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1. Introduction 

A debilitating consequence of diabetes mellitus (DM) is neuropathy which globally affects 

between 20 -30% of diabetic patients and up to 50% [1, 2]. The lifetime incidence of diabetic 

neuropathy (DN) is estimated to be up to 45% for type 2 diabetic patients and 59% for type 1 

diabetic patients in USA. The risk of DN rises with age, duration of DM, and vascular 

disease. Characterized by damages in the arms and legs, peripheral neuropathy is the most 

common complication of DM.  

The pathophysiology of DN is promoted by several risk factors: microvascular disease, 

neural hypoxia, and hyperglycemia-induced effects. At the molecular level, the primary 

cause of diabetic complications is known to be hyperglycemia, which disrupts cellular 

metabolism by the formation of reactive oxygen species (ROS). In the aspect of nerve 

functions, ROS formation increases neuron’s susceptibility to damage. In addition, 

hyperglycemia impedes production of angiogenic and neurotrophic growth factors, which 

are necessary for normal function of neurons and glial cells and maintenance of vascular 

structure. 

The most common presentation of nerve damage due to the effects of hyperglycemia is 

neuropathic pain. Peripheral neuropathy may cause foot deformities such as hammertoes 

and unnoticed sores and infections in the numb areas of the foot. Improperly treated 

infection frequently extends to the bone and requires an amputation of the foot. 

There have not been any definitive disease-modifying treatments to reverse DN. The current 

treatment focuses on tight glycemic control which can reduce potential risk factors for 

further nerve damage and DN-associated pain management. In many studies, deficiency of 

neurotrophic factors and lack of vascular support have been regarded as key factors in the 

development DN. Therefore, cell therapy has recently emerged as an attractive therapeutic 

strategy to meet the needs of both neurotrophic and vascular deficiencies of DN.  

2. Symptoms, signs and diagnostic tests  

DN most often starts with hypesthesia (diminished sensation) of the lower extremities, 

which extends to a stocking-glove distribution. The most feared complications are foot pain, 

ulcerations and amputation, which increase morbidity and mortality thereby reduce the 

patient's quality of life [3]. Proper diagnosis of the etiology of DN depends on the pattern of 

sensory loss, reflex test, electrodiagnostic studies, and imaging. In electrodiagnostic studies, 

nerve conduction velocity and magnitude are measured by electrically stimulating nerves. 

www.intechopen.com



 
Peripheral Neuropathy – Advances in Diagnostic and Therapeutic Approaches 

 

164 

Peripheral nerve imaging such as ultrasound and magnetic resonance imaging (MRI) are 

used for evaluating the extent of peripheral nerve pathology. They give insight to which 

type of nerve fiber is affected.  

3. Pathophysiology 

DN, nerve damage caused mainly by glycemic dysregulation, is the most common 
complication of DM. Prolonged hyperglycemic episodes result in a complex series of 
metabolic and vascular damages which contribute to the multi-factorial etiology of DN [4, 
5]. The major pathogenetic factors are hyperglycemia-induced metabolic derangements 
which cause excess oxidative stress and loss of neurovascular support.  
In general, immediate pathologic effects of hyperglycemic episodes are metabolic in nature. 
However, electrophysiologic and morphologic alterations seem to be late occurrences. There 
are various pathologic changes that occur in DN. Pathologic changes in peripheral nerve are 
endoneurial microangiopathy, nerve demyelination, loss of nerve fibers, axonal 
degeneration, axonal dystrophy and Schwann cell abnormalities[6, 7-9].  

3.1 Oxidative stress to cellular damage 

Hyperglycemia-induced oxidative stress has been proposed as a single unifying mechanism 

of neurodegeration in DM by Brownlee et al. [10]. Hyperglycemia cause metabolic 

abnormalities which result in mitochondrial superoxide overproduction in peripheral 

nerves [11] and supporting vasculatures [10, 12].  

Hyperglycemic environment induces activation of 5 pathways involved in the pathogenesis 

of diabetic microvascular complications [13]. These include: the polyol pathway[14]; 

nonenzymatic glycation of proteins which increases advanced glycation end-products 

(AGEs) [15, 16]; hexosamine pathway flux [17]; protein kinase C (PKC) pathway [18] which 

triggers stress responses; and the poly ADP-ribose polymerase (PARP) pathway [19, 20]. 

Increased activity of the 5 pathways deplete antioxidants which are necessary for 

antioxidant defense system against free radicals. The hyperglycemia-mediated superoxide 

overproduction perturbs the five pathways, and thereby causes metabolic and vascular 

imbalance and initiates the progression of neurovascular dysfunction [21-23].  

In polyol pathway of glucose metabolism, aldose reductase catalyzes the NADPH-

dependent conversion of glucose to sorbitol [14]. Aldose reductase also competes with 

glutathione reductase in NADPH-dependent production of Glutathione (GSH), a major 

antioxidant in cells. A high level of glucose overactivates the polyol pathway thereby 

depleting NADPH necessary for GSH antioxidant production. Consequently, insufficient 

GSH level contributes to accumulation of ROS.  

In hexosamine pathway of glucose metabolism, its overactivation diminishes antioxidant 

production. This also increases posttranslational modification of specific amino acid 

residues on cytoplasmic and nuclear proteins, and thereby changes their functions [17].  

In DM, high levels of AGEs is found in extracellular matrix. Thus, plasma proteins enhanced 

with advanced glycation bind to Receptor for AGEs (RAGE) on cells such as macrophages 

and vascular endothelial cells. This activates pleiotropic transcription factors such as nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-kB) which results in multiple 

pathological changes in gene expression. The interaction between RAGE and AGEs is shown 

to cause pro-inflammatory gene activation [24]. Myelin is considered a major target for such 
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non-enzymatic modification by glucose. Reactive and degenerative Schwann cell changes 

lead to demyelination which is the dominant lesion of peripheral neuropathy. The decrease 

in the density of myelins affects both large and small nerve fibers. Hyperglycemic condition 

causes consistent demyelination and axonal degeneration and presents aberrations in nerve 

regeneration.  

Activation of PKC pathway leads to inhibition of Na+/K+ ATPase which in turn leads to 
decreased endothelial nitric oxide synthase (eNOS). Consequently, eNOS reduction results 
in blood-flow abnormalities and vascular occlusion caused by increased transforming 
growth factor beta (TGF-B) and plasminogen activator inhibitor-1 (PAI-1). PKC pathway 
activation also increase NF-kB expression which results in proinflammatory response and 
dysfunction in sending electrical signals in neurons. As a result, the nerve conduction level 
diminishes, and thereby obstructs nerve regeneration.  
In healthy cells, ROS production is tightly controlled. The antioxidant defense system of a 
cell responds to the environmental changes [25]. However, in diabetic environment, cells 
end up with accumulated ROS which alter proteins and their functions. Superoxide 
accumulation can have direct, toxic damages to Schwann cells. This leads to decreased 
neuron insulation causing ineffective signaling, weakened immunologic perineurial 
blood-nerve-barrier, and reduced nerve regeneration. Studies showed that oxidative 
stress impairs vasodilation of epineural blood vessels, resulting in ischemia to the neural 
tissue [26-28].  

3.2 Loss of neurotrophic and vascular support 

Oxidative stress majorly contributes to the development of DM complications, both 
microvascular and macrovascular [13]. The confluence of metabolic and vascular 
disturbances in nerve causes impairment of neural function. There are clear evidences that 
insufficient vascular support and neurotrophic factors play a major pathophysiologic role in 
DN. Studies show decreases in nerve and angiogenic growth factors in nerves from animals 
with experimental DN [29, 30]. The emphasis placed on the fact that animals with DN show 
a deficiency in growth factors with both angiogenic and neurotrophic function. This seems 
to play significant role in pathogenesis of DN.  

3.2.1 Growth factor deficiency  

There are specific growth factors that guide blood vessels and nerves to their tissue targets, 

and their deficiency plays a significant role in the pathogenesis of DN. Many representative 

growth factors display pleiotropic effects which are both neurotrophic and angiogenic [31]. 

To underline their duality, the growth factors that have both angiogenic and neurotrophic 

effects are referred to as, “angioneurin” [32]. For example, vascular endothelial growth 

factor (VEGF) was originally discovered as growth factors specific for endothelial cells [33]. 

While VEGF was originally known to play a key role in promoting angiogenesis, studies 

showed that it directly affects the neural growth, neural survival and protection 

(neurotrophic), and axonal outgrowth (neurotropic) [31]. Thus, VEGF which was once 

regarded as a specific angiogenic factor is now implicated in neuroprotection.  

Similarly, nerve growth factor (NGF), known to promote neurotrophic and neurotropic 

effects in neuronal cells [34-36], also have angiogenic effect on endothelial cells. Since 

nerve growth factors (NGF) promote maintenance, survival and regeneration of nerves, a 

decrease in NGF synthesis causes functional deficit of nerve fibers [37].  
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VEGF and NGF are not the only examples of angioneurin. Another representative 
angioneurin involved in pathogensis of DN is insulin-like growth factor (IGF) [38-40]. IGFs 
are know to promote growth and differentiation of neurons. In addition, IGFs is also found 
to exert favorable effects on angiogenesis [41]. Insulin deficiency in diabetic state causes 
reduction in IGFs level in circulation. This abnormal metabolism of angioneurins adds to 
pathogenesis of DN. Several studies have shown that diabetic animals showing decreased 
level of angioneurins highly correlates with reduced neural and vascular function [42, 43].  

3.2.2 Vascular deficiency  

Initially, the focus has been on the hyperglycemia-induced metabolic changes and their 
direct neuronal effects. However, studies in animal models showed that they also have 
vascular targets linked to neuropathy [44].  
The vascular alterations observed in human and animal models of DN include: thickening 
of basement membrane of vasa nervorsa[6, 36, 45-48] strongly related to severity of DN [45, 
49, 50], decrease in nerve conduction velocity (NCV) in rats with impaired vasodilation in 
epineurial arterioles [26-28]., changes in luminal areas of endoneurial capillaries, and 
changes in endoneurial capillary density. Studies on measures of luminal areas of 
endoneurial capillaries showed different findings. Rodent and feline models of DN showed 
increase in luminal areas of endoneurial capillaries[51-54].  
Conversely, studies on human showed various results. They showed that luminal areas 
increased [45, 46, 55], unaltered [36, 48, 56], or decreased [6, 47, 49, 57, 58]. Similar to 
measures of luminal areas, the measured density of endoneurial capillaries also showed 
mixed results. Studies on animal models showed that the density was increased [53, 59], 
unaltered [60], or decreased [42, 43, 61]. As well as in human, the results were mixed. A 
study showed that the density of endoneurial capillaries was increased in patients of early 
stage DM than healthy subjects [56], while the density of those with established neuropathy 
and late stage DM was similar to that of normal people [36, 45, 49]. 
The complex series of oxidative stress-related metabolic changes result in reduced nerve 
perfusion and ischemia [23, 62]. Impaired blood supply to nerve and ganglion and 
endoneurial hypoxia play a significant role in causing DN. Specifically, impairment of blood 
supply to neural tissues through vasa nervorum, blood vessels of peripheral nerves prompt 
pathogenic mechanisms of DN [62]. 
Thrainsdottir et al. [56] reported vascular structural alterations caused by early diabetic 
condition. Blood vessel number in diabetic nerves increased in response to ischemia in early 
DM. However, the blood vessel number decreased due to impaired neovascularization 
under prolonged diabetic condition [6]. 
One of the major pathogenic factors in the development of DN is reduced nerve blood flow 
(NBF). Various clinical and experimental studies give evidence that amelioration of NBF 
improved nerve functions. Studies on diabetic patients reported decrease in endoneurial 
blood flow and presence of hypoxia compared to healthy subjects. Direct measures of nerve 
perfusion revealed that DN strongly correlated with decreased sural nerve blood flow [63, 
64]. A study by Tesfaye et al. [63] also showed that patients suffering from DN had 
impoverished endoneurial microenvironment.  
Overall, the results of various studies indicate that vascular deficiency is highly represented 
in established DN. As observed, there was an increased number of capillaries in response to 
ischemia in early stage DM. Eventually, the number of capillaries decreased. It is plausible 
that chronic diabetic condition disturbed neovascularization and regeneration [51, 65, 66].  
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Therefore, debilitating microvascular dysfunction and pathogenic mechanisms altering the 

the surrounding vascularity damage the peripheral nerve. 

3.3 Multifactorial etiology of DN 

DN is caused by damages in vessels, neurons, and Schwann cells. Hyperglycemia induces 

metabolic abnormalities cause overproduction of reactive oxygen species (ROS), activation 

of inappropriate inflammation pathways, and decreased level of antioxidants such as 

glutathione. These abnormalities render endothelial and neural cells more susceptible to 

angioneurin deficiency which finally causes deterioration of neurovascular support in 

nerves. Ischemia (a restriction in blood supply) and damaged perfusion further stimulates 

hyperactivity of pathogenic cycles in endothelial cells, neurons, and Schwann cells – 

resulting in nerve degeneration.  

 

 

Fig. 1. The proposed pathways that lead to the pathogenesis of DN and interactions at the 

level of each proposed mechanism. Polyol = Polyol pathway; ECs = endothelial cells.  

4. Treatment options and cell therapy 

Current treatment strategies focus on preventing neuropathy, slowing its progression, and 

reducing symptoms and pain. Symptomatic treatment options which are only partially 

effective include lifestyle interventions, physical therapies, drug-therapies and 

complementary therapies. Several potential therapies exist for the treatment of DN based on 

neurovascular pathogenesis. They include: gene, protein, and cell therapies.  

Emerging evidence is that angiogenic factors such as VEGF-A, VEGF-C, SHh, and statin can 

restore microcirculation of the affected nerves and induced functional improvement in DN 

[61, 62, 67]. On the other hand, lack of neurotrophic factors has emerged as an important 

pathogenic mechanism of DN [29, 30]. Administration of neurotrophic factors such as NGF 
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[68], IGF1 and IGF2 [38, 39], ciliary neurotrophic factor (CNTF) [69], or glial cell line-derived 

neurotrophic factor (GDNF) [70] was shown to ameliorate DN in animal models.  

These findings suggest that a therapy targeting both angiogenic and neurotrophic processes 
may be more advantageous for the treatment of DN. As stem or progenitor cells have such 
pleiotrophic effects, cell therapy can be more effective than single gene or protein therapy. 
Cell therapy can provide multiple angiogenic and neurotrophic factors as well as specific 
type of cells required for vascular or neuronal regeneration (Fig 1). Currently, various bone 
marrow (BM) cells were shown to have favorable effects for treating DN.  

4.1 Therapeutic potential of bone marrow mononuclear cells 

Bone marrow (BM) is a source mononuclear cells (MNCs). Bone marrow-derived mononuclear 
cells (BM-MNCs) are heterogeneous group of cells which include at least: endothelial 
progenitor cells (EPCs) and the mesenchymal stem cells (MSCs). MSCs are speculated to 
differentiate into the cellular components of vascular structures [71]. An advantage of using 
circulating or BM-derived cells is that they can be harvested from a patient’s own peripheral 
blood or bone marrow, and re-introduced back to the patient [72, 73].  
Studies have shown the beneficial effects of using BM-MNCs. They improved 
neovascularisation by increasing levels of angiogenic factors such as VEGF, FGF-2, and 
angiopoietin-1 [102, 103]. In patients with ischemia, BM-MNCs transplantation has also been 
reported to be beneficial [104]. Because bone marrow derived MSC transplantation has been 
shown to be an option in treating ischemic diseases [74], there was an in interest of using 
similar strategy in treating DN.  
 

 

Fig. 2. BM-MNCs induce paracrine effects by releasing angiogenic and neurotrophic growth 
factors (GFs) thereby increasing neurovascular support in the nerves. 

An advantage of using BM-MNCs as source of cell therapy is that they are rather easy to 
acquire. They can be isolated from bone marrow by centrifugation and do not require ex 
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vivo culture system. Other advantages of using the BM-derived cells that MSCs and EPCs 
have proved their therapeutic effects in various clinical and experimental studies of DN.  
For example, a study by Hasegawa showed that peripheral blood mononuclear cells (PB-
MNCs) or BM-MNCs implantation in rats with DN partially recovered blood flow and 
improved the NCV of the sciatic nerve [60].  
A study by Kim et al. [43] reported that intramuscular transplantation of BM-MNCs 

preferentially homed in vasa nervorum and increased expression of various angiogenic and 

neurotrophic factors in the nerves [43]. The study also showed improvement of nerve 

vascularity and normalization of NCV suggesting that BM-MNC-induced neovascularization 

is a consequence of angiogenesis (Fig 2). Overall, the emphasis must be placed on the idea 

that BM-MNCs induce neovascularization and improve manifestations of DN by their 

ability to promote angiogenesis. Also the safety of autologous BM-derived cells was 

reported by clinical trials [75]. 

4.2 Endothelial progenitor cells and vasculogenesis 

There are two processes involved in blood vessel formation: vasculogenesis and 

angiogenesis. Vasculogenesis is the process of formation of blood vessels from de novo 

productions of endothelial cells which may have differentiated from angioblasts or 

endothelial progenitor cells [76]. Conversely, angiogenesis is the pre-existing vessel growth 

by vessel formation blood vessels through proliferation and migration of endothelial cells 

[77]. Thus, endothelial cells are of great interest because of their ability to form blood vessels 

thereby potential to regenerate vascular dysfunction in DN.  

Endothelial progenitor cells (EPCs) are a heterogeneous subset of BM-MNCs. EPCs are 

capable for differentiation within endothelial cell lineage and are identified according to 

expression of hematopoietic stem cell and endothelial cell surface markers. EPCs were 

initially identified by their expression of surface markers VEGF receptor-2 and CD34 [78-80] 

However, later studies also used CD133 expression to identify EPCs [4, 81] . The precise 

defintion and characterization of EPCs are still controversial due to the fact that they don‘t 

have a unique marker that solely identifies the EPCs. Various types of EPCs have been 

known as different culture methods give rise to EPCs with distinct characteristics [82]. 

Derived from mononuclear cells or monocytes, “Early EPCs”, have a short proliferation 

period which is up to a few weeks [83-85]. Conversely, “Late EPCs” have rapid and longer 

proliferation period and shaped like cobblestones [83, 86]. The early and late EPCs also 

express different set of cell surface markers. In addition, therapeutic potential of early EPCs 

has been reported but that of late EPCs is still questioned [83, 86].  

The question of whether the differentiation of EPCs plays a vital role in the recovery of 

damaged tissue function is still controversial.. Some studies showed that differentiation of 

EPCs into endothelial lineage cells and they were incorporated into blood vessel formation 

[87, 88]. However, more recent studies have argued against the fact that EPCs did not 

differentiate into ECs [89, 90]. Although the major therapeutic effects are not through 

endothelial differentiation but angiogenesis, overall evidence clearly suggests that BM-

derived EPCs partake blood vessel formation through vasculogenesis. 

Despite such discrepancies, studies on EPC transplantation in DN animal models appear to 
reach the consensus that EPCs‘ therapeutic effects and promotion of neovascularization are 
primarily caused by paracrine or humoral action, not endothelial differentiation [84, 91]. 
One study showed that cord-blood derived EPCs was effective for treating DN [92]. This 
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study claimed that mechanistically, the therapeutic effects are due to the increased 
differentiation of EPCs into endothelial cells in hind limb muscles, which then led to an 
increase in sciatic nerve blood flow. However, this study did not demonstrate the fate of the 
EPCs in tissues, nor did it address the mechanisms by which transplanted EPCs increase 
neovascularization in muscles or nerve. Given that most recent studies have argued against 
the endothelial differentiation of EPCs as a major mechanism for neovascularization, 
endothelial differentiation does not appear to underlie such magnitude of therapeutic effects 
toward DN [84, 91].  
A study by Jeong et al. [42] reported direct augmentation of neural neovascularization in 

sciatic nerves of mice with DN after local intramuscular injection of BM-derived EPCs. The 

injected EPCs preferentially homed to peripheral nerves but much less to the muscles. This 

showed that muscular neovascularization is not the mechanism at work. Also, the study 

showed EPCs have durable engraftment into diabetic nerve. The engraftment lasted up to 12 

weeks, which is a unique behavior of EPCs in peripheral nerves because EPCs normally 

disappear within a couple of weeks in other tissue types. Another novel finding was that 

engrafted EPCs were localized close to the vasa nervorum which is the blood supply to the 

peripheral nerves. These findings clearly indicated that BM-derived EPCs exerted 

therapeutic effects by directly tartgeting the nerves. At the molecular level, the study 

showed significantly increased levels of angiogenic and neurotrophic factors in the EPC-

injected nerves. They include: VEGF-A[62, 93], FGF-2[94], BDNF[95], SHh[61, 96], and 

stromal cell derived factor (SDF)-1 [97, 98]. These factors are known to have effects on both 

angiogenesis and neuro-protection [62, 99, 100], suggesting dual angioneurotrophic effects 

of EPCs. More direct evidence of such dual effects of EPCs were demonstrated by 

proliferation of endothelial cells and schwann cells and decreased apoptosis of Schwann 

cells at the histology level. This study showed previously unexpected and distinct properties 

of BM-derived EPCs such as peripheral neurotropism, sustained engraftment, vascular 

localization of EPCs, dual angioneurotrophic effects and reversal of various functional and 

pathologic features of DN [42, 43, 60, 92].  

4.3 Mesenchymal stem cells 

Mesenchymal stem cells (MSCs) are multipotent cells which are found in nearly all postnatal 
organs and tissues [101]. The adherent nature of MSCs makes them easy to expand in 
culture and an attractive candidate to use in cell therapy. Also, MSCs are particularly 
attractive therapeutic agents because of their ability to self-renew, differentiate into 
multilineage cell types [102, 103], and locally secrete angiogenic cytokines, including basic 
fibroblast growth factor (bFGF) and VEGF [74, 104-106]. These factors were reported to 
prompt neovascularization [107] and have support for neural regeneration [99, 108] 
MSC transplantation was reported to be a therapeutic agent in the treatment of 
cardiovascular disease. Similarly, it was plausible that MSCs may also be an effective 
therapeutic agent for the DN treatment [74, 109] through the paracrine effects of bFGF and 
VEGF [110] and their potential to differentiate into neural cells such as astrocytes [111], 
oligodendrocytes [112], and Schwann cells [113, 114]. 
A study by Shibata et al. [109] suggested that the MSC transplantation on thigh muscles of 

STZ-induced rats with DN achieved therapeutic effects. Diabetic rats showed hypoalgesia, 

decreased nerve conduction velocity (NCV), decreased sciatic nerve blood flow (SNBF), 

decreased capillary number–to–muscle fiber ratio in muscles. These variables were 
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improved by intramuscular MSC injection. MSC injection in diabetic rats seems to produce 

bFGF and VEGF which eventually showed increased muscular and neural blood flow 

leading to functional improvement [109]. Although MSCs seem to have some ameliorating , 

paracrinal effects on diabetic nerve fibers [109] they did not seem to differentiate into neural 

cells. 

Despite the beneficial effects of MSC transplant in experimental DN shown previously, there 
appears to be major limitation in using MSCs for DN therapy. Study by Jeong et al. [115] 
showed that BM-derived MSCs may undergo chromosomal abnormalities and formed 
malignant tumors after injection into mice with DN. This study alerts careful monitoring of 
chromosomal status for transplantation of MSCs from in vitro expansion.  

5. Conclusion 

Intensive symptomatic treatment and tight glycemic control benefits and amerliorates nerve 
dysfunction and pain in some patients with DN. However, favorable outcomes of cell 
therapy using BM-MNCs, EPCs and MSCs emphasize the importance of targeting multiple 
pathophysiology for effective therapy and the need for future clinical trial. Particularly, 
EPCs‘ synergistic action of neurotrophic, angiogenic and vasculogenic properties show great 
potential as a therapeutic agent.  
Cell therapy may not be a standard treatment option for all stages of DN because different 
stages of DN are marked by different structural or functional changes. At present, cell 
therapy may be applied to those patients who suffer from intractable symptoms, acute 
exacerbation, or combined diseases such as diabetic foot ulcers or critical limb ischemia. 
However, there are a few remaining concerns in cell therapy strategy. The effectiveness of 
the patient’s own cells needs to be evaluated considering the possibility that BM cells 
derived from diabetic subjects may be impaired in therapeutic potential. Experiments using 
the autologous cells derived from diabetic subjects are necessary to address these concerns. 
Also, the long-term effects of cell therapy need to be tested. 
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