
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

6

Division and Inversion Over Finite Fields

Abdulah Abdulah Zadeh
Memorial University of Newfoundland,

Canada

1. Introduction

Arithmetic operation such as addition, multiplication, division and inversion are widely used in
data communication systems, coding and cryptography particularly public key cryptography.

Since 1976, when the principles of public key cryptography were introduced (by Whitfield
Diffie and Martin Hellman) (Diffie & Hellman 1976), RSA was the most well-known public
key cryptographic system. Rivest, Shamir and Adleman (RSA) algorithm composes a public
key considered sufficiently long enough to be recognized as secure. The security of RSA is
based on difficulty of factoring large numbers to its prime components. For many years,
RSA was the leading method for industrial encryption. RSA cryptographic algorithm
includes addition, squaring and multiplication operations. Addition and squaring are two
simple operations over finite fields; hence, the most important arithmetic operation for RSA
based cryptographic systems is multiplication.

With the advances of computer computational power, RSA is becoming more and more
vulnerable. In 1985, Victor S. Miller (Miller 1985) and Neal Koblitz (Koblitz 1987) proposed
Elliptic Curve Cryptography (ECC), independently. ECC offer higher security in compare
with RSA.

The security of ECC relies on the difficulty of solving Elliptic Curve Discrete Logarithm
Problem or ECDLP. So far not any efficient method has been offered to solve ECDLP and its
complexity is higher than factoring large numbers to its prime components (where the security
of RSA relies on that). Hence, ECC can offer higher security with smaller key size and designers
can use it to save storage space, consumed power in the circuit and increase the bandwidth.

Elliptic Curve Cryptographic algorithm includes addition, squaring, multiplication and
division (or inversion). Many research and studies have been done on multiplication.
However, division and inversion research are becoming more relevant to cryptographic
systems. In the terms of implementation area, complexity and executing time; division (or
inversion) is the most costly operation in public key cryptography. For many years
hardware implementations of division or inversion were an ambitious goal. However,
recent advances in technology of ASIC circuits and the ability to provide high capacity
FPGAs, let circuit designers to achieve this goal.

In this chapter we study two main classes of proposed algorithms for division (and
inversion). The first class of dividers is based on Fermat’s little theorem. This class of
dividers also called as multiplicative based dividers. In the next chapter we introduce the
principles of these algorithms and the proposed methods to improve their efficiency.

www.intechopen.com

Cryptography and Security in Computing 118

Chapter three is about the other class of dividers, called Euclidian based dividers. We
review the principles and all proposed algorithms based on Euclidian algorithm.

2. Dividers based on Fermat’s little theorem

The most simple and primary dividers were based on Fermat’s little theorem. These kinds of
dividers are also known as multiplicative based dividers, because in these algorithms,
division is performed by sequence of multiplication operations (and squaring). Squaring in
finite fields are simple operations, which are usually perform in a simple clock cycle.
However multiplication is more complicated operation and in terms of time and
implementation area is more costly.

Based on Fermat’s little theorem, if ܲ is a prime number for any integer ܽ, we can write: ܽ௣ ≡ ܽ	ሺ݉݀݋	ܲሻ
Dividing two side to ܽ, we get ܽ௉ିଵ ≡ ͳ	ሺ݉݀݋	ܲሻ or ܽ × ܽ௉ିଶ ≡ ͳ	ሺ݉݀݋	ܲሻ
Hence we can conclude the inversion of any integer ܽ over ܨܩሺܲሻ is ܽ௉ିଶ.

Example.1: For example inversion of 4 over ܨܩሺ͹ሻ is Ͷିଵ ≡ Ͷହ ≡ ʹ	ሺ݉݀݋	͹ሻ. ʹ × Ͷ ≡ ͺ ≡ ͳ	ሺ݉݀݋	͹ሻ
Expanding this technique to ܨܩሺʹ௠ሻ, we can write ܽଶ೘ିଵ = ܽ × ܽଶ೘ିଶ = ͳ	ሺݎ݁ݒ݋	ܨܩሺʹ௠ሻሻ.
Hence, ܽିଵ = ܽଶ೘ିଶ, in which ܽ ∈ .ሺʹ௠ሻܨܩ
To compute ܽଶ೘ିଶ, the most primary method is “square and multiplication” algorithm. In

square and multiplication algorithm instead of ʹ௠ − ͵ multiplications, we calculate ܽଶ೘ିଶ,
with at most ݉ − ͳ squaring and ݉ − ʹ multiplications.

Alg.1: Square and Multiplication Algorithm

Input ܽ ∈ ሺʹ௠ሻܨܩ
Output ܣ = ܽଶ೘ିଶ

1. b=ʹ௠ − ʹ
ܣ .2 = ܽ	
3. while ܾ ≠ ͳ

3.1. if (b is even)
3.1.1. ܾ = ܾ/ʹ
ܣ .3.1.2 = ܣ × ܣ

3.2. else
3.2.1. ܾ = ܾ − ͳ
ܣ .3.2.2 = ܣ × ܽ

4. Return ܣ

www.intechopen.com

Division and Inversion Over Finite Fields 119

To better understand of square and multiplication algorithms, we review the following
equations. As we know, we can decompose ʹ௠ିଶ in the following form. ʹ௠ − ʹ = ʹሺʹ௠ିଵ − ͳሻ = ʹሺʹ௠ିଵ − ʹ + ͳሻ = ʹሺͳ + ʹሺʹ௠ିଶ − ͳሻሻ ⋮ = ʹሺͳ + ʹሺͳ + ʹሺͳ+. . ሻሻሻ
Hence, we can use the above equations to decompose ܽଶ೘ିଶ to: ܽଶ೘ିଶ = ܽଶሺଶ೘షభିଵሻ = ሺܽሺଶ೘షభିଵሻሻଶ = ሺܽሺଶ೘షభିଶାଵሻሻଶ = ሺܽ × ܽሺଶ೘షభିଶሻሻଶ ሺܽ × ܽଶሺଶ೘షమିଵሻሻଶ = ሺܽ × ሺܽሺଶ೘షమିଵሻሻଶሻଶ ⋮ = ሺܽሺܽሺ…ܽሺܽܽଶሻଶ…ሻଶሻଶሻଶ

The square and multiplication algorithm use the same principle to calculate ܽଶ೘ିଶ.

2.1 Itoh and Tsujii algorithm

Itoh and Tsujii (Itoh & Tsujii 1988) offered a more efficient algorithm over normal basis;
however it is applicable over polynomial and other basis. Their algorithm was based on
multiplication which can be applied on some values of ݉. In their algorithm, they reduced
the number of multiplications, significantly. Many efforts have been done to improve Itoh
and Tsujii algorithm and make it more general for all values of ݉ (Guajardo & C. Paar 2002;
Henrıquez, et. al. 2007). Here we review the general form of this algorithm.

To describe Itoh and Tsujii algorithm, we introduce a new term, called addition chain.

Definition addition chain: Addition chain for an integer value such as ݉ − ͳ, is a series of
integers with ݐ elements such that, ݑ଴ = ͳ and ݑ௧ = ݉ − ͳ, and ݑ௜ = ௞௜ݑ + .௝௜ݑ
Where ݇݅ and ݆݅ are two integer values between Ͳ and ݅.
Example.2: If ݉ = ͳͻ͵, then the addition chain could be

1, 2, 3, 6, 12, 24, 48, 96, 192

In this addition chain for all elements of sequence we have ݑ௜ = ௜ିଵݑ + ,ଶݑ ௜ିଵ except forݑ
which ݑଶ = ଵݑ + ଵݑ ଴ݑ .଴ݑ ଶݑ ଷݑ ସݑ

଴ݑ + ଴ݑ ଵݑ + ଴ݑ ଶݑ + ଶݑ ଷݑ + ʹ ଷ ͳݑ ͵ ͸ ͳʹ

www.intechopen.com

Cryptography and Security in Computing 120

଺ݑ ହݑ ଻ݑ ସݑ ଼ݑ + ହݑ ସݑ + ହݑ ଺ݑ + ଺ݑ ଻ݑ + ଻ ʹͶ Ͷͺݑ ͻ͸ ͳͻʹ

Let’s define a function ߚ௞ሺܽሻ = ܽଶೖିଵ, which ܽ ∈ ௠ሺܽሻߚ ሺʹ௠ሻ. We know thatܨܩ = ܽଶ೘ିଵ =ܽିଵ. The other characteristic of this function is enlisted as follow: ߚ௝ା௞ = ௞ଶೕߚ × ଶ௞ߚ ௝ߚ = ௞ଶೖߚ ௞ଶೖାଵ orߚ × ௞ߚ

Hence, to compute ܽିଵ, we should use the equations above and using addition chaining to

achieve ߚ௠ሺܽሻ = ܽଶ೘ିଵ.

Example.3: for ݉ = ͳͻ͵, and above addition chain, we can write the following calculations ݑ଴ = ͳ ߚଵ = ܽଶభିଵݑଵ = ଶߚ ʹ = ሺߚଵሻଶమିଵ = ܽଶమିଵ ݑଶ = ଷߚ ͵ = ሺߚଶሻଶభିଵ × ଷݑଵߚ = ͸ ߚ଺ = ሺߚଷሻଶయ × ଷݑଷߚ = ͳʹ ߚଵଶ = ሺߚ଺ሻଶల × ଷݑ଺ߚ = ʹͶ ߚଶସ = ሺߚଵଶሻଶభమ × ସݑଵଶߚ = Ͷͺ ߚସ଼ = ሺߚଶସሻଶమర × ସݑଶସߚ = ͻ͸ ߚଽ଺ = ሺߚସ଼ሻଶరఴ × ସݑସ଼ߚ = ͳͻʹ ߚଵଽଶ = ሺߚଽ଺ሻଶవల × ଽ଺ߚ
It has been shown that the maximum number of multiplication in this method is ݐ and

the required number of square operation is ݉ − ͳ. The size of addition chain or ݐ is

estimated as ݃݋݈ہଶሺ݉ − ͳሻۂ + ሺܹ݉ܪ − ͳሻ + ͳ, where ܹܪሺ݉ − ͳሻ is the hamming weight of ݉ − ͳ.

For more information and more details, the readers may refer to (Guajardo & C. Paar 2002;

Henrıquez, et. al. 2007).

Itoh and Tsujii algorithm is presented in Alg.2.

After calculating inversion, division simply becomes a multiplication operation.

The advantage of Fermat’s little theorem based inversion algorithm is that, it can be

implemented just by using multiplication and square arithmetic operators. This eliminates

the need to add any extra components, such as dividers. When ECC was proposed, the

www.intechopen.com

Division and Inversion Over Finite Fields 121

dividers were not as advanced as they are now; hence, multiplicative based dividers were

the best candidates for hardware implementation of ECC, particularly over FPGAs. Also it is

possible to use these dividers for reconfigurable cryptosystems, which are designed to

perform both RSA and ECC algorithms. Since the sizes of these cryptosystems are becoming

larger, dropping a big component such as divider is a huge saving on implemented area for

designers. The main drawback of the cipher cores without dividers is the longer

computational time.

Alg.2: Itoh and Tsujii Algorithm to compute inversion

Input ܽ ∈ ሺʹ௠ሻܨܩ
Output ܽିଵ

௨଴ሺܽሻߚ .1 = ܽ
2. For ݅ = ͳ to ݐ do

௨௜ሺܽሻߚ .2.1 = ൫ߚ௨௞௜ሺܽሻ൯ଶೠೕ೔ × ௨௝௜ሺܽሻߚ
3. Return ߚ௨௧ଶ ሺܽሻ

3. Euclidian based dividers

Euclid’s algorithm is an old algorithm to calculate the greatest common divider (GCD) of

two integers. The basic principle of Euclid’s algorithm is that, the greatest common divider

of ܽ and ܾ, ܦܥܩሺܽ, ܾሻ, is equal to the greatest common divider of ܽ and ܽ ± ܾ or in other

word ܦܥܩሺܽ, ܾሻ = ,ሺܽܦܥܩ ܽ ± ܾሻ = ሺܽܦܥܩ ± ܾ, ܾሻ.
Example.4: ܦܥܩሺͳͺ,͵Ͳሻ = ͸,	 ሺͳͺ,͵Ͳሻܦܥܩ ሺ͵Ͳܦܥܩ	= − ͳͺ,ͳͺሻ = ሺͳʹ,ͳͺሻܦܥܩ	 ሺͳͺܦܥܩ		= − ͳʹ,ͳʹሻ = ሺ͸,ͳʹሻܦܥܩ	 ʹሺͳܦܥܩ		= − ͸,͸ሻ = ሺ͸,͸ሻܦܥܩ = ͸	
We can apply the above principle more than once and rewrite this theorem as ܦܥܩሺܽ, ܾሻ ,ሺܽܦܥܩ= ݊ × ܽ ± ݉ × ܾሻ = ሺ݊́ܦܥܩ × ܽ ± ݉́ × ܾ, ܾሻ.
Example.5: GCD(90,525)=15 ܦܥܩሺͻͲ,ͷʹͷ − ͷ × ͻͲሻ = ሺͻͲ,ͷʹͷܦܥܩ − ͶͷͲሻ ሺͻͲ,͹ͷሻܦܥܩ = = ሺ͹ͷ,ͻͲܦܥܩ − ͹ͷሻ ሺ͹ͷ,ͳͷሻܦܥܩ = = ሺͳͷ,͹ͷܦܥܩ − ͵ × ͳͷሻ ሺͳͷ,Ͳሻܦܥܩ = = ͳͷ

To reduce the calculation time, we can offer the Alg.3.

www.intechopen.com

Cryptography and Security in Computing 122

Alg.3: Euclidian algorithm to calculate Greatest Common Divider (GCD)

Input ܽ, ܾ

Output ܦܥܩሺܽ, ܾሻ
1. While (ܾ ≠ Ͳ)

ݐ .1.1 = ܾ
1.2. ܾ = ܾ	݀݋݉	ܽ
1.3. ܽ	 = ݐ	

2. Return (ܽ)

The above algorithm can be made more compact using a recursive approach. Alg. 4 presents

the recursive and more compact version of Alg. 3.

Alg.4: Euclidian algorithm to calculate Greatest Common Divider
(Recursive Approach)

Input ܽ, ܾ

Output ܦܥܩሺܽ, ܾሻ
1. if (ܾ = Ͳ)

1.1. Return (ܽ)
2. else

2.1. Return (ܦܥܩሺܽ, ܽ ݀݋݉ ܾሻ)
We provide a useful theorem below which will be used this section, to make the Euclidian

algorithm more general for our purpose.

Theorem: let’s assume ܾ = ܽ × ݍ + ,ሺܽܦܥܩ Then .ݎ ܾሻ = ,ሺܽܦܥܩ	 ,ሺܽܦܥܩ ሻݎ ܾሻ = ,ሺܽܦܥܩ	 ܾ − ܽ × ሻݍ
 	= ,ሺܽܦܥܩ	 ሻݎ

The simple proof for this theorem is by applying Euclid’s theorem (ܦܥܩሺܽ, ܾሻ = ,ሺܽܦܥܩ	 ܾ −ܽሻ) for ݍ times, to give the same relationship.

In order to use Euclid’s theorem for division or inversion, assume two values such as ܽ and ܾ. We have already seen how to compute ݀ = ,ሺܽܦܥܩ ܾሻ. We know that there are two

variables, ݔ and ݕ, which satisfies the following equation ܽ × ݔ + ܾ × ݕ = ݀

If we can design an algorithm which accepts ܽ and ܾ, and produces ݔ and ݕ; we can use that

algorithm to find inversion. Assume ܲ is a prime value and ܽ is an integer where Ͳ < ܽ <ܲ − ͳ. We know ݒ = ,ሺܽܦܥܩ ܲሻ = ͳ. Hence, applying the above algorithm, we can find ݔ

and ݕ which ܽ × ݔ + ܲ × ݕ = ͳ.

www.intechopen.com

Division and Inversion Over Finite Fields 123

If we use that algorithm over the finite field, ܨܩሺܲሻ, we can calculate the inverse of ܽ which

is ݔ (i.e. ܽିଵ = such that it satisfy the ݕ and ݔ Using the algorithm above, it gives us .(ݔ

equation: ܽ × ݔ + ܲ × ݕ = ͳ. Over the finite field, ܨܩሺܲሻ, ܲ × ݕ = Ͳ. Then ܽ × ݔ + ܲ × ݕ = ͳ

over ܨܩሺܲሻ could be simplified to ܽ × ݔ = ͳ. Then ݔ is the inversion of ܽ over ܨܩሺܲሻ.
Let’s ܦܥܩሺܽ௜ , ܾ௜ሻ = ݀. We know there are two integer values, ݔ௜ and ݕ௜ such that (where one

of the values is smaller than zero): ܽ௜ × ௜ݔ + ܾ௜ × ௜ݕ = ݀.

Based on Euclid’s theorem, we can write ܦܥܩሺܽ௜ , ܾ௜ − ܽ௜ݍ௜ሻ = ݀. Hence, the equation above

can be rewritten as: ܽ௜ × ௜ାଵݔ + ሺܾ௜ − ܽ௜ݍ௜ሻ × ௜ାଵݕ = ݀.

By rearranging this equation, we can write: ܽ௜ × ௜ାଵݔ − ܽ௜ݍ௜ × ௜ାଵݕ + ܾ௜ × ௜ାଵݕ = ܽ௜ × ሺݔ௜ାଵ − ௜ݍ × ௜ାଵሻݕ + ܾ௜ × ௜ାଵݕ = ݀

Then we can conclude:

௜ݔ = ௜ାଵݔ − ௜ݍ × ௜ݕ ௜ାଵݕ = .௜ାଵݕ
(1)

Similarly, for	ܦܥܩሺܽ௜ − ܾ௜ݍ௜ , ܾ௜ሻ = ݀, we can write the same equations and conclude

௜ݕ = ௜ାଵݕ − ௜ݍ × ௜ݔ ௜ାଵݔ = .௜ାଵݔ
(2)

If we perform the Euclidian algorithm to calculate ݀, at the final step or loop ܦܥܩሺܽ௡, ܾ௡ሻ ,ሺܽ௡ܦܥܩ= ܽ௡ݍ௡ሻ = ܽ௡ = ݀. The above relationship for this step will be ܽ௡ × ௡ݔ + ܾ௡ × ௡ݕ = ܽ௡ × ௡ݔ + ܽ௡ݍ௡ × ௡ݕ = ܽ௡ = ݀

So ݔ௡ = ͳ and ݕ௡ = Ͳ.

Example.6: Let’s ܽ = ͵͹ and ܾ = ͳ͹

 ͵͹ݔ଴ + ͳ͹ݕ଴ = ͳ ሺ͵͹ − ʹ × ͳ͹ሻݔ଴ + ͳ͹ݕ଴ = ͳ ݍ଴ = ʹ

ଵݔ͵ + ͳ͹ݕଵ = ͳ ͵ݔଵ + ሺͳ͹ − ͷ × ͵ሻݕଵ = ͳ ݍଵ = ͷ

www.intechopen.com

Cryptography and Security in Computing 124

ଶݔ͵ + ଶݕʹ = ͳ ሺ͵ − ͳ × ʹሻݔଶ + ଶݕʹ = ͳ ݍଶ = ͳ ݔଷ + ଷݕʹ = ͳ ݔଷ + ሺʹ − ʹ × ͳሻݕଷ = ͳ ݍଷ = ସݔ ʹ = ͳ

Using (1) and (2) for the above relation in backward (start from ݔସ, ݕସ and ݍଷ), we can

calculate ݔ଴ and ݕ଴. ݕଷ = ସݕ = Ͳ ݔଷ = ସݔ − ସݕଷݍ = ͳ ݔଶ = ଷݔ = ͳ ݕଶ = ଷݕ − ଷݔଶݍ = −ͳ ݕଵ = ଶݕ = −ͳ ݔଵ = ଶݔ − ଶݕଵݍ = ͸ ݔ଴ = ଵݔ = ͸ ݕ଴ = ଵݕ − ଵݔ଴ݍ = −ͳ͵

Then finally: ͵͹ × ͸ + ͳ͹ × ሺ−ͳ͵ሻ = ͳ

Hence, one way of finding ݔ and ݕ is to execute Euclidian algorithm. Then calculate ݔ௜ and ݕ௜ based on the equations above. Alg.5 is based on this idea.

Alg.5: Algorithm of Finding ݔ and ݕ

Input: ܽ, ܾ			ሺܾ ൒ ܽሻ
Output: ܦܥܩሺܽ, ܾሻ, ,ݔ ݕ

ଵݕ .1 = ͳ	
ଶݕ .2 = Ͳ	
ଵݔ .3 = ͳ	
ଶݔ .4 = Ͳ	
5. While (ܽ ≠ ͳ)

ݍ .5.1 = ቔ௕௔ቕ ; ݎ	 = ܾ − ;ܽݍ ݔ	 = ଶݔ − ;ଵݔݍ ݕ	 = ଶݕ − ;ଵݕݍ
5.2. ܾ = ܽ; 	ܽ = ଶݔ	;ݎ = ;ଵݔ ଵݔ	 = ଶݕ	;ݔ = ;ଵݕ ଵݕ	 = ;ݕ

6. ݀ = ܾ;	
ݔ .7 = 		;ଶݔ
ݕ .8 = ;ଶݕ
9. Return (݀, ,ݔ (ݕ

In order to get better impression about the role of ݔଵ, ݔଶ, ଶ in Alg.5 (and Alg.6) weݕ ଵ andݕ

recommend to extend the last two equations of example.6 (i.e. ݕ଴ and ݔ଴) and rewrite them

with ݍ௜, ݕସ and ݔସ.

All the substitutions at step 5.1 and 5.2 of Alg.5 should be executed at the same time.

www.intechopen.com

Division and Inversion Over Finite Fields 125

We can simplify this algorithm for ܽ and ܲ (where Ͳ ൑ ܽ < ܲ, and ܲ is a prime number) to
calculate ܽିଵ over ܨܩሺܲሻ (Alg.6).

Alg.6: Algorithm of Computing Inversion Over ܨܩሺܲሻ
Input: ܲ, ܽ ∈ ሺܲሻܨܩ
Output: ܽିଵ

ଵݕ .1 = ͳ	
ଶݕ .2 = Ͳ	
3. While (ܽ ≠ ͳ)

ݍ .3.1 = ቔ௉௔ቕ
3.2. ܽ = ܲ − ;ܽݍ 	ܲ = ଶݕ	;ܽ = ଵݕ	;ଵݕ = ଶݕ − ଵݕݍ

4. Return (ݕଵ)

All the operations on Alg.6 are performs over ܨܩሺܲሻ. All the substitutions at step 3.2 of
Alg.6 should be done simultaneously.

In the algorithm above, we should perform a division at each loop (step 3.1.). To avoid
division, we can assume if ܲ ൒ ܽ then ݍ =1 and if ܲ < ܽ then ݍ = Ͳ or swap ܽ and ܲ and ݕଵ
and ݕଶ values. Then we can compute ܦܥܩሺܽ, ܾ − ܽሻ, instead of computing ܦܥܩሺܽ, ܾሻ ,ሺܽܦܥܩ= ܾ − .ሻ. This technique increases the number of iterationsݍܽ

Modifying the above algorithms for polynomial basis, we have Alg.7. All operations in
Alg.7 should be done over ܨܩሺʹ௠ሻ. In Alg.7, ܲ represents the irreducible polynomial of ܨܩሺʹ௠ሻ.

Alg.7: Algorithm of Computing Inversion Over ܨܩሺʹ௠ሻ
Input: ܽ ∈ ሺʹ௠ሻܨܩ
Output: ܽିଵ

ଵݕ .1 = ͳ	
ଶݕ .2 = Ͳ	
3. While (ܽ ≠ ͳ)

3.1. ܽ = ܲ + ܽ; 	ܲ = ଶݕ	;ܽ = ଵݕ	;ଵݕ = ଶݕ + ଵݕ
4. Return (ݕଵ)

Example.7: let’s assume we want to calculate ͳ/͹ over ܨܩሺͳ͹ሻ
www.intechopen.com

Cryptography and Security in Computing 126

ଵݕ = ͳ							ݕʹ = Ͳ							ܽ = ͹							ܲ = ͳ͹ ݕଵ = −ͳ							ݕʹ = ͳ							ܽ = ͳͲ							ܲ = ͹ ݕଵ = ͳ							ݕʹ = −ͳ							ܽ = ͹							ܲ = ͳͲ ݕଵ = ʹݕ							ʹ− = ͳ							ܽ = ͵							ܲ = ͹ ݕଵ = ʹݕ							͵ = −ʹ							ܽ = Ͷ								ܲ = ଵݕ ͵ = ʹݕ							ʹ− = ͵							ܽ = ͵								ܲ = Ͷ ݕଵ = ͷ							ݕʹ = −ʹ							ܽ = ͳ								ܲ = ͵

Then ͹ିଵ = ͷ over ܨܩሺͳ͹ሻ.
The reviewed algorithm, so far, calculates inversion. After an inversion is calculated, simply
multiply ݕଵ to create a division. In (Takagi 1998), N. Takagi offered an algorithm which
directly calculates division.

This algorithm is based on two concepts:

(1) If ܽ is even and ܲ is odd, then ܦܥܩሺܽ, ܲሻ = ,ʹ/ሺܽܦܥܩ ܲሻ;
(2) If both ܽ and ܲ are odd, then ܦܥܩሺܽ, ܲሻ = ሺሺܽܦܥܩ − ܲሻ/ʹ, ܽሻ ሺ௔ି௉ଶܦܥܩ=	 , ܲሻ; Where in the proposed algorithm, we choose the minimum

of ܽ and ܲ (i.e. ܦܥܩሺܽ, ܲሻ = ሺሺܽܦܥܩ − ܲሻ/ʹ,min	{ܽ, ܲ}ሻ).
The proposed algorithm over ܨܩሺܲሻ is presented as Alg.8. In Alg.8, ܾ଴ represents the least
significant bit (LSB) of ܾ. Also all operation are performed over ܨܩሺܲሻ.

Alg.8: Algorithm of Computing Division Over ܨܩሺܲሻ
Input: ܲ, ܽ ∈ ,ሺܲሻܨܩ ܾ ∈ ሺܲሻܨܩ
Output: ܽ ܾൗ

ݒ .1 = Ͳ	
2. While (ܾ > Ͳ)

2.1. While (ܾ଴ = Ͳ)
2.1.1. ܾ = ܾ/ʹ	; 	ܽ = ܽ/ʹ	;	

2.2. If (ܾ ൒ ܲ)	
2.2.1. ܾ = ܾ − ܲ; 	ܽ = ܽ − 	;ݒ

2.3. else
2.3.1. ܾ = ܲ − ܾ; 	ܲ = ܾ;
2.3.2. ܽ = ݒ − ܽ; ݒ	 = ܽ;

3. Return (ݒ)

www.intechopen.com

Division and Inversion Over Finite Fields 127 ܲ values decrease at each step. At the final step, ܾ and ܲ are zero and one, respectively. This
algorithm will finish at most after ʹ݉ − ͳ iterations, where ʹ௠ିଵ < ܲ < ʹ௠.

Alg.9: Algorithm of Computing Division Over ܨܩሺʹ௠ሻ
Input: ܲሺݔሻ, ܽ ∈ ,ሺʹ௠ሻܨܩ ܾ ∈ ሺʹ௠ሻܨܩ
Output: ܽ ܾൗ

ݒ .1 = Ͳ;	
2. While ሺሺܽ ≠ Ͳሻ	ܽ݊݀	ሺܲ ≠ ͳሻሻ

2.1. If (ܾ଴ = ͳ)
2.1.1. If (ܾ ൒ ܲ)	

2.1.1.1. ܾ = ܾ + ܲ; 	ܽ = ܽ + 	;ݒ
2.1.2. else

2.1.2.1. ܾ = ܲ + ܾ; 	ܲ = ܾ;
2.1.2.2. ܽ = ݒ + ܽ; ݒ	 = ܽ;

2.2. ܾ = ܾ/ʹ;	
2.3. ܽ = ܽ/ʹ;

3. Return (ݒ)

To extend this algorithm to be applicable over ܨܩሺʹ௠ሻ, the following changes should be
applied; Assume ܲሺݔሻ as irreducible polynomial (It is known that ଴ܲ is always 1) and
substitute ܲሺݔሻ with ܲ. The degrees of the most significant nonzero bit of ܾሺݔሻ and ܲሺݔሻ will
distinguish which variable is larger (in step 2.2). Hence, the algorithm will be as Alg.9.

Alg.10: Modified Algorithm of Computing Division Over ܨܩሺʹ௠ሻ
Input: ܲሺݔሻ, ܽ ∈ ,ሺʹ௠ሻܨܩ ܾ ∈ ሺʹ௠ሻܨܩ
Output: ܽ ܾൗ

ݒ .1 = Ͳ;	
2. While ሺሺܽ ≠ Ͳሻ	ܽ݊݀	ሺܲ ≠ ͳሻሻ

2.1. If (ܾ଴ = ͳ)
2.1.1. If ሺߜ < Ͳሻ

2.1.1.1. ܾ = ܾ + ܲ; ܲ = ܾ;	
2.1.1.2. ܽ = ܽ + ݒ ;ݒ = ܽ;	
ߜ .2.1.1.3 = 	;ߜ−

2.1.2. else
2.1.2.1. ܾ = ܲ + ܾ;
2.1.2.2. ܽ = ݒ + ܽ;

2.2. ܾ = ܾ/ʹ;	
2.3. ܽ = ܽ/ʹ;
ߜ .2.4 = ߜ − ͳ;

3. Return (ݒ)

www.intechopen.com

Cryptography and Security in Computing 128

This algorithm, takes at most ʹ݉ − ͳ iterations to finish. Checking the degree of ܾ and ܲ, is a
costly operation in hardware implementation. In (Brent & Kung 1983), Brent and Kung
reduced this complexity by adopting a new idea. They used a new variable, ߜ, to represent
the difference of upper bounds of degree ܾ and ܲሺݔሻ. In (Brent & Kung 1983) they use this
method to calculate the Greatest Common Divisor of two variables. However this method
can be used to calculate division.

At the initialization step, ߜ should be equal to −ͳ. Then the above algorithm has to be
changed as Alg.10.

Example.8: Let’s ܽ = ͳͳͲͳ, ܾ = Ͳͳͳͳ and the irreducible polynomial is ܲሺݔሻ = ସݔ + ݔ + ͳ. ߜ = −ͳ			ܾ = Ͳͳͳͳ			ܲ = ͳ	ͲͲͳͳ			ܽ = ͳͳͲͳ			ݒ = Ͳ ߜ = Ͳ						ܾ = ͳͲͳͲ			ܲ = Ͳ	Ͳͳͳͳ			ܽ = ͳͳͳͳ			ݒ = ͳͳͲͳ ߜ = −ͳ			ܾ = ͲͳͲͳ			ܲ = Ͳ	Ͳͳͳͳ			ܽ = ͳͳͳͲ			ݒ = ͳͳͲͳ ߜ = Ͳ						ܾ = ͲͲͲͳ			ܲ = Ͳ	ͲͳͲͳ			ܽ = ͳͲͲͲ			ݒ = ͳͳͳͲ ߜ = −ͳ			ܾ = ͲͲͳͲ			ܲ = Ͳ	ͲͳͲͳ			ܽ = ͲͲͳͳ			ݒ = ͳͳͳͲ ߜ = −ʹ			ܾ = ͲͲͲͳ			ܲ = Ͳ	ͲͳͲͳ			ܽ = ͳͲͲͲ			ݒ = ͳͳͳͲ ߜ = −ͳ			ܾ = ͲͲͳͲ			ܲ = Ͳ	ͲͲͲͳ			ܽ = ͲͲͳͳ			ݒ = ͳͲͲͲ

The final step to improve the algorithm above is applied within the loop. Hardware

implementation of “ݓℎ݈݅݁” statement is difficult. This is because the number of iterations is

an unknown variable, making it inappropriate for cryptographic cores and particularly

systolic implementations. We know that this algorithm takes at most ʹ݉ − ͳ iterations.

Hence, instead of a “ݓℎ݈݅݁” loop, we implement a “݂ݎ݋” loop. This modification can be done

by a simple change in Alg.10. In step.2, instead of “While ሺሺܽ ≠ Ͳሻ	ܽ݊݀	ሺܲ ≠ ͳሻሻ” we should

write “For ݅ = ͳ	to	ʹ݉ − ͳ”.

So far we have presented very general forms of divider algorithms. We reviewed all the

proposed algorithms because each one has a unique characteristic that makes it more

efficient for a specific design of a core. Many research papers have been done to improve the

above algorithms and make them more efficient for hardware implementations. For

example, in (Wu, Shieh & Hwang 2001), the designers proposed a new algorithm. In their

algorithms, they eliminate ߜ and use two other variables to Instead of comparing ߜ

relationship to zero, they only check two bits of their new adopted variables in their

algorithm; thus making the new algorithms more efficient for hardware (by eliminating step

2.1.1 in Alg.10). Another example can be seen in (Zadeh 2007), where the number of

iterations is reduced from ʹ݉ − ͳ to ݉ by combining two loop iterations. The paper

explores how a number of modifications can reduce the number of conditional statements.

Other similar classes of dividers have been proposed such as Dual Field Modular dividers

or Unified Modular Division (UMD). These classes perform division on two finite field (over ܨܩሺܲሻ and ܨܩሺʹ௠ሻ). Unified Modular Dividers have been applied in some applications such

as network servers (Wolkerstorfer 2002; Tenca & Tawalbeh 2004).

www.intechopen.com

Division and Inversion Over Finite Fields 129

Euclidian algorithm is the most efficient algorithm for division in terms of area and time.
Until now, not many hardware platforms were able to implement this algorithm. Advances
in technology of ASIC offer many high capacity reconfigurable platforms such as FPGA. It
gives hardware designers the ability of using these dividers in real applications. It is
foreseeable that Euclidian dividers will be more widely implemented in the future.

4. Conclusion

In this chapter, we have reviewed two common classes of dividers which are widely used
for cryptographic purpose. The most common dividers to be implemented in Elliptic Curve
Cryptography and other cryptographic cores are multiplicative based dividers (based on
Fermat’s little theorem) and Euclidian based dividers.

To perform division over finite field, some other dividers have been proposed such as
“Wiener-Hopf equation” based dividers. In Wiener-Hopf based dividers, the divisor (ܾ)
should expand to an ݉ ×݉ matrix, ܤ, then the linear equation ܤ × ݒ = ܽ should be solved
to get ݒ .ݒ can be calculated using Gaussian elimination algorithm (Morii, Kasahara &
Whiting 1989; Hasan & Bhargava 1992). The hardware efficiency of these dividers are not
comparable with multiplicative and Euclidian based dividers.

In terms of implementation area multiplicative based dividers are very efficient. Since they
don’t need any extra component on the circuit and they can perform division using
embedded components of the cipher cores. Also in term of speed, Euclidian based dividers
are very fast.

5. References

Brent R. P., Kung H. T., (Aug. 1983), “Systolic VLSI arrays for linear time GCD
computation”, in VLSI-83, pp: 145—154, Amsterdam.

Chen C., Qin Z., (June 2011), “Efficient algorithm and systolic architecture for modular
division”, International Journal of Electronics, vol. 98, No. 6, pp: 813—823.

Diffie W., Hellman M. E., (Nov. 1976), “New directions in cryptography”, IEEE Transactions
on Information Theory, vol. IT-22, pp: 644–654.

Dormale G. M. D., Quisquater J. , (2006), “Iterative modular division over	GFሺʹ୫ሻ: novel
algorithm and implementations on FPGA”, Applied Reconfigurable Computing –
ARC 2006, pp: 370—382.

Guajardo Jorge, Paar Christof, (2002), “Itoh-Tsujii inversion in standard basis and its
application in cryptography and codes”, Designs, Codes and Cryptography, vol.
25, pp: 207—216.

Hankerson, Darrel, Menezes, Alfred J., Vanstone, Scott, (2004), “Guide to elliptic curve
cryptography”, Springer-Verlag, ISBN: 978 0 387 95273 4.

Hasan M.A., Bhargava V.K., (Aug. 1992), “Bit-serial systolic divider and multiplier for finite
fields GFሺʹ୫ሻ”, IEEE Transaction on Computers, vol. 41, No. 8, pp: 972—980.

Itoh T., Tsujii S., (1988), “A fast algorithm for computing multiplicative inverses in GFሺʹ୫ሻ
using normal basis”, Information and computing, vol. 78, pp: 171-177.

Kim Chang Hoon, Hong Chun Pyo, (July 2002), “High speed division architecture for GFሺʹ୫ሻ”, Electronics Letters, vol. 38, No.15, pp: 835—836.

www.intechopen.com

Cryptography and Security in Computing 130

Koblitz N., (1987), "Elliptic curve cryptosystems", Mathematics of Computation, vol. 48, pp:
203–209.

Miller V. S., (1985), "Use of elliptic curves in cryptography", H.C. Wiliams, Ed., Advances in
Cryptology, CRYPTO 85, LNCS, vol. 218, pp: 417–426.

Morii M., Kasahara M., Whiting D. L., (Nov. 1989), “Efficient bit serial multiplication and the
discrete time Wiener Hopf equation over finite fields”, IEEE Transaction on
Information Theory, vol. 35, pp:1177—1183.

Rodrıguez-Henrıquez Francisco, Morales-Luna Guillermo, Saqib Nazar A., Cruz-Cortes
Nareli, (2007), “Parallel Itoh-Tsujii multiplicative inversion algorithm for a special
class of trinomials”, Des. Codes Cryptography, pp: 19—37.

Takagi N., (May 1998), “a vlsi algorithm for modular division based on the binary GCD
algorithm”, IEICE Transaction on Fundamentals, vol. E81-A, No.5, pp: 724—728.

Takagi N., Yoshika J., Takagi K., (May 2001), “A fast algorithm for multiplicative inversion
in GFሺʹ୫ሻ using normal basis”, IEEE Transaction on Computers, vol. 50, No. 5, pp:
394—398.

Tawalbeh L. A., Tenca A. F., (Sep. 2004), “An algorithm and hardware architecture for
integrated modular division and multiplication in GFሺPሻ and GFሺʹ୬ሻ”, Application
Specific Systems, Architectures and Processors 2004, IEEE, pp: 247—257.

Tenca A. F., Tawalbeh L.A., (March 2004), “Algorithm for unified modular division in GFሺPሻ
and GFሺʹ୫ሻ suitable for cryptographic hardware”, Electronics Letters, vol. 40, No.
5, pp: 304—306.

Wolkerstorfer Johannes, (2002), “Dual-field arithmetic unit for GFሺPሻ and GFሺʹ୫ሻ”,
International Workshop on Cryptographic Hardware and Embedded Systems
CHES 2002, LNCS, vol. 2523, pp: 500—514.

Wu C., Wu C., Shieh M., Hwang Y., (2001), "Systolic VLSI realization of a novel iterative
division algorithm over GFሺʹ୫ሻ: a high-speed, low-complexity design", ISCAS, pp:
33—36.

Wu C., Wu C., Shieh M., Hwang Y., (2004), "High speed, low complexity systolic designs of
novel iterative division algorithms in GFሺʹ୫ሻ", IEEE Transaction on Computers, pp:
375—380.

Wu C. H., Wu C. M., Shieh M. D., Hwanng Y. T. , (Aug 2000), “Novel iterative division
algorithm over GFሺʹ୫ሻ and its systolic VLSI realization”, Circuits and Systems, pp:
280—283.

Zadeh Abdulah Abdulah, (2007), “High speed modular divider based on GCD algorithm”,
Information and Communications Security, ICICS, LNCS, pp: 189—200.

www.intechopen.com

Cryptography and Security in Computing

Edited by Dr. Jaydip Sen

ISBN 978-953-51-0179-6

Hard cover, 242 pages

Publisher InTech

Published online 07, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The purpose of this book is to present some of the critical security challenges in today's computing world and

to discuss mechanisms for defending against those attacks by using classical and modern approaches of

cryptography and other defence mechanisms. It contains eleven chapters which are divided into two parts.

The chapters in Part 1 of the book mostly deal with theoretical and fundamental aspects of cryptography. The

chapters in Part 2, on the other hand, discuss various applications of cryptographic protocols and techniques

in designing computing and network security solutions. The book will be useful for researchers, engineers,

graduate and doctoral students working in cryptography and security related areas. It will also be useful for

faculty members of graduate schools and universities.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Abdulah Abdulah Zadeh (2012). Division and Inversion Over Finite Fields, Cryptography and Security in

Computing, Dr. Jaydip Sen (Ed.), ISBN: 978-953-51-0179-6, InTech, Available from:

http://www.intechopen.com/books/cryptography-and-security-in-computing/division-and-inversion-over-finite-

fields

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

