platform used further in this
chapter to implement a Multi-Agent System. JADE is a platform for the creation of MAS
and contains a message transport system (MTS). This MTS, constitutes a network interface
for developing distributed agent networks. As well, an Agent Management System (AMS)
is available and allows the supervising of agent access control to the MTS and a directory
facilitator (DF) for creating distributed services. In JADE, an agent is an instant that runs
in the agent platform, then the agent has a determined life cycle by the AMS. Each agent
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A Dynamic Risk Management in Chemical Substances Warehouses by an Interaction Network Approach 7

is able to communicate with the other and possesses a queue for sending and receiving
messages. An agent instance represents a container for the agent internal structure. The JADE
agent platform is a middle-ware that complies with the specifications of the Foundation for
Intelligent Physical Agents (FIPA) (Bellifemine, Caire, Trucco & Rimassa, 2007).

3.3 JADE platform for warehouse activities simulations

JADE is a software development framework fully implemented in JAVA language aiming at
the development of multi-agent systems and applications that comply with FIPA standards
for intelligent agents (Bellifemine, Caire & Greenwood, 2007). JADE is an agent framework
and provides then a set of technical features to the development of MAS such as:

• A distributed agent platform. The platform can be easily shared and hosted in different
machines when each machine possesses its own Java Virtual Machine;

• FIPA-Compliant agent platform. This means that the platform provides a set of functionalities
such as Agent Management System, a Directory Facilitator and an Agent Communication
Channel;

• Communication with ACL messages. The standard ACL ensures efficiently in the message
transport between agents.

Communication of agents consists in sending and receiving messages, the FIPA ACL language
is used to represent the messages. Each agent possesses an incoming message box and
messages can be blocking or nonblocking during a determined blocking time. As well, JADE
offers the possibility of filtering messages: it is possible to utilize advanced filters relative to
different fields of the incoming message such as sender or ontology.

To build agent conversations, FIPA defines a set of standard interaction protocols such as
FIPA-request and FIPA-query that can be exploited as standard for agent communication.
When a conversation starts between two agents, JADE distinguishes two roles: the initiator
who is the agent that starts the conversation and the responder who communicates with the
previous one. This protocol architecture implies that the initiator sends a message and the
responder can potentially reply by refusing the message indicating the incapability to continue
with the conversation. The responder can also answer with a agreed message indicating that
the communication between the two agents is established and can continue. After receiving
a message, the responder performs potentially an action and must send back a message to
describe such an action. In case that the action has failed, a failure message indicates that
the action was not successful. JADE provides behaviour for initiator and responder roles
according to FIPA interaction protocols. Then, the classes AchieveREInitiator and Responder
provides homogeneous implementation of interaction protocols with methods for handling
the different communication phases.

In JADE, agents actions or missions are implemented by the implementation of behaviours.
These behaviours are defined as threads that can be composed or not, and allows agents
to achieve their intentions. Such behaviours can be initialized, suspended and spawned
at any given time. Then, the agents possess an action list that is executed through their
behaviours. The JADE platform uses one thread per agent and not one thread per behaviour
due to resource concerns (the number of running threads is limited). As well, a scheduler
(unreachable for developers) organizes via a round-robin strategy the behaviours already
created and instantiated in the queue. The coding of a behaviour offers the possibility of
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releasing the execution control when blocking mechanisms are used. The behaviours are
executed in the method action().

The behaviour of agents is defined by a Behaviour class that can be specialized to defines a
set of other behaviours. A behaviour is composed by several methods so that it is possible to
describe the different state transitions. From this root behaviour, children behaviours can be
deduced and notably the SimpleBehaviour and CompositeBehaviour. Behaviours that specialize
or descend from SimpleBehaviour represent atomic simple tasks that can be executed several
times according to the developer coding. As well, behaviours from CompositeBehaviour, are
able to use multiple behaviours according to the children behaviours. Then, the agent tasks
are executed not directly through the current behaviour but inside its children behaviours.
For that purpose, the FSMBehaviour class executes the children behaviours. The FSMBehaviour
class is able to maintain the transitions between states and to select the state coming after the
current one. It is possible to register some of the children of an FSMBehaviour as final states.
This type of behaviours terminates once one of its children has finished its execution.

4. Dangerous goods in logistics

A good is considered as dangerous when it may present a danger on the population, the
environment or on the infrastructures according to its physicochemical properties or because
of the reactions it can imply. A dangerous good can be flammable, toxic, explosive, corrosive
or radioactive. According to the new CLP regulation, dangerous goods are considered as
chemical substances in the European Union.

4.1 Dangerous goods identification

Considering the important number of substances, there is a clear need for dangerous
goods classification. Amongst the existing classification of dangerous goods, the following
distinctions exist:

• chemical family (acid, alcohol, amide, etc.);

• chemical reaction (oxidation, reduction, combustion).

We remark that the vocabulary becomes quickly specialized. To avoid this technical aspect, the
dangerous goods are described in function of their reactions. Thus, the danger that represents
the manipulation of dangerous goods depends on the properties of each product. Some goods
represent only one risk whereas others regroup several.

The CLP (Classification, Labelling, Packaging) regulation is relative to the chemical substances
imported or commercialized in the European Union. This regulation entered into force in
January 2009 and will be totally applied in 2015.

4.1.1 Obligations under CLP

CLP provides a global obligation for all suppliers in the supply chain to cooperate.
This cooperation is necessary to make the different suppliers meet the requirements for
classification, labelling and packaging.
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A Dynamic Risk Management in Chemical Substances Warehouses by an Interaction Network Approach 9

4.1.2 Terminology

A new terminology is used, terms of existing regulation are kept whereas news are adopted.
The term substance is used to designed hazardous material and the transformation of these
substances into a new one is called mixture.

As well, the properties of substances are described according to three properties:
physicocochemical, toxicological and ecotoxicological. According to these three criterion, the
definition of hazard classes helps to classify a substance. Then, a hazard class defines the
nature of a hazard, it can be physical, on health or on the environment.

4.1.3 Classification of substances

CLP possesses specific criteria of classifications that are rules that allow associating a
substance to a class of hazard or a category in this class. In particular, the classification process
is based on the substance concentrations to establish the effects of those substances on the
health and the environment.

CLP defines three hazard classes and 28 categories, such as:

• 16 categories for physical hazards;

• 10 categories for health hazards;

• 2 categories for environmental hazards.

For example, the physical hazards regroup explosives, flammable gases, solids, aerosols,
liquids. The health hazards are relative to acute toxicity, skin corrosion, irritation and
sensitization. The environmental hazards address hazardous to the aquatic environment and
hazardous to the ozone layer.

4.1.4 Labelling

A substance contained in packaging should be labelled according to the CLP rules with the
following information (called labelling elements):

• the name, address and telephone number of the supplier of the substance;

• the quantity of the substance in the packages;

• hazard pictograms;

• signal word;

• hazard statements;

• appropriate precautionary statements;

• supplemental information.

A substance contained in packaging is labelled according to the CLP rules and contains a set
of information such as name of the supplier of the substance, quantity of the substance in the
packages or hazard pictograms, see Fig. 3.

The CLP regulation helps then the identification of chemical substances through the supply
chain since it provides a standard framework for the classification, the labelling and the
packaging of substances.
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Fig. 3. Pictograms used in CLP regulation.

4.2 Dangerous goods storage

Among dangerous goods, products can react violently when they are in contact. For these
reasons, they must be stored in separate places. The strategy of storage consists in avoiding
incompatible products to be neighbours. To avoid any storage of incompatible goods and
risks of chemical reactions in case of wrong manipulation, segregation policies are established.
Fig. 4, summarizes the incompatibilities between chemical substances.

Segregation policies in dangerous good warehouses consist in storing products according to
their physicochemical properties. This strategy is static and doesn’t take into account the
possible movements of incompatible goods (by forklifts for example) that can be present in
the same place at the same time.

The segregation can be achieved by the use of an impervious barrier or by a separation
distance sufficient to prevent mixing. The segregation policies are also subject to constraint
storages. According to the nature of goods, specific storage conditions must be respected.
Among storage constraints, we can cite the most obvious such as storage conditions (humidity,
heat and light). The respect of these constraints is ensured by safety equipments: sprinkler,
smoke detector, particles detector or temperature probe.

Consequently, to make a warehouse of dangerous goods secured, different types of safety
equipments are needed and a reliable segregation is used. In this chapter, we propose
to simulate such a warehouse and to study the emergent collective behaviour of the MAS
constituted by the warehouse actors.
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A Dynamic Risk Management in Chemical Substances Warehouses by an Interaction Network Approach 11

Fig. 4. Identification of compatibilities between dangerous goods. The letter F means
inflammable, F+ means very inflammable, T means toxic, Xi means very irritant, means O
oxidizing, Xn means noxious, N means polluting and C means corrosive.

5. Simulation of warehouse activities by a Multi-Agent System implemented with

JADE

Agent considered represent forklift drivers and the warehouse structure is then the agent
environment. Fig. 5 shows the warehouse architecture which is composed of a forklift base,
corridors, docks where pallets are temporally stored and five racks.

5.1 Forklift agent

Forklift agents are simple reactive agents that are positioned in their base and wait for a
message from the central warehouse scheduler. This scheduler is actually a random generator
which creates truck arrivals and sends messages to forklift driver agents so that they go to
docks to unload the truck. Once the truck is completely unloaded, forklift driver agents
continue their actions and store pallets in their rack position.

As shown by Fig. 6, agents react and communicate through messages. Firstly, agents are in
their base and when they receive a message GoToDock they receive also the dock number and
they consecutively move according to the moveToDock(dockNum) method. The agent motion
follows warehouse corridors and this method provides to agents the set of corridors to use
in order to reach the dock number dockNum. When the agents is in position, he confirms his
position to the centralized scheduler and replies a message atDock-DockNum. This means that
he is operational and the scheduler communicates with him to ask him to begin the unloading
with an Unload message. If the scheduler has sent another message type, the agent would
move back to the base. To unload the truck, the agent executes the unloadTruck method and
confirms the end of handling operations with a message EmptyT-dockNum. Once more, the
scheduler can choose to call back the agent to the base or to send him a message Storage so
that the agent uses the method storePalletsFrom(dockNum). This last method indicates to the
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Fig. 5. Representation of the studied warehouse. Agents are located in their base and follow
corridors to go to docks or racks.

agents the corridors to follow until the storage place in rack. When, the agent finishes the
storage of pallets, he sends a message StoredP-DockNum and move back to his base.

The forklift driver agents evolve in a warehouse which represents their environment. They
interact with a set of objects enumerated in the class diagram presented in Fig. 7. As shown,
a forklift agent is a software agent defined according to an ID which is typically a number.
His position is monitored in two dimensions and the current Corridor where he is evolving is
given. As well, the status variable provides a means to know if the agent is in activity or if he
is waiting in the base. In the class Pallets, the hazardType attribute gives the type of dangerous
goods present on the pallet and it is the same for Racks that stores only restricted types of
dangerous goods.

6. An interaction network approach for a dynamic risk management

The interaction network approach proposed in this section consists in monitoring in real-time
the forklift agent movements and to detect a risk of incompatible chemicals mixing. To achieve
such a goal, the warehouse is viewed as a dynamic graph where forklift agents who are active
in the warehouse represent vertices that can be removed when they move back to their base.
Edges link the vertices which represent agents and are weighted by the euclidean distance
between agents in the warehouse. By this way, it is possible to consider a dynamic graph that
puts in interaction forklift agents whose edges represent distance between them. The goal is
then to detect the risk of incompatible chemicals mixing when the distance between agents is
insufficient.
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Fig. 6. Behaviour of forklift agents. They react after receiving messages and confirm their
action by replying.
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Fig. 7. Classes used to reproduce the activities of storage in a warehouse of chemical
substances.

6.1 Dynamic graphs

Many systems, both natural and artificial, can be represented by networks, that is by sites
or vertices bound by links. The study of these networks is interdisciplinary because they
appear in scientific fields like physics, biology, computer science or information technology.
The purpose of these studies is to explain how elements interact inside the network and what
are the general laws which govern the observed network properties.

From physics and computer science to biology and the social sciences, researchers have
found that a broad variety of systems can be represented as networks, and that there is
much to be learned by studying these networks (Broder et al., 2000). Indeed, the study of
the Web (Albert et al., 1999), of social networks (Wasserman & Faust, 1994) or of metabolic
networks (Jeong et al., 2000) are contribute to put in light common non-trivial properties to
these networks which have a priori nothing in common. The ambition is to understand how
the large networks are structured, how they evolve and what are the phenomenon acting on
their constitution and formation (Watts & Strogatz, 1998).

Nevertheless, to study the dynamic of a phenomenon through a graph, we need tools able
to describe the graph topology evolution over time. The works relative to random graphs
(Erdos & Rényi, 1959) provide a generic dynamic model which describe graphs whose edges
are added according to a specific probability.

More recently, the interest for dynamic graphs has increased notably because of their potential
application in communication, urban traffic or social sciences. The dynamic graphs allow
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A Dynamic Risk Management in Chemical Substances Warehouses by an Interaction Network Approach 15

studying the graph topology evolutions relying on dynamical metrics able to describe the
graph properties when it evolves over time.

Now, we give some graph theory definitions to propose a definition of dynamic graphs.

A graph G is formally defined by G = (V; E) where V is the finite set of vertices and E is the
finite set of edges each being an unordered pair of distinct vertices.

Let f be a function defined on the vertex set as f : V → N, then the triple G = (V; E; f ) is a
node weighted graph. As well, let g be the function defined on the edge set as f : E → N, the
triple G = (V; E; g) is an edge weighted graph.

In (Harary & Gupta, 1997), the authors classify the dynamic graphs as a function of the graph
evolution:

• Node dynamic graphs, the vertex set V changes over time

• Edge dynamic graphs, the edge set E is modified over time

• Node weighted dynamic graphs, the f function evolves over time

• Edge weighted dynamic graphs, the g function varies over time

6.2 Graph metrics

Different graph measures allow characterizing graphs. Here, the proposed metrics provide
measures for global description and also for individual vertices so that it is possible to identify
the influence of a vertex in the modelled warehouse.

6.2.1 Distance and diameter

The distance in a graph G = (V, E) between two vertices u, v ∈ V, denoted by d(u, v), is the
length of the shortest path connecting u and v.

A graph diameter, D, is the longest shortest path between any two vertices of a graph:

D = max{d(u, v) : u, v ∈ V}

The mean distance is defined as the average distance between each couple of vertices:

L =
2

n(n − 1) ∑
u,v∈V

d(u, v)

6.2.2 Mean degree

A degree of a vertex u, ku, is the number of edges incident to u. The mean degree, z, of a graph
G is defined as follows:

z =
1

n ∑
u∈V

ku =
2m

n
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6.2.3 Node betweenness

The betweenness of a node is defined as the total number of shortest paths between pairs of
nodes that pass through this node. It measures the influence of a node in a network. The
betweenness of a node t, denoted B(t) is defined as follows:

B(t) = ∑
u �=v,u �=t,v �=t

σuv(t)

σuv

where σuv is the number of shortest paths between the nodes u and v, and σuv(t) is the number
of shortest paths between u to v that pass through t.

6.3 Simulation and results

We assume that the warehouse is well dimensioned and at last one agent is available to
perform a truck unloading or a pallet storage. Once a single or several agents react, they
perform handling operations according to their behaviours. Then, agents are located in their
forklift base and wait for a truck arrival. When a truck is in position, agents react and move
into a dock. Another reaction is needed in order to agents unload the truck. The movements
of agents follow the warehouse corridors. The time spent by agents to unload a truck or to
store pallets is the average time observed in the real warehouse. The objective is to simulate a
behaviour close to the reality.

In this case study, we consider that the warehouse stores three types of chemical substances
denoted A, B and C. Each product must be stored only in its rack location and the segregation
consists in avoiding that a product is stored in another rack. We consider 6 forklift agents
and 10 trucks with a cargo of 33 pallets by truck. We launch a simulation and we study the
dynamic graph resulting for agents activities.

Fig. 8 shows the evolution of the mean distance denoted l and the diameter, D. It appears that
the means distance evolves between 30 and 150 which is the consequence of the warehouse
dimensions. As well, the diameter being an upper bound of distances in interaction networks,
we expect that the mean distance l will be lower than D. The mean degree is studied in Fig. 9
and shows that it evolves between 1 and 6. This means that at least two agents are in activities
in the warehouse and when they are all outside their base, the mean degree will be 6.
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Fig. 8. Mean distance and diameter of the resulting graph from agent activities.
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Fig. 9. Mean degree of the resulting graph from agent activities.

This first study about the dynamic graph resulting from agents handling operations put in
evidence that they are not all present in same time in the warehouse. The average distance
between agents is still weak in front of the upper bond expressed by the diameter.

Our goal is to develop a dynamic risk management strategy to maintain a segregation during
the agent movements. In front of results presented above, we deduce a strategy presented in
Algorithm 1. Then, when two agents are present in the same corridor, the type of handled
goods determines if these forklift agents can share this corridor. In case that incompatible
products are transported by agents, a topological measure is exploited, typically the node
betweenness, to determine the priority between these agents. We consider that the agent

Algorithm 1: Algorithm to maintain a dynamic segregation between agents

Input:
Fa: set of forklift agents
Data:
fa, f

′

a: forklift agent
B( fa): betweenness of the current agent
HazType( fa): hazard type of chemicals handled by the current agent
Corr( fa): corridor length of the current agent
reorienteAgent( fa): current agent is reoriented into another corridor

begin
foreach fa ∈ Fa do

foreach f
′

a ∈ Fa do

if dist( fa, f
′

a) < Corr( fa) then

if HazType( fa)andHazType( f
′

a) are incompatible then

if B( fa) > B( f
′

a) then

reorienteAgent( f
′

a)

else
reorienteAgent( fa)
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whose betweenness is superior, has the priority and the other agent is reoriented into another
corridor. If the next corridor is in the same configuration, the agent will change again until be
in presence of incompatible chemicals. Therefore, the dynamic risk management strategy is
defined as a prevention of incompatible chemicals crossing in corridors. Any risks of crossing
or mixing is mitigated by the routing of agents into another corridor when this agent possesses
a weaker betweenness that the other one.

7. Conclusion

In the global context of logistics and supply chain management, we are interested in the
manner to model the SC. A Complex Adaptive Model, CAS, approach is then well studied
for modelling supply chain systems considering the structural and behavioural dynamics. In
a CAS, the interactions of the agent population and the environment evolution contribute to
the emergence of a global behaviour.

This chapter presents an approach to study warehouse of chemical substances involving
human actors. We have modelled the activities and the actors to implement a Multi-Agent
System, MAS from which we want to reproduce segregation violation during the goods
movements. Then, the warehouse becomes a CAS where agents accomplish their goals
(typically handling operations) and whose mutual interactions are susceptible to violate
segregations.

We propose a dynamic graph to describe the agents movements in the warehouse. Then,
vertices represent agents when they are in activities and removed once they move back t
their base. Edges are defined between vertices and are weighted by the distance between
agents. The study of this graph by topological measures such as the average distance,
the diameter and the mean degree show that agents are effectively close each other during
their handling operations. We deduce a dynamic risk management to maintain segregation
even when chemical substances are handled by agents. Thus, when the distance between
incompatible goods is insufficient, a study of the two involved agents node betweenness
determine what agent is redirected into another corridor. By this way the crossing and the
mixing of incompatible goods is mitigated.
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