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1. Introduction  

Arithmetic operation such as addition, multiplication, division and inversion are widely used in 
data communication systems, coding and cryptography particularly public key cryptography.  

Since 1976, when the principles of public key cryptography were introduced (by Whitfield 
Diffie and Martin Hellman) (Diffie & Hellman 1976), RSA was the most well-known public 
key cryptographic system. Rivest, Shamir and Adleman (RSA) algorithm composes a public 
key considered sufficiently long enough to be recognized as secure. The security of RSA is 
based on difficulty of factoring large numbers to its prime components. For many years, 
RSA was the leading method for industrial encryption. RSA cryptographic algorithm 
includes addition, squaring and multiplication operations. Addition and squaring are two 
simple operations over finite fields; hence, the most important arithmetic operation for RSA 
based cryptographic systems is multiplication.  

With the advances of computer computational power, RSA is becoming more and more 
vulnerable. In 1985, Victor S. Miller (Miller 1985) and Neal Koblitz (Koblitz 1987) proposed 
Elliptic Curve Cryptography (ECC), independently. ECC offer higher security in compare 
with RSA.  

The security of ECC relies on the difficulty of solving Elliptic Curve Discrete Logarithm 
Problem or ECDLP.  So far not any efficient method has been offered to solve ECDLP and its 
complexity is higher than factoring large numbers to its prime components (where the security 
of RSA relies on that). Hence, ECC can offer higher security with smaller key size and designers 
can use it to save storage space, consumed power in the circuit and increase the bandwidth.  

Elliptic Curve Cryptographic algorithm includes addition, squaring, multiplication and 
division (or inversion). Many research and studies have been done on multiplication. 
However, division and inversion research are becoming more relevant to cryptographic 
systems. In the terms of implementation area, complexity and executing time; division (or 
inversion) is the most costly operation in public key cryptography. For many years 
hardware implementations of division or inversion were an ambitious goal. However, 
recent advances in technology of ASIC circuits and the ability to provide high capacity 
FPGAs, let circuit designers to achieve this goal.  

In this chapter we study two main classes of proposed algorithms for division (and 
inversion). The first class of dividers is based on Fermat’s little theorem. This class of 
dividers also called as multiplicative based dividers. In the next chapter we introduce the 
principles of these algorithms and the proposed methods to improve their efficiency. 
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Chapter three is about the other class of dividers, called Euclidian based dividers. We 
review the principles and all proposed algorithms based on Euclidian algorithm.      

2. Dividers based on Fermat’s little theorem  

The most simple and primary dividers were based on Fermat’s little theorem. These kinds of 
dividers are also known as multiplicative based dividers, because in these algorithms, 
division is performed by sequence of multiplication operations (and squaring). Squaring in 
finite fields are simple operations, which are usually perform in a simple clock cycle. 
However multiplication is more complicated operation and in terms of time and 
implementation area is more costly. 

Based on Fermat’s little theorem, if ܲ is a prime number for any integer ܽ, we can write: ܽ௣ ≡ ܽ	ሺ݉݀݋	ܲሻ 
Dividing two side to ܽ, we get  ܽ௉ିଵ ≡ ͳ	ሺ݉݀݋	ܲሻ    or    ܽ × ܽ௉ିଶ ≡ ͳ	ሺ݉݀݋	ܲሻ 
Hence we can conclude the inversion of any integer ܽ over ܨܩሺܲሻ is ܽ௉ିଶ. 

Example.1: For example inversion of 4 over ܨܩሺ͹ሻ is Ͷିଵ ≡ Ͷହ ≡ ʹ	ሺ݉݀݋	͹ሻ. ʹ × Ͷ ≡ ͺ ≡ ͳ	ሺ݉݀݋	͹ሻ 
Expanding this technique to ܨܩሺʹ௠ሻ, we can write ܽଶ೘ିଵ = ܽ × ܽଶ೘ିଶ = ͳ	ሺݎ݁ݒ݋	ܨܩሺʹ௠ሻሻ. 
Hence, ܽିଵ = ܽଶ೘ିଶ, in which ܽ ∈  .ሺʹ௠ሻܨܩ
To compute ܽଶ೘ିଶ, the most primary method is “square and multiplication” algorithm. In 

square and multiplication algorithm instead of ʹ௠ − ͵ multiplications, we calculate ܽଶ೘ିଶ, 
with at most ݉ − ͳ squaring and ݉ − ʹ multiplications.  

 

Alg.1:  Square and Multiplication Algorithm 

Input ܽ ∈  ሺʹ௠ሻܨܩ
Output ܣ = ܽଶ೘ିଶ 

1. b=ʹ௠ − ʹ 
ܣ .2 = ܽ	
3. while ܾ ≠ ͳ 

3.1.         if (b is even) 
3.1.1.                 ܾ = ܾ/ʹ 
ܣ                 .3.1.2 = ܣ ×  ܣ

3.2.        else 
3.2.1.                  ܾ = ܾ − ͳ 
ܣ                  .3.2.2 = ܣ × ܽ 

4. Return ܣ 
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To better understand of square and multiplication algorithms, we review the following 
equations. As we know, we can decompose ʹ௠ିଶ in the following form. ʹ௠ − ʹ = ʹሺʹ௠ିଵ − ͳሻ = ʹሺʹ௠ିଵ − ʹ + ͳሻ = ʹሺͳ + ʹሺʹ௠ିଶ − ͳሻሻ ⋮ = ʹሺͳ + ʹሺͳ + ʹሺͳ+. . ሻሻሻ 
Hence, we can use the above equations to decompose ܽଶ೘ିଶ to: ܽଶ೘ିଶ = ܽଶሺଶ೘షభିଵሻ = ሺܽሺଶ೘షభିଵሻሻଶ = ሺܽሺଶ೘షభିଶାଵሻሻଶ = ሺܽ × ܽሺଶ೘షభିଶሻሻଶ ሺܽ × ܽଶሺଶ೘షమିଵሻሻଶ = ሺܽ × ሺܽሺଶ೘షమିଵሻሻଶሻଶ ⋮ = ሺܽሺܽሺ…ܽሺܽܽଶሻଶ…ሻଶሻଶሻଶ 

The square and multiplication algorithm use the same principle to calculate ܽଶ೘ିଶ.  

2.1 Itoh and Tsujii algorithm 

Itoh and Tsujii (Itoh & Tsujii 1988) offered a more efficient algorithm over normal basis; 
however it is applicable over polynomial and other basis. Their algorithm was based on 
multiplication which can be applied on some values of ݉. In their algorithm, they reduced 
the number of multiplications, significantly. Many efforts have been done to improve Itoh 
and Tsujii algorithm and make it more general for all values of ݉ (Guajardo & C. Paar 2002; 
Henrıquez, et. al. 2007). Here we review the general form of this algorithm. 

To describe Itoh and Tsujii algorithm, we introduce a new term, called addition chain.  

Definition addition chain: Addition chain for an integer value such as ݉ − ͳ, is a series of 
integers with ݐ elements such that, ݑ଴ = ͳ and ݑ௧ = ݉ − ͳ, and ݑ௜ = ௞௜ݑ +  .௝௜ݑ
Where ݇݅ and ݆݅ are two integer values between Ͳ and ݅. 
Example.2: If ݉ = ͳͻ͵, then the addition chain could be  

1, 2, 3, 6, 12, 24, 48, 96, 192 

In this addition chain for all elements of sequence we have  ݑ௜ = ௜ିଵݑ +  ,ଶݑ ௜ିଵ except forݑ
which ݑଶ = ଵݑ + ଵݑ ଴ݑ .଴ݑ ଶݑ ଷݑ  ସݑ

଴ݑ  + ଴ݑ ଵݑ + ଴ݑ ଶݑ + ଶݑ ଷݑ + ʹ ଷ ͳݑ ͵ ͸ ͳʹ 
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଺ݑ ହݑ  ଻ݑ ସݑ ଼ݑ + ହݑ ସݑ + ହݑ ଺ݑ + ଺ݑ ଻ݑ + ଻ ʹͶ Ͷͺݑ ͻ͸ ͳͻʹ 

Let’s define a function  ߚ௞ሺܽሻ = ܽଶೖିଵ, which ܽ ∈ ௠ሺܽሻߚ  ሺʹ௠ሻ. We know thatܨܩ = ܽଶ೘ିଵ =ܽିଵ. The other characteristic of this function is enlisted as follow: ߚ௝ା௞ = ௞ଶೕߚ × ଶ௞ߚ ௝ߚ = ௞ଶೖߚ  ௞ଶೖାଵ orߚ ×  ௞ߚ

Hence, to compute ܽିଵ, we should use the equations above and using addition chaining to 

achieve  ߚ௠ሺܽሻ = ܽଶ೘ିଵ. 

Example.3: for ݉ = ͳͻ͵, and above addition chain, we can write the following calculations ݑ଴ = ͳ  ߚଵ = ܽଶభିଵݑଵ = ଶߚ  ʹ = ሺߚଵሻଶమିଵ = ܽଶమିଵ ݑଶ = ଷߚ  ͵ = ሺߚଶሻଶభିଵ × ଷݑଵߚ = ͸  ߚ଺ = ሺߚଷሻଶయ × ଷݑଷߚ = ͳʹ  ߚଵଶ = ሺߚ଺ሻଶల × ଷݑ଺ߚ = ʹͶ  ߚଶସ = ሺߚଵଶሻଶభమ × ସݑଵଶߚ = Ͷͺ  ߚସ଼ = ሺߚଶସሻଶమర × ସݑଶସߚ = ͻ͸  ߚଽ଺ = ሺߚସ଼ሻଶరఴ × ସݑସ଼ߚ = ͳͻʹ  ߚଵଽଶ = ሺߚଽ଺ሻଶవల × ଽ଺ߚ
It has been shown that the maximum number of multiplication in this method is ݐ and 

the required number of square operation is ݉ − ͳ. The size of addition chain or ݐ is 

estimated as ݃݋݈ہଶሺ݉ − ͳሻۂ + ሺܹ݉ܪ − ͳሻ + ͳ, where ܹܪሺ݉ − ͳሻ is the hamming weight of ݉ − ͳ. 

For more information and more details, the readers may refer to (Guajardo & C. Paar 2002; 

Henrıquez, et. al. 2007). 

Itoh and Tsujii algorithm is presented in Alg.2. 

After calculating inversion, division simply becomes a multiplication operation. 

The advantage of Fermat’s little theorem based inversion algorithm is that, it can be 

implemented just by using multiplication and square arithmetic operators. This eliminates 

the need to add any extra components, such as dividers. When ECC was proposed, the 
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dividers were not as advanced as they are now; hence, multiplicative based dividers were 

the best candidates for hardware implementation of ECC, particularly over FPGAs. Also it is 

possible to use these dividers for reconfigurable cryptosystems, which are designed to 

perform both RSA and ECC algorithms. Since the sizes of these cryptosystems are becoming 

larger, dropping a big component such as divider is a huge saving on implemented area for 

designers. The main drawback of the cipher cores without dividers is the longer 

computational time.  

Alg.2:  Itoh and Tsujii Algorithm to compute inversion 

Input ܽ ∈  ሺʹ௠ሻܨܩ
Output ܽିଵ 

௨଴ሺܽሻߚ .1 = ܽ 
2. For ݅ = ͳ to ݐ do 

௨௜ሺܽሻߚ        .2.1 = ൫ߚ௨௞௜ሺܽሻ൯ଶೠೕ೔ ×  ௨௝௜ሺܽሻߚ
3. Return ߚ௨௧ଶ ሺܽሻ 

3. Euclidian based dividers 

Euclid’s algorithm is an old algorithm to calculate the greatest common divider (GCD) of 

two integers. The basic principle of Euclid’s algorithm is that, the greatest common divider 

of ܽ and ܾ, ܦܥܩሺܽ, ܾሻ, is equal to the greatest common divider of ܽ and ܽ ± ܾ or in other 

word ܦܥܩሺܽ, ܾሻ = ,ሺܽܦܥܩ ܽ ± ܾሻ = ሺܽܦܥܩ ± ܾ, ܾሻ. 
Example.4: ܦܥܩሺͳͺ,͵Ͳሻ = ͸,	 ሺͳͺ,͵Ͳሻܦܥܩ ሺ͵Ͳܦܥܩ	= − ͳͺ,ͳͺሻ = ሺͳʹ,ͳͺሻܦܥܩ	 ሺͳͺܦܥܩ		= − ͳʹ,ͳʹሻ = ሺ͸,ͳʹሻܦܥܩ	 ʹሺͳܦܥܩ		= − ͸,͸ሻ = ሺ͸,͸ሻܦܥܩ = ͸	
We can apply the above principle more than once and rewrite this theorem as  ܦܥܩሺܽ, ܾሻ ,ሺܽܦܥܩ= ݊ × ܽ ± ݉ × ܾሻ = ሺ݊́ܦܥܩ × ܽ ± ݉́ × ܾ, ܾሻ.  
Example.5:  GCD(90,525)=15 ܦܥܩሺͻͲ,ͷʹͷ − ͷ × ͻͲሻ = ሺͻͲ,ͷʹͷܦܥܩ − ͶͷͲሻ ሺͻͲ,͹ͷሻܦܥܩ = = ሺ͹ͷ,ͻͲܦܥܩ − ͹ͷሻ ሺ͹ͷ,ͳͷሻܦܥܩ = = ሺͳͷ,͹ͷܦܥܩ − ͵ × ͳͷሻ ሺͳͷ,Ͳሻܦܥܩ = = ͳͷ 

To reduce the calculation time, we can offer the Alg.3. 
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Alg.3:  Euclidian algorithm to calculate Greatest Common Divider (GCD) 

Input ܽ, ܾ 

Output ܦܥܩሺܽ, ܾሻ 
1. While (ܾ ≠ Ͳ)  

ݐ       .1.1 = ܾ 
1.2.       ܾ =  ܾ	݀݋݉	ܽ
1.3.       ܽ	 =  ݐ	

2. Return (ܽ) 

The above algorithm can be made more compact using a recursive approach. Alg. 4 presents 

the recursive and more compact version of Alg. 3.  

Alg.4:  Euclidian algorithm to calculate Greatest Common Divider 
(Recursive Approach)  

Input ܽ, ܾ 

Output ܦܥܩሺܽ, ܾሻ 
1. if (ܾ = Ͳ)  

1.1.      Return (ܽ) 
2. else 

2.1.       Return (ܦܥܩሺܽ, ܽ ݀݋݉ ܾሻ) 
We provide  a useful theorem below which will be used this section, to make the Euclidian 

algorithm more general for our purpose. 

Theorem: let’s assume ܾ = ܽ × ݍ + ,ሺܽܦܥܩ Then .ݎ ܾሻ = ,ሺܽܦܥܩ	 ,ሺܽܦܥܩ ሻݎ ܾሻ = ,ሺܽܦܥܩ	 ܾ − ܽ ×  ሻݍ
 	= ,ሺܽܦܥܩ	  ሻݎ

The simple proof for this theorem is by applying Euclid’s theorem (ܦܥܩሺܽ, ܾሻ = ,ሺܽܦܥܩ	 ܾ −ܽሻ) for ݍ times, to give the same relationship.  

In order to use Euclid’s theorem for division or inversion, assume two values such as ܽ and ܾ. We have already seen how to compute ݀ = ,ሺܽܦܥܩ ܾሻ. We know that there are two 

variables,  ݔ and ݕ, which satisfies the following equation ܽ × ݔ + ܾ × ݕ = ݀ 

If we can design an algorithm which accepts ܽ and ܾ, and produces ݔ and ݕ; we can use that 

algorithm to find inversion. Assume ܲ is a prime value and ܽ is an integer where Ͳ < ܽ <ܲ − ͳ. We know ݒ = ,ሺܽܦܥܩ ܲሻ = ͳ. Hence, applying the above algorithm, we can find  ݔ 

and ݕ which ܽ × ݔ + ܲ × ݕ = ͳ. 
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If we use that algorithm over the finite field, ܨܩሺܲሻ, we can calculate the inverse of ܽ which 

is ݔ (i.e. ܽିଵ =  such that it satisfy the ݕ and ݔ Using the algorithm above, it gives us .(ݔ

equation: ܽ × ݔ + ܲ × ݕ = ͳ. Over the finite field, ܨܩሺܲሻ, ܲ × ݕ = Ͳ. Then ܽ × ݔ + ܲ × ݕ = ͳ 

over ܨܩሺܲሻ could be simplified to ܽ × ݔ = ͳ. Then ݔ is the inversion of ܽ over ܨܩሺܲሻ. 
Let’s ܦܥܩሺܽ௜ , ܾ௜ሻ = ݀. We know there are two integer values, ݔ௜ and ݕ௜ such that (where one 

of the values is smaller than zero): ܽ௜ × ௜ݔ + ܾ௜ × ௜ݕ = ݀. 

Based on Euclid’s theorem, we can write  ܦܥܩሺܽ௜ , ܾ௜ − ܽ௜ݍ௜ሻ = ݀. Hence, the equation above 

can be rewritten as:  ܽ௜ × ௜ାଵݔ + ሺܾ௜ − ܽ௜ݍ௜ሻ × ௜ାଵݕ = ݀. 

By rearranging this equation, we can write: ܽ௜ × ௜ାଵݔ − ܽ௜ݍ௜ × ௜ାଵݕ + ܾ௜ × ௜ାଵݕ = ܽ௜ × ሺݔ௜ାଵ − ௜ݍ × ௜ାଵሻݕ + ܾ௜ × ௜ାଵݕ = ݀ 

Then we can conclude: 

௜ݔ = ௜ାଵݔ − ௜ݍ × ௜ݕ ௜ାଵݕ =  .௜ାଵݕ
(1) 

Similarly, for	ܦܥܩሺܽ௜ − ܾ௜ݍ௜ , ܾ௜ሻ = ݀, we can write the same equations and conclude  

௜ݕ = ௜ାଵݕ − ௜ݍ × ௜ݔ ௜ାଵݔ =  .௜ାଵݔ
(2) 

If we perform the Euclidian algorithm to calculate ݀, at the final step or loop ܦܥܩሺܽ௡, ܾ௡ሻ ,ሺܽ௡ܦܥܩ= ܽ௡ݍ௡ሻ = ܽ௡ = ݀. The above relationship for this step will be  ܽ௡ × ௡ݔ + ܾ௡ × ௡ݕ = ܽ௡ × ௡ݔ + ܽ௡ݍ௡ × ௡ݕ = ܽ௡ = ݀ 

So ݔ௡ = ͳ and ݕ௡ = Ͳ.  

Example.6: Let’s ܽ = ͵͹ and ܾ = ͳ͹ 

 ͵͹ݔ଴ + ͳ͹ݕ଴ = ͳ ሺ͵͹ − ʹ × ͳ͹ሻݔ଴ + ͳ͹ݕ଴ = ͳ         ݍ଴ = ʹ 

ଵݔ͵  + ͳ͹ݕଵ = ͳ ͵ݔଵ + ሺͳ͹ − ͷ × ͵ሻݕଵ = ͳ               ݍଵ = ͷ 
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ଶݔ͵ + ଶݕʹ = ͳ ሺ͵ − ͳ × ʹሻݔଶ + ଶݕʹ = ͳ         ݍଶ = ͳ ݔଷ + ଷݕʹ = ͳ ݔଷ + ሺʹ − ʹ × ͳሻݕଷ = ͳ               ݍଷ = ସݔ ʹ = ͳ 

Using (1) and (2) for the above relation in backward (start from ݔସ, ݕସ and ݍଷ), we can 

calculate ݔ଴ and ݕ଴. ݕଷ = ସݕ = Ͳ             ݔଷ = ସݔ − ସݕଷݍ = ͳ ݔଶ = ଷݔ = ͳ             ݕଶ = ଷݕ − ଷݔଶݍ = −ͳ ݕଵ = ଶݕ = −ͳ          ݔଵ = ଶݔ − ଶݕଵݍ = ͸ ݔ଴ = ଵݔ = ͸             ݕ଴ = ଵݕ − ଵݔ଴ݍ = −ͳ͵ 

Then finally: ͵͹ × ͸ + ͳ͹ × ሺ−ͳ͵ሻ = ͳ 

Hence, one way of finding ݔ and ݕ is to execute Euclidian algorithm. Then calculate  ݔ௜ and ݕ௜ based on the equations above. Alg.5 is based on this idea. 

Alg.5:  Algorithm of Finding  ݔ and ݕ 

Input: ܽ, ܾ			ሺܾ ൒ ܽሻ 
Output: ܦܥܩሺܽ, ܾሻ, ,ݔ  ݕ

ଵݕ .1 = ͳ	
ଶݕ .2 = Ͳ	
ଵݔ .3 = ͳ	
ଶݔ .4 = Ͳ	
5. While (ܽ ≠ ͳ)  

ݍ      .5.1 = ቔ௕௔ቕ ; ݎ	 = ܾ − ;ܽݍ ݔ	 = ଶݔ − ;ଵݔݍ ݕ	 = ଶݕ −  ;ଵݕݍ
5.2.       ܾ = ܽ; 	ܽ = ଶݔ	;ݎ = ;ଵݔ ଵݔ	 = ଶݕ	;ݔ = ;ଵݕ ଵݕ	 =  ;ݕ

6. ݀ = ܾ;	
ݔ .7 = 		;ଶݔ
ݕ .8 = ;ଶݕ
9.  Return (݀, ,ݔ  (ݕ

In order to get better impression about the role of ݔଵ, ݔଶ,  ଶ in Alg.5 (and Alg.6) weݕ ଵ andݕ

recommend to extend the last two equations of example.6 (i.e. ݕ଴ and ݔ଴) and rewrite them 

with ݍ௜, ݕସ and ݔସ.  

All the substitutions at step 5.1 and 5.2 of Alg.5 should be executed at the same time. 
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We can simplify this algorithm for ܽ and ܲ (where Ͳ ൑ ܽ < ܲ, and ܲ is a prime number) to 
calculate ܽିଵ over ܨܩሺܲሻ (Alg.6).  

 
 

Alg.6:  Algorithm of Computing Inversion Over ܨܩሺܲሻ  
Input: ܲ, ܽ ∈  ሺܲሻܨܩ
Output: ܽିଵ 

ଵݕ .1 = ͳ	
ଶݕ .2 = Ͳ	
3. While (ܽ ≠ ͳ)  

ݍ      .3.1 = ቔ௉௔ቕ 
3.2.       ܽ = ܲ − ;ܽݍ 	ܲ = ଶݕ	;ܽ = ଵݕ	;ଵݕ = ଶݕ −  ଵݕݍ

4.  Return (ݕଵ) 

All the operations on Alg.6 are performs over ܨܩሺܲሻ. All the substitutions at step 3.2 of 
Alg.6 should be done simultaneously. 

In the algorithm above, we should perform a division at each loop (step 3.1.). To avoid 
division, we can assume if ܲ ൒ ܽ then ݍ =1 and if ܲ < ܽ then ݍ = Ͳ or swap ܽ and ܲ and ݕଵ 
and ݕଶ values. Then we can compute ܦܥܩሺܽ, ܾ − ܽሻ, instead of computing ܦܥܩሺܽ, ܾሻ ,ሺܽܦܥܩ= ܾ −  .ሻ. This technique increases the number of iterationsݍܽ

Modifying the above algorithms for polynomial basis, we have Alg.7. All operations in 
Alg.7 should be done over ܨܩሺʹ௠ሻ. In Alg.7, ܲ represents the irreducible polynomial of ܨܩሺʹ௠ሻ. 

 
 

Alg.7:  Algorithm of Computing Inversion Over ܨܩሺʹ௠ሻ  
Input: ܽ ∈  ሺʹ௠ሻܨܩ
Output: ܽିଵ 

ଵݕ .1 = ͳ	
ଶݕ .2 = Ͳ	
3. While (ܽ ≠ ͳ)  

3.1.       ܽ = ܲ + ܽ; 	ܲ = ଶݕ	;ܽ = ଵݕ	;ଵݕ = ଶݕ +  ଵݕ
4.  Return (ݕଵ) 
 

 

Example.7: let’s assume we want to calculate ͳ/͹ over ܨܩሺͳ͹ሻ 
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ଵݕ = ͳ							ݕʹ = Ͳ							ܽ = ͹							ܲ = ͳ͹ ݕଵ = −ͳ							ݕʹ = ͳ							ܽ = ͳͲ							ܲ = ͹ ݕଵ = ͳ							ݕʹ = −ͳ							ܽ = ͹							ܲ = ͳͲ ݕଵ = ʹݕ							ʹ− = ͳ							ܽ = ͵							ܲ = ͹ ݕଵ = ʹݕ							͵ = −ʹ							ܽ = Ͷ								ܲ = ଵݕ ͵ = ʹݕ							ʹ− = ͵							ܽ = ͵								ܲ = Ͷ ݕଵ = ͷ							ݕʹ = −ʹ							ܽ = ͳ								ܲ = ͵ 

Then  ͹ିଵ = ͷ over ܨܩሺͳ͹ሻ. 
The reviewed algorithm, so far, calculates inversion. After an inversion is calculated, simply 
multiply ݕଵ to create a division. In (Takagi 1998), N. Takagi offered an algorithm which 
directly calculates division.  

This algorithm is based on two concepts:  

(1) If ܽ is even and ܲ is odd, then ܦܥܩሺܽ, ܲሻ = ,ʹ/ሺܽܦܥܩ ܲሻ;  
(2) If both ܽ and ܲ are odd, then  ܦܥܩሺܽ, ܲሻ = ሺሺܽܦܥܩ − ܲሻ/ʹ, ܽሻ ሺ௔ି௉ଶܦܥܩ=	 , ܲሻ; Where in the proposed algorithm, we choose the minimum 

of ܽ and ܲ (i.e. ܦܥܩሺܽ, ܲሻ = ሺሺܽܦܥܩ − ܲሻ/ʹ,min	{ܽ, ܲ}ሻ). 
The proposed algorithm over ܨܩሺܲሻ is presented as Alg.8. In Alg.8, ܾ଴ represents the least 
significant bit (LSB) of ܾ. Also all operation are performed over ܨܩሺܲሻ. 
 

 

Alg.8:  Algorithm of Computing Division Over ܨܩሺܲሻ  
Input: ܲ, ܽ ∈ ,ሺܲሻܨܩ ܾ ∈  ሺܲሻܨܩ
Output:  ܽ ܾൗ  

ݒ .1 = Ͳ	
2. While (ܾ > Ͳ)  

2.1.      While (ܾ଴ = Ͳ) 
2.1.1. ܾ = ܾ/ʹ	; 	ܽ = ܽ/ʹ	;	

2.2.       If (ܾ ൒ ܲ)	
2.2.1. ܾ = ܾ − ܲ; 	ܽ = ܽ − 	;ݒ

2.3.       else  
2.3.1. ܾ = ܲ − ܾ; 	ܲ = ܾ; 
2.3.2. ܽ = ݒ − ܽ; ݒ	 = ܽ; 

3.  Return (ݒ) 
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algorithm will finish at most after ʹ݉ − ͳ iterations, where ʹ௠ିଵ < ܲ < ʹ௠. 

 

Alg.9:  Algorithm of Computing Division Over ܨܩሺʹ௠ሻ  
Input: ܲሺݔሻ, ܽ ∈ ,ሺʹ௠ሻܨܩ ܾ ∈  ሺʹ௠ሻܨܩ
Output:  ܽ ܾൗ  

ݒ .1 = Ͳ;	
2. While ሺሺܽ ≠ Ͳሻ	ܽ݊݀	ሺܲ ≠ ͳሻሻ 

2.1.    If (ܾ଴ = ͳ) 
2.1.1.       If (ܾ ൒ ܲ)	

2.1.1.1. ܾ = ܾ + ܲ; 	ܽ = ܽ + 	;ݒ
2.1.2.       else  

2.1.2.1. ܾ = ܲ + ܾ; 	ܲ = ܾ; 
2.1.2.2. ܽ = ݒ + ܽ; ݒ	 = ܽ; 

2.2.    ܾ = ܾ/ʹ;	
2.3.    ܽ = ܽ/ʹ; 

3.  Return (ݒ) 

To extend this algorithm to be applicable over ܨܩሺʹ௠ሻ, the following changes should be 
applied; Assume ܲሺݔሻ as irreducible polynomial (It is known that ଴ܲ is always 1) and 
substitute ܲሺݔሻ with ܲ. The degrees of the most significant nonzero bit of ܾሺݔሻ and ܲሺݔሻ will 
distinguish which variable is larger (in step 2.2). Hence, the algorithm will be as Alg.9.  

 

 

Alg.10:  Modified Algorithm of Computing Division Over ܨܩሺʹ௠ሻ  
Input: ܲሺݔሻ, ܽ ∈ ,ሺʹ௠ሻܨܩ ܾ ∈  ሺʹ௠ሻܨܩ
Output:  ܽ ܾൗ  

ݒ .1 = Ͳ;	
2. While ሺሺܽ ≠ Ͳሻ	ܽ݊݀	ሺܲ ≠ ͳሻሻ 

2.1.    If (ܾ଴ = ͳ) 
2.1.1. If ሺߜ < Ͳሻ 

2.1.1.1. ܾ = ܾ + ܲ; ܲ = ܾ;	
2.1.1.2. ܽ = ܽ + ݒ ;ݒ = ܽ;	
ߜ .2.1.1.3 = 	;ߜ−

2.1.2.       else  
2.1.2.1. ܾ = ܲ + ܾ; 
2.1.2.2. ܽ = ݒ + ܽ; 

2.2.    ܾ = ܾ/ʹ;	
2.3.    ܽ = ܽ/ʹ; 
ߜ    .2.4 = ߜ − ͳ; 

3.  Return (ݒ) 
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This algorithm, takes at most ʹ݉ − ͳ iterations to finish. Checking the degree of ܾ and ܲ, is a 
costly operation in hardware implementation. In (Brent & Kung 1983), Brent and Kung 
reduced this complexity by adopting a new idea. They used a new variable, ߜ, to represent 
the difference of upper bounds of degree ܾ and ܲሺݔሻ. In (Brent & Kung 1983) they use this 
method to calculate the Greatest Common Divisor of two variables. However this method 
can be used to calculate division. 

At the initialization step, ߜ should be equal to −ͳ. Then the above algorithm has to be 
changed as Alg.10. 

Example.8: Let’s ܽ = ͳͳͲͳ, ܾ = Ͳͳͳͳ and the irreducible polynomial is ܲሺݔሻ = ସݔ + ݔ + ͳ. ߜ = −ͳ			ܾ = Ͳͳͳͳ			ܲ = ͳ	ͲͲͳͳ			ܽ = ͳͳͲͳ			ݒ = Ͳ ߜ = Ͳ						ܾ = ͳͲͳͲ			ܲ = Ͳ	Ͳͳͳͳ			ܽ = ͳͳͳͳ			ݒ = ͳͳͲͳ ߜ = −ͳ			ܾ = ͲͳͲͳ			ܲ = Ͳ	Ͳͳͳͳ			ܽ = ͳͳͳͲ			ݒ = ͳͳͲͳ ߜ = Ͳ						ܾ = ͲͲͲͳ			ܲ = Ͳ	ͲͳͲͳ			ܽ = ͳͲͲͲ			ݒ = ͳͳͳͲ ߜ = −ͳ			ܾ = ͲͲͳͲ			ܲ = Ͳ	ͲͳͲͳ			ܽ = ͲͲͳͳ			ݒ = ͳͳͳͲ ߜ = −ʹ			ܾ = ͲͲͲͳ			ܲ = Ͳ	ͲͳͲͳ			ܽ = ͳͲͲͲ			ݒ = ͳͳͳͲ ߜ = −ͳ			ܾ = ͲͲͳͲ			ܲ = Ͳ	ͲͲͲͳ			ܽ = ͲͲͳͳ			ݒ = ͳͲͲͲ 

The final step to improve the algorithm above is applied within the loop. Hardware 

implementation of “ݓℎ݈݅݁” statement is difficult. This is because the number of iterations is 

an unknown variable, making it inappropriate for cryptographic cores and particularly 

systolic implementations. We know that this algorithm takes at most ʹ݉ − ͳ iterations. 

Hence, instead of a “ݓℎ݈݅݁” loop, we implement a “݂ݎ݋” loop. This modification can be done 

by a simple change in Alg.10. In step.2, instead of “While ሺሺܽ ≠ Ͳሻ	ܽ݊݀	ሺܲ ≠ ͳሻሻ” we should 

write “For ݅ = ͳ	to	ʹ݉ − ͳ”. 

So far we have presented very general forms of divider algorithms. We reviewed all the 

proposed algorithms because each one has a unique characteristic that makes it more 

efficient for a specific design of a core. Many research papers have been done to improve the 

above algorithms and make them more efficient for hardware implementations. For 

example, in (Wu, Shieh & Hwang 2001), the designers proposed a new algorithm. In their 

algorithms, they eliminate ߜ and use two other variables to Instead of comparing ߜ 

relationship to zero, they only check two bits of their new adopted variables in their 

algorithm; thus making the new algorithms more efficient for hardware (by eliminating step 

2.1.1 in Alg.10). Another example can be seen in (Zadeh 2007), where the number of 

iterations is reduced from ʹ݉ − ͳ to ݉ by combining two loop iterations. The paper 

explores how a number of modifications can reduce the number of conditional statements. 

Other similar classes of dividers have been proposed such as Dual Field Modular dividers 

or Unified Modular Division (UMD). These classes perform division on two finite field (over ܨܩሺܲሻ and ܨܩሺʹ௠ሻ). Unified Modular Dividers have been applied in some applications such 

as network servers (Wolkerstorfer 2002; Tenca & Tawalbeh 2004). 
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Euclidian algorithm is the most efficient algorithm for division in terms of area and time. 
Until now, not many hardware platforms were able to implement this algorithm. Advances 
in technology of ASIC offer many high capacity reconfigurable platforms such as FPGA. It 
gives hardware designers the ability of using these dividers in real applications. It is 
foreseeable that Euclidian dividers will be more widely implemented in the future. 

4. Conclusion  

In this chapter, we have reviewed two common classes of dividers which are widely used 
for cryptographic purpose. The most common dividers to be implemented in Elliptic Curve 
Cryptography and other cryptographic cores are multiplicative based dividers (based on 
Fermat’s little theorem) and Euclidian based dividers.  

To perform division over finite field, some other dividers have been proposed such as 
“Wiener-Hopf equation” based dividers. In Wiener-Hopf based dividers, the divisor (ܾ) 
should expand to an ݉ ×݉ matrix, ܤ, then the linear equation ܤ × ݒ = ܽ should be solved 
to get ݒ .ݒ can be calculated using Gaussian elimination algorithm (Morii, Kasahara & 
Whiting 1989; Hasan & Bhargava 1992). The hardware efficiency of these dividers are not 
comparable with multiplicative and Euclidian based dividers.  

In terms of implementation area multiplicative based dividers are very efficient. Since they 
don’t need any extra component on the circuit and they can perform division using 
embedded components of the cipher cores. Also in term of speed, Euclidian based dividers 
are very fast.   
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