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Identifying and Monitoring Evolving AE Sources

Rúnar Unnþórsson
University of Iceland

Iceland

1. Introduction

Fatigue is a stochastic process influenced by several random factors such as material,
manufacturing and in-service variations. Due to the uncertainties involved, the true system
cannot be accurately represented by a mathematical fatigue model. By combining condition
monitoring techniques with fatigue modelling, critical material degradation processes can
be identified, failure predicted, and preventive actions planned. This approach is known
as condition-based maintenance. However, by using effective condition based maintenance,
instead of corrective (after failure) or preventive (calendar-based) maintenance, substantial
savings can be made. The savings will be in the form of extended part life, reduced number
of unexpected breakdowns, lower risk of secondary failure, and increased safety.

Recent years have seen an increasing interest in the use of carbon fibres for applications in
the automotive, aerospace and biomedical industries. Their popularity stems largely from
their advantageous material properties such as high strength-to-weight ratio, fatigue strength,
corrosion and heat resistance. Despite these properties, damage in Carbon Fibre-Reinforced
Polymer (CFRP) composites develops early in service (Degrieck & Paepegem, 2001; Dzenis
& Qian, 2001; Halverson et al., 1997) and continues to accumulate throughout the service life.
The fatigue tolerance can be attributed to resistance to inhomogeneous damage growth, which
is a property of highly inhomogeneous materials (Halverson et al., 1997). The high damage
tolerance of composites means that composites are able to meet their in-service requirements
for a prolonged period of time while damages accumulate and grow. Consequently, there
is a definite advantage in being able to detect, monitor and evaluate individual damage
mechanisms before the failure of a composite.

Acoustic Emission can be used to detect delamination, matrix cracking, debonding, fibre
cracking and fibre pull-out (Giordano et al., 1998; Green, 1998; Nayeb-Hashemi et al., 1999;
Tsamtsakis et al., 1998; Wevers, 1997). However, the high sensitivity of the AE technique
means that the measured AE signal may contain a high number of AE transients from sources
located both in the composite and the environment. The sources in the composite include
damage growth, rubbing of crack surfaces and friction between the fibres and the matrix
due to their different material properties. The varying material properties will result in an
anisotropic speed of propagation (Duesing, 1989). In addition, reflection and attenuation of
the AE waves add to the complexity. Attenuation can be caused by geometric spreading,
dispersion, internal friction and scattering (Prosser, 1996). Furthermore, the AE waves
from damage growth can be buried in the AE generated by the friction and rubbing of
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crack surfaces (Mouritz, 2003). As a result, multiple AE transients with varying amplitude,
duration, and frequency can be emitted simultaneously. Furthermore, the values of the AE
signal features from cumulated damage usually fall in the same range as those that result
from damage growth (Dzenis & Qian, 2001; Tsamtsakis et al., 1998).

An intuitive approach to condition monitoring using AE signals is to keep track of one or more
waveform parameters, which characterize the AE from the source of interest. Each parameter,
however, will follow a probability distribution, which changes when the source (damage)
changes. Because of the parameter fluctuations and the high rate of AE with similar parameter
values, waveform parameters alone are not sufficient for distinguishing between sources.
Additional indication is therefore needed. For an example, if an AE source always emits
an AE at the same load level, then the load level of AE occurrence is sufficient to distinguish
between the sources. However, when a source evolves, e.g. a growing delamination crack, the
load level of AE occurrence changes.

This chapter presents a methodology for processing, presenting, and quantifying AE data. It
was designed for the purpose of identifying and tracking locations of multiple evolving AE
sources in CRFP subjected to cyclic loading using a cyclic reference signal. The methodology
can also be used for normal AE health monitoring of materials/machinery and is neither
limited to AE signals nor to periodic reference signals. The chapter also presents an
AE hit pattern feature which is made by fusing and coding AE hit-based features with
timing information, i.e. the inter-spike intervals (ISI). The methodology was presented
in (Unnthorsson et al., 2007a) and the feature was studied in (Unnthorsson et al., 2007b; 2008b).

The remaining of the chapter is organized as follows. Sections 2 and 3 introduce and explain,
respectively, the methodology and the AE hit pattern feature. Then, an experimental case
study is presented in section 4 and in section 5 both the methodology and the AE hit pattern
feature are illustrated using the experimental data. Finally, section 6 concludes this chapter
and suggests future research topics.

2. Monitoring evolving AE sources

In order to identify evolving AE sources in a signal which contains high AE activity from
many different sources, e.g. evolving damages, non-evolving damages, friction, machinery
and more, a set of procedures and signal processing methods need to be combined. In this
section a methodology for this purpose is introduced. By using this methodology one can
identify and locate interesting AE signals for further study, or for tracking, which otherwise
would be difficult to accomplish due to the overwhelming number of sources with similar
characteristics. Figure 1 shows a schematic overview of the methodology. It is divided
into four steps which will be described and discussed in this section. The four steps are:
segmentation, band-pass filtering, feature extraction and visualization.

2.1 First step: segmentation

Most professional AE systems offer the possibility of acquiring external parameters such as
pressure, strain, load and displacement. If these parameters, or reference signals, are acquired
simultaneously with the AE then any of them can be used as reference signals. By segmenting
the AE signal so that all segments are exactly one cycle, of equal length and start at the same
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Fig. 1. Schematic overview of the methodology.

reference point of the reference signal then it is possible to compare segments and identify and
monitor evolving AE sources. The segmentation, illustrated on the left side of in Fig. 2, can be
applied to both periodic and aperiodic signals.

Fig. 2. Illustration of how the AE signal is segmented using a reference signal and then split
into N subands. All segments start at the same phase of the reference signal and are exactly
one cycle.

2.2 Second step: Band-pass filtering

Multi-resolution analysis of AE signals is a valuable tool for identifying band-limited AE
sources. This is because AE from different damage mechanisms resides in frequency
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bands (Bohse, 2000; De Groot et al., 1995; Iwamoto et al., 1999; Kamala et al., 2001). Hence, the
subband filtering can enable detection of sources which otherwise could be masked out and
left undetected. The decomposition of each segment, s, into N subbands is illustrated on the
right side of Fig. 2.

Several methods are available for decomposing the AE signal into subbands. The selection
of the method, the type of filters used, the number of subbands (N) and the bandwidth of
each subband, depends on the user and his preferences. Two methods are mentioned here; a
filter bank representation of the discrete wavelet transform and a method known as phaseless
filtering (Mercer, 2001).

The filter bank representation of the discrete wavelet transform (DWT) offers a convenient
method for decomposing the AE signal into subbands. In the filter bank, the conventional
discrete wavelet decomposition, at each level, is computed by filtering the input signal with
low and high pass filters, producing two sequences, and keeping only their even numbered
coefficieFnts. All subsequences of the original signal are called wavelet packets, and together
they form a wavelet packet tree. Each packet retains the necessary information in order to
reconstruct the signal in the corresponding subband. This means that packets from different
levels can be used to fully reconstruct the original signal if, together, they span the full
bandwidth.

Phaseless filtering can also be used to split the signal into subbands. The filtering is made
phaseless by filtering twice. After the first filtering, the signal is reversed, filtered and reversed
once again. The type of filter used depends on the preferences of the user. The use of phaseless
filtering is important for identifying and monitoring evolution of AE sources. The fixed
reference point enables the detection of trends in the signal. If phaseless filtering is not used
then the identification and monitoring of evolving AE sources will be more difficult. This
is because a phase lag will be caused by the filters and the lag will be different for different
frequencies. For an evolving AE source which emits AE earlier and changes the frequency the
phase lag could possibly delay the signal so that the change will not be detected.

2.3 Third step: Feature extraction

Over the years many research projects have been conducted with the aim of extracting
useful information from AE signals. The extracted information is stored in n-dimensional
data structures, known as features. Commonly used features for monitoring AE activity
are number of AE hits and the signal’s energy (Carlos & Vallen, 2005; Hellier, 2001).
Conventional features extracted from AE hits include amplitude, duration, energy, number
of peaks above certain threshold (ring-down count) and rise time (Carlos & Vallen, 2005).
One of the advantages of extracting and using features is that they provide a huge
data reduction compared with a full waveform acquisition, but there are several practical
disadvantages. First, the fact that the same type of damage can emit AE signals with different
amplitudes (Prosser et al., 1997) makes it difficult to set the threshold for hit detection and
to interpret. Second, AE signals in composites suffer from high attenuation, which means
that emissions close to the transducer are stronger and more likely to be detected than those
generated further away. Third, the rugged frequency response of resonance AE transducers
means that frequencies which are spaced only a few tens of kilohertz apart, will be magnified
differently. The magnification can differ by several decibels. Finally, if only the AE features
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are stored then the analysis is limited to these features, e.g. it is impossible to study different
results using other threshold settings.

The procedure for extracting features from each subband segment, ssb, is a two step procedure.
In the first step the AE feature of interest is extracted from the segment and both the feature
values and their locations within the segment are logged. In the second step, the segment is
partitioned into K intervals and the features extracted within each interval are processed, e.g.
occurrences counted or the maximum value picked. The user selects the number of intervals,
K. The results from the processing are output in a feature vector (K × 1), i.e. one vector for
each feature. Depending on the processing in the second step, the first step can in some cases
be omitted, e.g. when the energy in each interval or the maximum amplitude is computed.
Figure 3 illustrates this procedure by showing how a a feature vector is generated when the
maximum amplitude in each interval is used. Each subband segment is first rectified and
partitioned into K intervals and then the maximum amplitude within the interval is found, i.e.
a piecewise constant envelope is generated. The envelope is then down-sampled by a factor
L/K, where L is the length of the subband segment. The resulting feature vector contains
one sample from each interval of the envelope. The amplitude-filtering and down-sampling
process extracts the amplitude of the strongest transient in each interval. Hence, the tracking
capability is limited by this filtering. However, the filtering is performed in all the subbands,
which consequently improves the tracking ability because the AE energy from different
sources often resides in different subbands.

Fig. 3. For each subband segment, the new feature vector is computed by first rectifying the
signal, then computing a piecewise constant envelope, and finally down-sampling the
envelope.

2.4 Fourth step: Visualization

Visualization of measurement data is a powerful tool for detecting trends in complex data.
In fact most AE analysis is done graphically using histograms or by plotting the feature of
choice either as a function of time or as a function of another feature. The methodology
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presented here is designed for detecting temporal trends in feature values and in the positions
of emissions relative to a reference point in the reference signal. If one feature value is studied
at a time, then the data becomes 3-dimensional. A convenient way for studying 3D data is
by using a 3D surface. A 3D surface representation of the data is generated for each subband
by appending each new feature vector to previous vectors from the same subband. The first
step in Fig. 4 illustrates this procedure where the duration of one cycle (other parameters can
be used) is on the x-axis, the segment number is on the y-axis and the feature value is on the
z-axis.

Fig. 4. For each subband, new feature vectors are appended to previous vectors and a 3D
surface generated. The 3D surfaces can be converted into 2D intensity images for
visualization and further processing.

Trends can be detected by visually inspecting the 3D surfaces, e.g. few trends can be detected
from the 3D surface in Fig. 4. Any change in either the feature value or the relative position
indicates an evolving AE source. AE from growing cracks will be emitted at different
load/time and the corresponding feature value will shift on the x-axis. This type of a change
will be seen as a curved ridge on the surface. Stationary AE sources will be represented by
straight vertical ridges. Ascending and descending ridges need a special attention because the
energy of the corresponding AE source may be shifting to another subband.

Another useful way to visualize the AE data is to use intensity images. Intensity images
can be generated from 3D surfaces by transforming and colour coding the z-axis, i.e. the
feature values. Logarithmic transformation, e.g. base-10, can be a good choice as it changes
the dynamic range of the signal by enhancing low values, while compressing high values.
Monochrome colour coding is often used for intensity images. By using monochrome coding
the transformed feature values are represented in shades of one colour and the higher the
value, the brighter the image pixel. A bright pixel shows the location of an AE source
with a high feature value. The horizontal axis is the same as the x-axis in the 3D surfaces
representation and shows the location of an source relatively to the phase of the reference
signal. The segments are arranged on the vertical axis with numbers increasing from top to
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bottom, i.e. the first segment is at the top of the image. The illustration in Fig. 4 shows the
results of transforming a 3D surface into a 2D intensity image. The ridges on the surface
appear as paths in the image and random AE sources appear as random points. Ascending
and descending ridges can be identified by the changing pixel intensity in a path. The paths
can be used to identify and monitor evolving AE sources and also to isolate the signal for
further analysis. Advanced image processing can be applied to the images in order to enhance
the images and to make the paths more prominent.

2.5 Summary

The methodology presented in this section was designed to facilitate trend detection and
monitoring of evolving AE sources when the AE activity is high. Identification of evolving
AE sources is performed by visual inspection of 3D surfaces or intensity images. These
two visual representations are valuable for interpreting the AE behaviour and for gaining
a deeper understanding of the active damage mechanisms. Trends can be relatively easy
to identify from the intensity images but, the resolution and quality depend on the colour
coding quantization and the coding range (the max/min values). Due to the limited number
of quantized values a decreasing feature value may be detected later than when performing
visual inspection of 3D surfaces. For a thorough inspection of a 3D surface, the user needs to
have several tools at his disposal, such as rotate, zoom and section.

3. AE hit pattern feature

One of the fundamental elements of music is rhythm. Rhythm can be determined by the
relation between note accents (attack) and the rests between notes (Olson, 1967). The term can
be used to refer to either a repetitive pulse, or a beat, which is repeated throughout the music
or a temporal pattern of pulses. The modelling and the interpretation of temporal patterns
are of interest to people working in different disciplines. In the field of music information
retrieval rhythm-based features have been extracted from audio and used to classify music
styles (Dixon et al., 2003), e.g. blues, disco, polka, etc. In the field of computational
neuroscience, patterns in spike trains are studied in order to understand the "language of
the brain" (Rieke et al., 1997). For this reason, the author has formulated an AE feature to
investigate whether patterns exist in AE signals and if they can be used to extract valuable
information from the AE signal. This AE feature will now be introduced.

The first step in working with temporal patterns is to determine the pulses. The detection
of pulses usually begins with the processing of the signal in order to make the detection
more accurate. The resulting signal is called a detection function. An example of a detection
function is one made using a model called a rhythm track (Sethares et al., 2005). The
rhythm-track model is based on the assumption that the audio can be considered to be a
random signal and the signal’s energy increases significantly when a pulse occurs. The
resulting rhythm track contains the locations of all the pulses. These pulses are known as
AE hits when working with AE signals. An intuitive rhythm track is a vector, of the same
length as the signal, containing ones where the AE hits start and zeros elsewhere.

Interpreting patterns in the rhythm-track is a challenging task because similar patterns can
be generated differently. For example, closely spaced transients can be attributed to factors
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such as rapid AE release, reflections, and simultaneous emissions from multiple sources. The
results from an investigation into fusing AE features (Unnthorsson et al., 2005) provided an
impetus to investigate the fusion of AE features with the rhythm track information. As a
result, a methodology for fusing AE features, and for finding and locating patterns within the
fused data representation, has been elaborated. The additional information provided by the
waveform-based features comes at higher computational cost, but may help to distinguish
and interpret rhythm track patterns which are generated differently, or at different locations.

The fused and coded AE features are collected in a vector, called a coding vector, where each
hit is represented by a subvector. The length of the subvector, is the same for all hits but,
depends on both the number and type of features used. In order to limit the number of
patterns found in the coding vector the features are first processed and then their values are
quantized to a relatively small set of integers. The quantization suggested here is to transform
the processed features logarithmically (log10), then shift, scale, and round the results so that
they are represented by integers ranging from 1 to NFEATURE, where NFEATURE is an integer
number chosen by the user.

The scaling operation requires the user to know the extreme values of the features. If the
extreme values can only be approximated then the coded elements will be occasionally out of
range. In order to solve this, hard limits can be used, i.e. if the values go out of range then
they will be set to the allowable maximum. However, the limits do not have to be critical; if
the coded elements are allowed to exceed the limit then relatively few new patterns will be
added. Henceforth, the processing and quantization will be referred to as coding. The coding
of each element depends on the corresponding feature.

Figure 5 illustrates how the coding vector is generated when two element subvectors are used.
The elements of the subvectors, shown in the figure, are the coded maximum amplitude
of the hit and the coded inter-spike interval (ISI) between the peaks of the current hit and
the previous hit. The coding of the ISI is made by first logarithmically transforming (log10)
the time between the peak amplitudes of successive hits, measured in milliseconds. The
results are then quantized so that each ISI is represented by integer values ranging from 1
to NISI . The coding of the peak amplitudes is performed in a similar way. The amplitudes are
logarithmically transformed (log10) and quantized to integer values between 1 and NAMP.

The procedure for searching for hit patterns in the coding vector is illustrated in Fig. 6. The
locations where a pattern, HP, is observed are stored in an observations vector, OP, where
P = 1, . . . , NP and NP is the number of hit patterns. Each observation vector is of same length
as the original AE signal and initially contains only zeros. The locations where a pattern,
HP, is observed within the AE signal are indicated by ones in the corresponding observation
vector. The ones are placed where the patterns start.

3.1 Summary

This section introduced and formulated an AE feature which contains information about the
timing between hits and a methodology for fusing it and coding with other AE features.
The section also developed a procedure for searching for AE-hit patterns in the coded
representation and formulating the search results. The experimental results from using this
feature will be demonstrated in section 5.
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Fig. 5. The generation of the coding vector illustrated using two element subvectors for each
hit. The two elements are coded maximum amplitude and coded ISI respectively.

Fig. 6. The procedure for finding hit patterns in the coded representation.

4. Experimental setup

Experimental data is used for demonstrating both the methodology and the AE Hit
pattern feature. An overview of the experimental setup is provided in this section. The
section describes test specimen, the experimental procedure, and the equipment used. For
detailed information about the experimental setup the reader is referred to author’s PhD
thesis (Unnthorsson, 2008).

4.1 The test specimen

The test specimen used in this study is an assembled prosthetic foot of the type Vari-Flex,
made by Össur hf. The Vari-Flex consists of three CFRP composite components: a dual part
heel and split-toe foot. In addition, a shock-absorbing crepe is glued under the forefoot. The
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foot assembly is illustrated in Fig. 7. All components are curved with both varying thickness
and width. Figure 7a depicts the varying thickness and Fig. 7b shows the split toe. A male
pyramid, for fastening the foot to endoskeletal pylon components and the test machine, is
bolted to the top of the foot component.

(a) A side view of the Vari-Flex. The diagram shows
the varying thicknesses of the components.

(b) An isometric view of the Vari-Flex.

Fig. 7. The assembled Vari-Flex. The Vari-Flex is made up of two heel parts and one toe part.

The layer orientation and sequence are similar for all the components. The four outermost
layers, on each side, are woven carbon/epoxy prepregs, laid at 45◦. Between the outer layers
unidirectional carbon/epoxy prepreg tapes are laid at 0◦. The number of the unidirectional
tapes differs between components and their lengths are varied in order to obtain varying
stiffness, resulting in a tapered thickness. Around the holes, at the top of the foot, extra
unidirectional carbon/epoxy prepreg tapes are laid at 90◦ for added strength.

4.2 Test setup & procedure

The fatigue tests were performed in an ISO 10328 Foot/Limb test machine run under PID
closed loop control. In each test, a foot was placed in the test machine where two actuators
were used to flex the foot using 90◦ phased sinusoidal loading. Figure 8 shows a schematic
representation of the experimental setup. One actuator loaded the forefoot and the other
loaded the heel. The actuator that flexed the forefoot was rotated 20◦ from the vertical and the
one that flexed the heel was rotated −15◦ from the vertical. Furthermore, the foot was rotated
7◦ out of the vertical plane defined by the movement of the actuators.

The maximum loading used was based on the stiffness category of the toe unit and the
minimum loading was set to 50 N. In order to accelerate the tests the maximum loading was
set 50% higher than is used for testing at Össur. In addition a 2◦ plastic wedge was placed
between the heel and the toe components. The wedge is used by amputees in order to stiffen
the foot. The increased load and the use of the wedge result in considerably shorter fatigue
tests.

During one test, both the minimum and maximum loads were held constant, with allowable
variation of ±2%. The operating frequency was 1.0 Hz. It took the test machine approximately
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Fig. 8. Schematic representation of the experimental setup for both the AE and the position
measurements.

1000–2000 cycles to reach the specified maximum and minimum load values. After this run-in
period, the limits of the failure criterion were defined. The failure criterion is a heuristic
criterion used in-house at Össur. It defines a failure when a 10% change in the displacement
of either actuator, with respect to initial value, is observed. All fatigue tests were run until the
failure criterion was met.

4.3 Data acquisition and processing

The additional parameter acquired simultaneously with the AE was the displacement of the
forefoot actuator. Due to the geometry and structure of the Vari-Flex, the forefoot’s actuator
always meets the 10% displacement criterion before the heel’s actuator. For this reason, only
the position of the forefoot’s actuator was measured. A L-Gage Q50A infra-red displacement
sensor from Banner Engineering Corporation was used for measuring the position of the
actuator. The sensor’s location is illustrated in the lower left corner of Fig. 8. The analogue
signal from the displacement sensor was digitally converted by a PCI-6024E 12 bit A/D
converter (manufactured by National Instruments Corp.).

For acquiring the AE, the VS375-M AE transducer and the AEP3 preamplifier from Vallen
Systeme GmbH were used. The transducer was located between the two bolts used to fasten
the foot to the pyramid. This was the only part of the foot for where a full face contact with
the transducer could be ensured. The transducer was held by a plastic c-clamp and a heavy
duty high vacuum silicon grease from Wacker Chemie GmbH was used as coupling medium.

The gain of the preamplifier was set to 49 dB. The gain settings of the preamplifier are
based on 28 VDC supply. The actual amplification, however, depends on the input voltage
to the AEP3 preamplifier. With less than 28 V the saturation point is earlier and the gain
goes down slightly. After consultation and discussion with the manufacturer 29.9 VDC was
used. and powered using Velleman PS3003 – a linearly regulated laboratory power supply.
A linear regulated power supply was recommended because switching power supplies may
add unwanted noise. Table 1 lists the equipment along with the settings used.
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AE acquisition

VS375-M An AE transducer with resonance at 375 kHz
AEP3 Preamplifier,

49 dB gain
110 kHz high pass filter (54 dB/octave)
630 kHz low pass filter (30 dB/octave)

DCPL1 Decoupling box
PS3003 Linearly regulated laboratory power supply

29.9 VDC
PCI-6250 16 bit A/D converter

1250 kHz sampling rate on one channel
Position measurements

L-Gage Q50A Infrared displacement sensor
Fast response mode used

PCI-6024E 12 bit A/D converter
500 kHz sampling rate on one channel

Table 1. The measurement equipment used for acquiring AE and the position of the
forefoot’s actuator during fatigue testing.

The position of the forefoot’s actuator and the AE signal were measured simultaneously
at 500 Hz and 1.25 MHz sampling rates respectively. In order synchronize the two A/D
converters their Real-Time System Integration (RTSI) buses were connected. The data was
acquired automatically, for 2.2 seconds every 5 minutes. After the data acquisition, the data
was trimmed so that it represented exactly one fatigue cycle, starting at the lowest position
of the forefoot’s actuator. The data was also high-pass filtered in order to remove DC and
other low frequency disturbances. A fifth-order elliptic filter with 1 dB passband ripple and
corner frequency of 80 kHz was used. The stopband attenuation was set to 30 dB at 50 kHz.
No attempts were made in order to correct the acquired signal, i.e. remove the amplification
made by the preamplifier and the transducer.

4.4 Summary

This section presented the test specimen and the test equipment used. An accelerated fatigue
testing procedure was also presented. Frequently the damage mechanics change when the
stress level changes, however, preparatory tests showed that the damage mechanisms leading
to final failure were the same as observed under normal fatigue testing conditions.

5. Experimental results

Experimental data was acquired from fatigue testing of 75 nominally identical samples of
the prosthetic foot. This section presents a case study of one foot and is split into three
subsections. In the first subsection the evolution of few AE features throughout the fatigue
life of the foot are studied and compared against their average evolution. The second and the
third subsections present an in-depth analysis of the experimental data using conventional AE
features and AE Hit patterns respectively. Both subsections show how the results provided by
methodology can be used to facilitate early damage diagnosis and failure.
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5.1 Evolution of AE features

The evolution of few AE features throughout the fatigue life of one prosthetic foot will now
be studied. Each feature is overlaid onto its corresponding mean and standard deviation.
Both are computed by from the evolution curves of all the other feet. The gray area in Fig. 9
and Fig. 11 represents all values which lie within one standard deviation from the mean. The
position measurements of the forefoot’s actuator are converted to cycle time and used as a
reference signal for segmenting. The segments start at the lowest position of the actuator,
or at 0◦ phase angle, and end when the actuator returns back to this position. Because the
actuator moves at a constant angular velocity the segments are all of equal length. The features
are extracted from the whole segment and without subband filtering or, in the terms of the
methodology presented in 2, the features are extracted by using one interval (K = 1) and the
signal’s full bandwidth (N = 1).

Based on the results of visual and acoustic inspection performed by the author, i.e. watching
and listening, during the cyclic testing of the foot, the temporal behaviour of the AE features
are interpreted. Detection and determination of AE hits is made using the methodology
presented in (Unnthorsson et al., 2008a) and (Unnthorsson, 2008). The STFT detection function
is used, with segment size of k = 128 samples and d = 120 sample overlapping. The hits are
located by setting the trough-to-peak threshold (Ttp) at 304 dB V-s and determined by setting
the determination threshold (TAE) at 3 mV.

Shortly after the cyclic test was initiated, or after 6k cycles, small splinters started to form
on both sides of the split-toe foot. During the next 4.2k cycles the splinters grew larger and
rubbed against the sides. As can be observed in Fig. 9, this resulted in a very steep increase in
the AE energy, but only a slight increase in the number of AE hits. Two spikes can be observed
in the AE energy when 12.3k and 13.2k cycles have elapsed. At this time a medium-sized
splinter formed on the right side of the split-toe foot. The two measurements corresponding
to the spikes in AE energy were taken at points when the splinters were growing. This means
that the readings are composed of AE from both rubbing and damage growth. Thus, spikes
are observed rather than a permanent increase. The reader is reminded that measurements
are made at 5-minute intervals, or every 300 cycles; hence, the probability of recording AE
from damage growth is low.

In the interval between cycles 15k to 18.6k cycles, a large splinter on the right side of the
split-toe foot had formed. The splinter, depicted in Fig. 10a, caused both the upward and
downward bending stiffnesses to drop. As a consequence, the displacement of the forefoot’s
actuator increased abruptly. The abrupt displacement increase will be referred to as step (or
event) A. The formation of the splinter was accompanied by an increase in the AE energy and
an abrupt jump in the AE hit count.

Within a few cycles after the formation of the splinter, or when 21.6k fatigue cycles had been
applied, the outer woven layers on the left side delaminated from the unidirectional layers.
The delamination crack initiated from the splinter crack and grew for undetermined number
of cycles. The number of cycles is undetermined because it was not possible to establish if
and when the crack growth stopped using visual inspection. In each cycle, when the crack
opened an audible AE was produced. Due to this and also because the crack grew over time,
the AE energy increases. From 21.6k to 28.5k cycles the AE energy increased at a relatively
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(a) The evolution of the AE hit count. (b) The evolution of the cumulative AE hit
count.

(c) The evolution of the energy (d) The evolution of the average amplitude

Fig. 9. The evolution of selected AE features throughout one fatigue test. The grey area for
each feature represents all values which lie within one standard deviation from the mean
(black curve). The mean is computed by averaging the evolution curves from all other feet.

(a) Right side of the split-toe foot under static
loading.

(b) Left side of the split-toe foot under static
loading.

Fig. 10. The left and right sides of the split-toe foot after cyclic testing.

steady high rate, but then it became constant. At 28.5k cycles a medium-sized splinter formed
on the left side. The splinter, shown in Fig. 10b, did not affect the bending stiffnesses and was
not detectable in the evolution of any of the AE features. At 33.9k cycles there was an abrupt
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jump in the AE energy and over the next 4.1k cycles the energy fell back by 50% of the jump.
Shortly after that, or at 40.2k cycles, another abrupt jump in the AE energy occured. From this
point the energy started to decline, initially at a high rate, but the rate decreased temporarily
at 41.7k cycles, and then resumed at 55.2k cycles for 900 cycles. After this, the energy reduced
at a low rate until the reduction ceased, at 64.8k cycles The two abrupt jumps in the energy,
at 33.9k and 40.2k cycles, were not accompanied by any changes in the bending stiffnesses.
Subtle changes, however, could be detected in the slope of the AE hit count, and duration at
40.2k cycles.

At 72k cycles, the left half of the split-toe foot delaminated. This resulted in a drop in the
bending stiffnesses. The corresponding abrupt displacement increase will be referred to as
event B. Both events are shown in Fig. 9 and Fig. 11. Abrupt jumps in the AE energy and AE
hit count were also observed.

The cumulative AE hit count, presented in Fig. 9b, is a commonly used parameter for the study
of acoustic emission. Although the cumulative sum contains the same information as the AE
hit counts, the information provided by subtle slope changes, small jumps, and fluctuations
is harder to detect. One can observe from the figure that the curve can be divided into three
segments, each with a different slope. The slope changes occur at events A and B. However,
the AE hit count, shown in Fig. 9a, is the slope of the curve in Fig. 9b at every measurement.
The AE hit count is absolute in that it does not depend on prior values, but each value of the
cumulative curve depends on all prior values. This means that missing or late measurements
do not affect the results when monitoring the AE hit count, but the slope of the cumulative
curve is a function of the frequency of the measurements, i.e. different curves are obtained by
summing up the AE hit counts from measurements made at different or irregular intervals.
Hence, the cumulative AE hit count works best when the interval between the measurements
can be fixed.

The evolution of the average amplitude, depicted in Fig. 9d, is strongly correlated with the AE
energy on a decibel scale, shown in Fig. 9d. The Pearson and Spearman correlation coefficients
for the two curves are 0.88 and 0.92 respectively.

The AE hit pattern feature used is computed by first determining the time from a trough to
a peak (and also from a peak to a trough) for each AE hit, then coding the results and then
counting the occurrences of all patterns found in the coded representation. A trough-to-peak
interval is a variant of the Inter-spike Interval (ISI). It can also be recognized to include variants
of two commonly used AE hit-based features, namely the rise time and the fall time.

The methodology described in Sect. 2 is used to count the pattern occurrences. The AE hits
are located using the procedure described above, but no determination is performed, i.e. the
determination threshold (TAE) is set to 0 mV. The trough-to-peak intervals, in microsecond,
are quantized by using a natural logarithm and rounding the result to the nearest integer.

Figure 11 shows the evolution of the total number of observations for four selected
trough-to-peak patterns of length 2. These patterns contain the coded values of the fall time of
one hit and the rise time of the next adjacent hit. The evolution curves of the trough-to-peak
patterns have a slope change at around 60% of the lifetime. The slope then remains constant
until failure. This slope change is not present in the evolution curves for the other AE features.
This suggests that these trough-to-peak pattern features are capturing important information
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from the AE signal, e.g. the slope change may be caused by the formation of a damage
which grows until failure. Intuitively, the salient slope change can be used to provide an
early warning about the health of the composite.

In (Unnthorsson et al., 2008b) the trough-to-peak patterns were the only features studied
which probability distributions at 50% and 95% of the lifetime could be reasonably well
separated using a Bayes optimal decision boundary. The Bayes optimal decision thresholds
are shown in Fig. 11. Patterns made using different coding, length, features, or a combination
of features, can possibly be used to obtain more information. The additional information can
be combined into a feature vector which can be used as an input into classifier system for more
accurate warnings.

(a) The evolution of the number of occurrences
of trough-to-peak pattern no. 87.

(b) The evolution of the number of occurrences
of trough-to-peak pattern no. 94.

(c) The evolution of the number of occurrences
of trough-to-peak pattern no. 95.

(d) The evolution of the number of
occurrences of trough-to-peak pattern no.
102.

Fig. 11. The evolution of the number of occurrences for four trough-to-peak (ISI) patterns
computed from the AE segments. The grey area for each pattern represents all values which
lie within one standard deviation from the mean (black curve). The mean is computed by
averaging the evolution curves from all other feet.

5.2 AE feature tracking

The results presented above were obtained by using one interval (K = 1) and full bandwidth
(N = 1). In this subsection each subband segment is divided into K = 200 equally-sized
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intervals and phaseless filtering is used to bandpass filter the AE signal into N = 19 subbands,
each with 33 kHz bandwidth. By dividing the segments into shorter intervals, the dimension
of time within a segment is added to the analysis. Furthermore, by bandpass filtering
the signal and studying each subband separately the results are divided into N different
subresults, one for each subband. For visualizing the results 2D intensity images will be used.

Figure 12 shows the resulting intensity image for the 133–166 kHz subband using the
maximum amplitude of the rectified signal in each interval to generate the feature vector.
The procedure is explained in Fig. 3. Also depicted in the figure is the evolution of the AE
energy and the AE hit count. The AE energy and the hit count are computed the same way as
was done in last subsection, i.e. by setting K = 1 (one interval) and N = 1 (full bandwidth).

Figure 13 shows four more intensity images corresponding to the 266–300 kHz, 366–400 kHz,
466–500 kHz and 566–600 kHz subbands. By comparing the evolution of the AE energy and
the AE hit count in Fig. 12 against the intensity images depicted in Fig. 12 and Fig. 13, one can
see that the intensity images facilitate a better understanding of the changes which occur in
the material than the evolution of the AE features in last subsection.

Fig. 12. On the left is the resulting intensity image for the 133–166 kHz subband. Each value
in the image is the maximum amplitude in the corresponding interval. On the right is the
evolution of the total AE energy and AE hit count from each segment (computed using the
signal’s full bandwidth).

The steep increase in the AE energy early in the fatigue test is attributed to formation of small
splinters on the side of the split-toe foot. In each fatigue cycle these splinters rub against
the toe-foot component and occasionally grow. The AE from these splinters is presented as a
growing cluster in the upper left corner of the intensity image in Fig. 12. The cluster is circled
and labelled a. At 12.3k and 13.2k cycles two spikes are observed in the evolution of the AE
energy. These spikes are due to the formation of a medium-sized splinter on the right side
of the split-toe foot. Although the AE energy only shows two spikes, one can see, from the
intensity images, two new paths initiate at this time from within the cluster labelled a (Fig. 12).
The paths are circled and labelled b (Fig. 13d).
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A large splinter on the left side of the split-toe foot forms during the period from 15k to 18.6k
cycles. The splinter causes a drop in both bending stiffnesses and can be detected as a subtle
change in the evolution of the AE energy, but as an abrupt jump in the AE hit count (labelled
A in Fig. 12. In the intensity images, this event can be detected by the formation of new paths
and a sudden change in the left path of the two circled and labelled b (Fig. 13d). The left path
changes its course, shifts to the left and disappears.

(a) Intensity image for the 266–300 kHz subband. (b) Intensity image for the 366–400 kHz subband.

(c) Intensity image for the 466–500 kHz subband. (d) Intensity image for the 566–600 kHz subband.

Fig. 13. The resulting intensity images for four selected subbands. The brightness of each
pixel is based on the amplitude in the corresponding interval.

Within a few hundred cycles after the formation of the splinter, the woven layers at the left
bottom of the split-toe foot delaminate from the unidirectional layers. The delamination
crack opens every time that the heel’s actuator is nearly fully loaded and an audible AE is
generated. The crack grows and the AE energy increases at a steady high rate. The AE from
the delamination crack resides in the lower frequency bands and can be observed in the boxed
area labelled c (Fig. 12). In the 133–166 kHz subband, the AE from the delamination crack
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masks out other AE. However, the AE is bandlimited; hence, different frequency bands can
be used to monitor some of the masked-out damages, e.g. the circled paths labelled b and
d (Fig. 13d).

At 28.5k cycles a medium-sized splinter forms on the left side of the split-toe foot. The
formation cannot be detected from the the evolution of the AE energy, AE hit count nor the
bending stiffnesses. The AE emitted from the splinter is masked out in the 133–166 kHz
subband, but can be detected and monitored in intensity images for the higher frequency
bands. The corresponding evolution path is circled and labelled d in Fig. 13d.

By studying different subbands, one can in some cases detect and distinguish between
damages that emit bandlimited AE signals at the same time, but are evolving in different
directions, as can be seen by comparing the circled paths labelled e in Fig. 13b and Fig. 13c.
Most of the energy from the frictional AE caused by the rubbing of the splinters is located
in the lower frequencies. The boxed region labelled f (Fig. 13a) shows where the frictional
AE is located within the fatigue cycles. In addition to the frictional AE, the splinters also, for
a limited time, produce strong AE at the end of their push-out movement (the circled paths
labelled b and d in Fig. 13d) and also when they snap back in (the boxed area labelled g in
Fig. 13d).

The two abrupt jumps in the AE energy and amplitude at 33.9k and 40.2k cycles are
accompanied only by subtle changes in the slope of the other AE features, but no changes
in the bending stiffnesses. The intensity images, however, show the initiation of two paths
originating from within the area where the frictional AE from the splinters is located. The
area of initiations are circled and labelled h and i in Fig. 13b.

In the first half of the segment in which the first path starts (labelled h in Fig. 13b), a high
amplitude AE can be observed in the intensity image for the 133–166 kHz subband (Fig. 12).
This portion is circled and labelled j. Furthermore, two evolving high amplitude paths end
in this portion. Simultaneously with the initiation of the second path, labelled i (Fig. 13b),
another high amplitude AE path initiates in the first half of the loading cycle. The path can be
seen in all subbands. The beginning of the path is circled and labelled k in Fig. 12. The two
paths, labelled h and i (Fig. 13b), evolve asymptotically towards a line close to and parallel
to the 750 ms line, labelled n in Fig. 12. Initially the paths evolve at a high rate but as they
approach the line the rate decreases. The vertical asymptote line is located where the tensional,
compressional and shear stresses change their signs. This location in the fatigue cycle acts as
an attractor for most evolving AE sources in the left half of the intensity images, i.e. during the
downward movement of the forefoot’s actuator. Conversely, during the upward movement
of the actuator, the so-called attractor is around 250 ms, shown by a line labelled m in Fig. 12.
As can be observed in the figure, the attractor is offset to the right. This is because the the
loading is not symmetrical around the 500 ms.

The left half of the split-toe foot delaminates at 72k cycles. This event (labelled B in Fig. 12) can
be observed in the evolution of all AE features and also in the downward bending stiffness.
After the delamination, a high amplitude AE is generated in a large portion of each cycle
and in all subbands. During the 12k cycles leading up to the delamination the AE activity,
as indicated by the evolution of the AE features in Fig. 9, remains at a relatively steady
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level. However, the intensity images show few changes which can be interpreted as warnings.
First, several new high-amplitude paths start during this period. These paths are circled and
labelled l, o and p in Figs. 12, 13c and 13d. Second, during this period one can observe that
the path which began in the circled area labelled h moves one step closer to the 750 ms line.

(a) Intensity image computed using the
ring-down counts of the hit with the
maximum amplitude in each interval.

(b) Intensity image computed using the duration
of the hit with the maximum amplitude in
each interval.

Fig. 14. Two intensity images, for the 133–166 kHz subband, made using threshold-based AE
features. The brightness of each pixel is based on the value of the AE feature in the
corresponding interval.

The AE energy feature produces nearly identical results to those presented here. Figure 14a
and Fig.14b show results computed using the ring-down counts and the duration of the
hit with the maximum amplitude in each interval respectively. In order to compute the
features, the determination threshold, TAE, is set to 3 mV. These images do not have as well
defined paths as the images presented above, but different features can reveal new patterns
(e.g. the circled path labelled q in Fig. 14a). The main challenge in using this approach
for threshold-based features is the task of adjusting for each subband the trough-to-peak
threshold, Ttp, used for locating hits from the detection function, and the determination
threshold, TAE, used both for determining hits and for extracting the threshold-based features.

5.3 AE pattern tracking

The results presented above were obtained using the maximum amplitude in an interval. Also
demonstrated were results from using both the ring down count and the duration of the hit
with the largest amplitude in an interval. Here the results of using AE-hit patterns will be
presented. The segmentation and subband filtering as before, i.e. K = 200 and N = 19.

The algorithm for detecting hits is adjusted for each subband so that the average number of
detected hits in the first 5 measurements is around 10.000. In other words, the average pulse
duration in each subband is 0.1 ms. By using these settings small pulsations in the AE signal’s
amplitude are detected as hits but, the hit determination is the same as before, i.e. TAE = 3 mV.
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Two different coding representations are studied: one using only ISI information, and another
using both ISI and the peak amplitude of the hits. The values of NISI and NAMP are both set to
10 when computing the feature vectors. The resulting feature vector for each pattern contains
the total number of observations in each interval. In order to fight the curse of dimensionality
only two pattern lengths are used for both coding representations: L = 2 and L = 4.

5.3.1 ISI coding

Approximately 60 patterns are found in each subband when using ISI coding. However, only a
handful of them produce intensity images with detectable paths. Figure 15 shows an example
of two intensity images which have no detectable paths.

(a) An intensity image for an ISI pattern which
does not show any paths.

(b) An intensity image for an ISI pattern which
does not show any paths.

Fig. 15. Two intensity images which have no detectable paths. The brightness of each pixel is
based on how often a pattern is observed in the corresponding interval.

Figure 16 shows intensity images for four handpicked patterns. As one can observe, the circled
paths labelled 1, 2, 3 and 6 in the figure are the same paths as those depicted in Fig. 12 and
Fig. 13. However, further comparison of the images, in these three figures, shows that only
small portions of the circled paths labelled 4 and 5 in Fig. 16 can be detected in the other two
figures. Consequently, by using AE patterns based on the ISI, more defined and more visually
detectable paths can be detected. These paths can be used to locate AE sources for tracking
and for detailed analysis of their AE signals.

Figures 16b and 16c show that different patterns may be used to monitor the same AE source.
This is because the ISI, as used here, is the based on the time between the small pulsations in
the AE amplitude and the AE emitted from a source may contain several patterns.

The intensity images for some patterns do not have any prominent paths, but instead clusters.
An example of such an image is shown in Fig. 16d. The high values in this image are clustered
where the frictional AE is emitted, indicating that some patterns may be used to monitor
frictional AE.
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(a) Intensity image for a pattern in the
333–366 kHz subband.

(b) Intensity image for a pattern in the
133–166 kHz subband.

(c) Intensity image for a pattern in the
366–400 kHz subband.

(d) Intensity image for a pattern in the
366–400 kHz subband.

Fig. 16. Intensity images corresponding to four selected ISI patterns. The brightness of each
pixel is based on how often a pattern is observed in the corresponding interval.

5.3.2 ISI/peak amplitude coding

By combining the ISI coding with the peak amplitude, the total number of patterns increases
up to approximately 600 patterns for each subband. The increase is a function of the number
of quantization levels used for the amplitude,NAMP.

Figure 17 shows intensity images corresponding to four handpicked patterns. The circled
paths labelled I, III and IV can also be detected in the images obtained using only ISI coding
(see Fig. 16b). However, these paths are more prominent in Fig. 17. This is because the
addition of the peak amplitude works like a filter. The observations of patterns with certain
ISI coding are divided between patterns with the same ISI coding, but different amplitude
coding. As a result, the number of AE patterns is higher. This filtering helps with detecting
patterns which would otherwise pass undetected, e.g. the circled paths labelled II in Fig. 17b.
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By visually inspecting the intensity images for different patterns and extracting prominent
paths, e.g. those circled in Fig. 17, a composite image can be made by piecing together the
individual paths. Figure 18 shows a composite image, made by picking out, overlaying and
enhancing paths extracted from 32 handpicked intensity images. The images are from all
subbands. On the right side the composite image is the evolution of the AE energy in each
segment.

A comparison of the intensity images in Fig. 16 with the intensity image in Fig. 18 reveals
that the addition of the peak amplitude makes it possible to track the evolution of several
AE sources after the left half of the split-toe foot delaminates at 72k cycles. The tracking
improvement can also be observed by comparing the 750-1000 ms region of the images (where
the frictional AE due to the rubbing of the splinters is located). In this region of the fatigue
cycle, the initiation of 3 paths can be observed (indicated by arrows). Furthermore, the first
path, which starts at event A, can now be tracked until shortly before the delamination of the
left half. Based on these results, it can be deduced that the splinters initiate damages which
grow until delamination occurs.

5.4 Discussion and summary

In this section the methodology was demonstrated and used for two different purposes.
One is for general health monitoring where the evolution of a feature, extracted from each
segment, is monitored in order to detect changes and issuing timely warning signs. The other
is for detailed health monitoring where individual AE sources are identified, their evolution
monitored and their nature determined.

The results show that none of the AE features studied here is suitable for general health
monitoring. None of the features could be used to give timely warnings about the
delamination which occurs at step B when the method of extracting one AE feature from
each segment and studying its evolution is used. The abrupt jumps in the AE energy (and
the average amplitude) at 33.9k and 40.2k cycles may perhaps be considered as early warning
signs. However, because the AE energy decreases rapidly after the jumps and no significant
changes are observed in the evolution of the other AE features, nor in the bending stiffness, nor
from the visual tests, the potential warning signs cannot be interpreted or verified. Although
these results are discouraging, there are also positive results. The average evolution curve
of the four selected hit patterns has a slope change at around 70% of the lifetime. This is
different from the other features studied and indicates that pattern features are able to capture
important information from the AE signal.

The results show that the methodology is a valuable tool for detailed health monitoring. By
using a conventional AE feature such as the maximum amplitude in an interval, valuable
information about the location and the evolution of multiple AE sources was obtained. The
results obtained using other hit-based features indicate that they are not good for this task.
The sources are identified and monitored using the paths in the resulting intensity images. The
nature of sources can also be determined by studying the paths (evolving or stationary source)
or clusters (rubbing) in the images. Furthermore, by bandpass filtering the AE signal and
studying each subband separately, band-limited AE sources can be identified and monitored.
These sources may otherwise pass unnoticed.
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(a) Intensity image for a pattern in the
100–133 kHz subband.

(b) Intensity image for a pattern in the
100–133 kHz subband.

(c) Intensity image for a pattern in the
133–166 kHz subband.

(d) Intensity image for a pattern in the
133–166 kHz subband.

Fig. 17. Intensity images corresponding to four handpicked patterns. The brightness of each
pixel is based on how often a pattern is observed in the corresponding interval.

From the resulting intensity images, the initiation of two AE sources was identified and
tracked until delamination of the foot. Visual inspection of the intensity images revealed that
the corresponding paths initiated where the AE from the splinters was located. This suggested
that the corresponding damages were caused by the splinters. Hence, the paths can be used
to significantly improve our understanding of the changes occurring in the material, and lead
to more focused analysis of the AE signal. The analysis becomes more focused and detailed
because it is possible to locate the AE from one particular AE source in the subband of interest.
This means that the detection of paths is important for all further analysis and interpretation
of the AE signal. The important task is therefore to find all existing patterns.

The results show that the AE patterns made from inter-spike intervals (ISI) can be used to
track the locations of AE sources. The paths obtained using the patterns are nearly the same
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Fig. 18. On the left is a composite image made by overlaying and enhancing the results from
32 patterns. On the right is the evolution of the AE energy.

as the those obtained using the AE energy. A significant improvement was accomplished
by combining the ISI information with the peak amplitude of each hit. This is because the
addition of the amplitude acts like a filter on the results obtained using ISI patterns. Hence,
by adding the peak amplitude it is possible to track evolving sources when they are buried
in AE from delamination or rubbing. It can also be used to do the opposite: to filter out and
monitor the evolution of a rubbing AE.

6. Conclusion and future research

This chapter presented a methodology for identifying and monitoring evolving AE sources
and demonstrated it using experimental data acquired during fatigue testing of assembled
CFRP prosthetic feet. By using this methodology, both frictional AE and AE from evolving
damage growth could be identified, located and tracked. Furthermore, because AE from
specific AE sources can be identified and isolated, further analysis of the AE can be made
more effective. The methodology can be used to study changes, or artifacts, in AE or other
signals using either periodic or aperiodic reference signals. Examples of signals which can be
studied include AE from relays and valves (aperiodic), vibrational data, charging/discharging
of batteries, etc.

The chapter also presented a procedure for extracting/generating an AE hit pattern feature.
The AE hit pattern feature is a technique for: a) fusing the features extracted from AE hits, b)
combining the fused data, and c) finding and locating patterns which appear within the fused
data representation. The favourable results show that the AE hit pattern features can be used
to extract valuable information from the acquired AE signal.

Despite the promising results, there is a lot of room for improvement. All analysis of the AE
signal strongly depends on the detection of clusters or evolving paths in the intensity images.
For this reason, different signal and image processing techniques need to be investigated at
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each step, from subband filtering to feature extraction, and from feature extraction to the
generation of the 3D surfaces and/or intensity images. The investigation should also include
a further in-depth study of AE features, e.g. the effect of using different coding for the hit
pattern feature or different pattern lengths.

Furthermore, automation is needed. The identification and selection of hit patterns for AE
tracking was done manually through visual inspection of intensity images. It is unlikely
that the same patterns will be useful for other test specimens. Furthermore, evolving paths
only appear in certain intensity images, depending both on the type of feature and on the
subband. Hence, in order to make both the method and the AE hit pattern feature attractable
an automatic detection of paths and patterns in the intensity images is needed.

Finally, if one wishes to use a reference signal other than relative time, e.g. load or
displacement, then the methodology must be augmented to handle reference signals with
both a variable rate and changing dynamic range.
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