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1. Introduction 

An auto-ignition process of a non-homogeneous mixture is investigated using a numerical 

calculation based on chemical kinetics and the stochastic approach. This type of auto-

ignition phenomenon is considered as a fundamental process of the initial stage of diesel 

combustion (Ishiyama, et al., 2003) or homogeneous charged compression ignition 

(Shimasaki, et al., 2003). In order to investigate these combustion processes, many numerical 

calculations have been performed and for many of those it has been assumed that the 

ignition process is dominated by the turbulent mixing (Kong and Reitz, 2000). 

However, the fuel-air mixing and chemical reaction progress happen simultaneously for 

these types of combustion processes. Due to the long ignition delay time and high 

homogeneity of the mixture, combustion characteristics, such as ignition delay and 

combustion duration, could be affected equally by non-homogeneity of the mixture, 

turbulent mixing rate and chemical reaction rate. Therefore, the understanding of those 

combustion mechanisms is incomplete due to the complexity of the phenomena in which 

the mixing and chemical processes interact with each other. The main purpose of this 

chapter is to estimate these effects quantitatively using a numerical method. 

Here, n-heptane is assumed as a fuel and its reaction process is calculated by means of a 

reduced mechanism (Seiser et al., 2000). The non-uniform states of turbulent mixing are 

statistically described using probability density functions and the stochastic method, 

which was newly developed from Curl’s model (Curl, 1963). Focusing on the effects of 

mixture heterogeneity on combustion characteristics, such as ignition delay and 

combustion intensity (rate of temperature rise), the evolution of chemical reactions was 

calculated for the mixture in which variance in fuel-mass fraction decreases at given rates 

from the initial value under a fixed mean fuel-mass fraction and a constant pressure. The 

results show that the start timing of the low-temperature oxidation and ignition delay 

period are hardly affected by the equivalence-ratio variation, however, combustion 

duration increases with increasing variance. Furthermore, the combustion duration is 

mainly affected by the non-homogeneity at the ignition and is not much affected by the 

mixing rate. 
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2. Numerical models 

2.1 Mixing model 

In order to describe the homogenization process of a fuel-air mixture by turbulent mixing, 

the statistical state of the mixture is expressed by means of probability density function 

(PDF) and the dissipation process is described by a particle-interaction model. In the 

particle-interaction model, the statistical state f of scalar  at time t is represented by the N 

delta functions; 

     
1

1
;

N

n

f t n
N

   


   (1) 

Here, *(n) indicates  value on the nth particle. In the coalescence/dispersion model 

proposed by Curl (1963), the state of f at t + t is calculated from the collision frequency . 

The compositions of a pair of particles, which are selected at random (denoted by n1 and n2), 

change as; 
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Then, within the time interval t, this operation is repeated tN times. 

The change in the value of * is sometimes large, especially in the early stages of mixing, 

because it is calculated as the average of significantly different quantities of two particles. 

This tends to cause unrealistic change in the progress of chemical reactions. The modified 

Curl’s model (Janicka, Kolbe and Kollmann, 1979) is one possible method to mitigate this 

tendency. In this method, the scalar exchange of a pair of particles (n1 and n2) is calculated 

from a uniform random number C between 0 and 1; 
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This operation is repeated 3/2tN times and can describe statistically the same process as 

Curl’s model. However, the value of *t+t still changes significantly if C is near 1. Here, in 

order to avoid a significant difference between *t and *t+t, C is fixed to a value sufficiently 

smaller than unity and the replacement procedures are repeated tN/(2C) times. In order 

to confirm the consistency between the present model and Curl’s model, a mixing process 

was calculated starting from the initial state in which fuel and air are perfectly separated.  

Time change of variance vm for fuel-mass fraction mf distribution is shown in Fig. 1. Here, vm 

is normalized with respect to initial variance vmi and dimensionless time t* = t is used. C = 

0.05 and N = 1000 are adopted. As shown, the time changes of vm/vmi calculated by these 

three methods are completely equivalent. Meanwhile, Figure 2 shows the time change in mf-

PDF. The distributions at smaller t calculated by the present model are similar to Gaussian 

rather than to the PDFs by the Curl’s and modified Curl’s models. 
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Fig. 1. Course of normalized variance vm/vmi against non-dimensional time t* 

 

Fig. 2. Temporal change in PDF of fuel-mass fraction mf 

2.2 Chemical reaction model 

Here, n-heptane is assumed as a fuel and a chemical reaction system is described by a semi-

detailed kinetic mechanism (Seiser et al., 2008[Web]). This system consists of 160 chemical 

species and 1540 elemental reactions, and is selected for reducing computation time. 

3. Results and discussion 

By means of the above-mentioned procedure, an ignition process of non-homogeneous 

mixture with a constant mixing rate is calculated. For simplicity, the calculation is 

performed under a constant pressure. The initial temperature Ti and pressure p are set to 
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Ti = 900K and p = 4MPa. The initial distribution of fuel-mass fraction is Gaussian with a 

mean value mfa and a variance vmi. Figure 3 shows time histories of mean temperature Ta and 

variance vm for the initial condition of mf = 6.22×10-2 and vmi = 4.34×10-5, corresponding to a 

mean equivalence ratio a of unity and the standard deviation of  of approximately 0.1. The 

collision frequency  is varied within the range of 0 s-1 to 10000 s-1. For comparison, the result 

for the case of the homogeneous mixture is also shown. Collision frequency  is usually given 

by  = Cm /k for the PDF model combined with CFD using the k- turbulence model.  

 

Fig. 3. Courses of mean-temperature Ta and vm for the non-homogeneous mixture (a = 1.0) 

Here, k and  represent turbulence energy and its dissipation rate, respectively. Cm is fixed at 
2, therefore,  = 2000 s-1 corresponds approximately to turbulence intensity of 5 m/s and 
scale of 3 mm. For these calculations, the number of fluid particles is fixed to N = 100. 
Generally, as collision frequency increases, the start of heat release by hot flame delays and 
maximum heat release rate increases simultaneously to approach the result of a 
homogeneous mixture. Meanwhile, the time when the temperature reaches 50% of adiabatic 
flame temperature is approximately constant regardless of the collision frequency . The 
reason will be discussed later in Fig. 8. Furthermore, Fig. 4 shows a magnified view of Fig. 3 
around the starting points of heat release by cool flame (marked as ‘A’). The change in mean 
temperature Ta is exactly the same, in spite of the change of . 

Next, in order to clarify the effect of mean equivalence ratio, calculations are performed for 

lean and rich cases. Fig. 5 shows Ta and vm under the conditions of (a) mfa = 3.87×10-2 (a = 

0.6) and (b) mfa = 1.17×10-1 (a = 2.0) for the same  as in Fig. 3. Here, initial value of variance  
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Fig. 4. Temporal changes of Ta due to low temperature oxidation 

 
           (a) mfa = 3.83×10-2 (a = 0.6)                 (b) mfa = 1.17×10-1 (a = 2.0) 

Fig. 5. Effect of mean mass-fraction mfa 

is fixed to vmi = 4.34×10-5. For the two conditions, histories of the mean temperature Ta are 

similar to the result of a = 1.0 in Fig. 3. For the lean case (a), due to the longer delay of hot 

flame heat release, the mixture is thought to be more homogeneous and to provide rapid 

temperature rise. However, the temperature-rising rate at ignition is lower compared to the 

result of a = 1. Meanwhile, for the rich case (b), the variance vm at the ignition is comparably 

large, whereas the temperature rise at the ignition is steep, similar to the homogeneous case.  
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In order to clarify the reason why the temperature-rising rate of the non-homogeneous 
mixture becomes smaller than in the homogenous case, the temporal change of temperature 
T and mass fraction of fuel mf in each fluid particle are examined. Fig. 6 shows the data of  

 

  
 (a) mfa = 3.83×10-2 (a = 0.6)      (b) mfa = 6.22×10-1 (a = 1.0) 

 

 
    (c) mfa = 1.17×10-1 (a = 2.0) 

Fig. 6. Time history of T and mf for each stochastic particle 
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20 fluid particles, which are selected randomly, for (a) mfa = 3.83×10-2 (a = 0.6), (b) mfa = 

6.22×10-2 (a = 1.0) and (c) mfa = 1.17×10-1 (a = 2.0) at p = 4 MPa, T = 900 K and  = 2000 s-1. 
In each fluid particle, hot flame occurs with rapid temperature rise when mf approaches mfa. 
For every case of mean fuel-mass fraction, the hot flame ignition delay varies over a wide 
range, because the mixture contains a variety of fuel-mass fractions. However, the particle-
to-particle variation of the hot flame start time is not determined by the variation in fuel-
mass fraction. 

In order to examine the relation between non-homogeneity and temperature rise rate 

quantitatively, some characteristic times of temperature rise process are defined as shown in 

Fig. 7. Firstly, the time at 50% temperature rising between the initial and adiabatic 

temperatures is expressed as 50 and that at 95% as 95. Next, using these values, temperature 

rise period i and ignition delay time s are defined as below; 

 i = 2 × (50 −95) (4) 

 s = 95 −i (5) 

 

 
 

Fig. 7. Definition of ignition delay time s and combustion duration i 

Based on these values, the ignition processes of non-homogeneous and homogeneous 

mixture are discussed. s, 95 and i (marked by an arrow) are displayed for non-

homogeneous mixtures with average equivalence ratios a of 0.6, 1.0, and 2.0. In Fig. 8, PDF 

for mf at t = 50 is also displayed for each mixture. In addition, the curves of s and 95 

calculated for homogeneous mixtures are drawn. Within this mf-condition, ignition delay s 

of the homogeneous mixture becomes shorter with increasing mf. At the same time, i 

becomes larger for the leaner and richer sides. Here, ignition delay time of each fluid 

particle varies due to the variation of equivalence ratio at ignition, therefore, the 

temperature rise period increases. In addition, mf dispersion becomes larger for the richer 

condition, due to shorter ignition delay time. The change in ignition delay against mf 
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around a = 2.0 is small so that i also becomes smaller in spite of the wide distribution of mf. 

On the other hand, for the leaner side around a = 0.6, the distribution width is narrow, 

whereas s-change against mf becomes larger than in the stoichiometric case. Then i 

becomes longer. 

 

 

Fig. 8. Changes of ignition delay time s and combustion duration i 

In order to confirm the effect of mixing rate on the combustion process, temperature 

histories are compared for different mixing rates at the same mf-variance in the middle of 

hot flame temperature rise, as shown in Fig. 9. The calculation starts with  = 2000 s-1, 

then  is suddenly increased to 10000 s-1 just before the ignition. The obtained 

temperature history differs from that of  = 10000 s-1 and is similar to that of  = 4000 s-1, 

whose variance of mf-PDF at 50 is nearly equal to this  jumping-up case. This result 

shows that the rate of temperature rise is strongly affected by the mf-distribution at 

ignition rather than the mixing rate. Fig. 10 shows the correlation plots of (a) iand (b) 

ivm50. Here, vm50 represents the variance of mf-PDF at 50. In this case these plots are 

calculated for wide ranges of vmi, Ti and  with fixed p = 4.0 MPa and mfa = 6.22×10-2 (a = 

1.0). For the plots on (a), i scatters widely even at the same , however, for (b), the plots 

distribute on a certain curve. This indicates the great influence of mf variance on 

combustion duration. 

A similar calculation is performed for the case of longer ignition delay and lower 

temperature rise rate, which is set by mfa = 1.95×10-2 (a = 0.3), p = 2.0MPa and Ti = 900K.  

In this case, the mixture is comparably lean and ambient pressure is low so that s and i 

become much longer than in the case shown in Fig. 3. Fig. 11 shows the results for = 0 s-1, 

200 s-1, 400 s-1, 1000 s-1 and 2000 s-1. Here, the ignition delay time is longer, therefore, mixture 

at ignition becomes more homogeneous for the case of  > 2000 s-1. The ignition delay time 

s and temperature rise rate become larger with increasing mixing rate, which is similar to 

the results shown in Fig. 3. Also, 50 is almost constant against . 
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Fig. 9. Effect of collision frequency  on combustion duration 

 

  
                       (a) i- Correlation                       (b) i -vm50 Correlation 

 

Fig. 10. Correlations between combustion duration i - collision rate  and i - mass variation 

at t = 50 

www.intechopen.com



 
Chemical Kinetics 164 

 

 
 

Fig. 11. Courses of mean-temperature Ta and vm for PCCI-like condition 

4. Conclusion 

An auto-ignition process of a non-homogeneous mixture in fuel concentration was 

fundamentally investigated by means of a numerical calculation based on chemical kinetics 

and the stochastic approach. The auto-ignition process of n-heptane is calculated by means 

of a semi-detailed mechanism and the non-uniform state of turbulent mixing is statistically 

described by means of probability density functions and the stochastic method. The 

following conclusions are derived from the results: 

1. For the auto-ignition process of a non-homogeneous mixture during the mixing 

process, ignition delay time of the cool flame is almost constant against the mixing rate. 

On the other hand, ignition delay time of hot flame becomes longer with increasing 

mixing rate. This is because the hot flame ignition delay is more sensible to equivalence 

ratio than the cool flame delay. 

2. For the temperature rising process of hot flame, start points of heat release vary 

depending on equivalence ratio in a non-homogeneous mixture. Therefore, the rise 

period increases with increasing non-homogeneity. Also, the temperature rise rate due 

to heat release of hot flame increases with increasing mixing rate. 

3. The tendencies described above are the same for the case of changing equivalence ratio, 

initial temperature and pressure. 

www.intechopen.com



 
Ignition Process in a Non-Homogeneous Mixture 165 

4. Ignition delay time of each fluid particle varies due to the variation of equivalence ratio 

at ignition, therefore, the temperature rise period increases. In addition, the 

temperature rise rate becomes larger with decreasing variance of fuel-mass fraction 

distribution. 

5. Nomenclature 

C: Coefficient of modified Curl’s model 

Cm: Coefficient of turbulent mixing 

f: Statistical state function 

mf: Fuel-mass fraction 

mfa: Mean value of mf 

N: Total number of fluid particles 

t: Time 

t*: Dimensionless time 

p: Pressure 

T: Temperature 

Ta: Mean temperature 

Ti: Initial temperature 

vm: Variance of mf 

vm50: vm at τ50 

vmi: Initial value of vm 

: Delta function 

: Scalar 

a: Mean equivalence ratio 

50: Time at 50% temperature rise 

95: Time at 95% temperature rise 

i: Combustion duration 

s: Ignition delay of hot flame 

: Collision frequency 
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