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1. Introduction 

The induction motor (IM) is widely used in industry because of its well known advantages 

such as simple construction, less maintenance, reliability and low cost. However, it is highly 

nonlinear, multivariable, time-varying system and, contrary to DC motor, requires more 

complex methods of control. Therefore, this machine constitutes a theoretically challenging 

control problem. 

One of the most important development in control area for induction motor has been field 

oriented control (FOC) established firstly by (Blaschke, 1972). However, the performance of 

this technique is affected by the motor parameter variations and unknown external 

disturbances. To improve the dynamic response and reduce the complexity of FOC 

methods, an extension amount of work has been done to find new methods, such as direct 

torque control (DTC), sliding mode and nonlinear control (Barut et al., 2005; Chen & 

Dunnigan, 2003; Chiasson, 1996; Marino et al. 1993). 

Model based predictive control (MPC) is one of the most promising control methods for both 
linear and nonlinear systems. The MPC formulation integrates optimal control, multivariable 
control, and the use of future references. It can also handle constraints and nonlinear 
processes, which are frequently found in industry. However, the computation of the MPC 
requires some mathematical complexities, and in the way of implementing and tuning this 
kind of controller, the computation time of the MPC may be excessive for the sampling time 
required by the process. Therefore, several MPC implementations were done for slow 
processes (Bordons & Camacho, 1998; Garica et al., 1989; Richalet, 1993). However, the explicit 
formulation of MPC allows its implementation in fast linear systems (Bemporad et al. 2002).  

A review of fast method for implementing MPC can be found in (Camacho & Bordons, 
2004). In case of nonlinear systems, where the mathematical packages are available in 
research control community, and thanks to the advancement of signal processing 
technology for control techniques, it becomes easy to implement these control schemes. 
Many works have been developed in nonlinear model predictive control (NMPC) theory 
(Ping, 1996; Chen et al., 1999; Siller-Alcala, 2001; Feng et al., 2002). A nonlinear PID model 
predictive controller developed in (Chen et al., 1999), for nonlinear control process, can 
improve some desirable features, such as, robustness to parameters variations and external 
disturbance rejection. The idea is to develop a nonlinear disturbance observer, and by 
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embedding the nonlinear model predictive control law in the observer structure, it allows to 
express the disturbance observer through a PID control action. The NMPC have been 
implemented in induction motor drive with good performance (Hedjar et al., 2000; Hadjar et 
al. 2003; Maaziz et al., 2000; Merabet et al., 2006; Correa et al., 2007; Nemec et al., 2007). 
However, in these works, the load torque is taken as a known quantity to achieve accurately 
the desired performance, which is not always true in the majority of the industrial 
applications. Therefore, an observer for load torque is more than necessary for high 
performance drive. The design of such observer must not be complicated and well 
integrated in the control loop. 

This chapter presents a nonlinear PID model predictive controller (NMPC PID) application 
to induction motor drive, where the load torque is considered as an unknown disturbance. 
A load torque observer is derived from the model predictive control law and integrated in 
the control strategy as PID speed controller. This strategy unlike other techniques for load 
torque observation (Marino et al., 1998; Marino et al., 2002; Hong & Nam, 1998; Du & Brdys, 
1993), where the observer is an external part from the controller, allows integrating the 
observer into the model predictive controller to design a nonlinear PID model predictive 
controller, which improves the drive performance. It will be shown that the controller can be 
implemented with a limited set of computation and its integration in the closed loop scheme 
does not affect the system stability. In the development of the control scheme, it is assumed 
that all the machine states are measured. In fact a part of the state, the rotor flux, is not easily 
measurable and it is costly to use speed sensor. In literature, many techniques exist for state 
estimation (Jansen et al., 1994; Leonhard, 2001). A continuous nonlinear state observer based 
on the observation errors is used in this work to estimate the state variables. The coupling 
between the observer and the controller is analyzed, where the global stability of the whole 
system is proved using the Lyapunov stability. For this reason, a continuous version of 
NMPC is used in this work. 

The rest of the chapter is organized as follows. In section 2, the induction motor model is 
defined by a nonlinear state space model. In section 3, the NMPC control law is developed 
for IM drive with an analysis of the closed loop system stability. In section 4, the load torque 
is considered as a disturbance variable in the machine model, and a NMPC PID control is 
applied to IM drive. Then, the coupling between the controller and the state observer is 
discussed in section 5, where the global stability of the whole system is proven theoretically. 
In section 6, simulation results are given to show the effectiveness of the proposed control 
strategy. 

2. Induction motor modeling  

The stator fixed (┙-┚) reference frame is chosen to represent the model of the motor. Under 
the assumption of linearity of the magnetic circuit, the nonlinear continuous time model of 
the IM is expressed as 

 t t( ) ( ) ( ) ( )  1x f x g x u  (1) 

where 

T T

s s r r s si i u u,             x = u  
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The state x belongs to the set  5
r rΩ 2 2: 0     x . 

Vector function f(x) and constant matrix g1(x) are defined as follows. 
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The outputs to be controlled are 

 
r r r
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y h x   (2) 

f(x) and h(x) are assumed to be continuously differentiable a sufficient number of time. is┙, is┚ 

denote stator currents, r r,   rotor fluxes, ω rotor speed, us┙, us┚ stator voltages, Rs, Rr 

stator and rotor resistances, Ls, Lr, Lm stator, rotor and mutual inductances, p number of 

poles pair, J inertia of the machine, fr friction coefficient, Tr= Lr/Rr rotor time constant, ┫ 
leakage coefficient and TL load torque. 

3. Nonlinear model predictive control 

Nonlinear model predictive control (NMPC) algorithm belongs to the family of optimal 

control strategies, where the cost function is defined over a future horizon  

          
r

T
t t t t d

0

1
( , )

2



            r rx u y y y y  (3) 

where ┬r is the prediction time, y(t+┬) a ┬-step ahead prediction of the system output and 

yr(t+┬) the future reference trajectory. The control weighting term is not included in the cost 

function (3). However, the control effort can be achieved by adjusting prediction time. More 

details about how to limit the control effort can be found in (Chen et al., 1999). 

The objective of model predictive control is to compute the control u(t) in such a way the 

future plant output y(t+┬) is driven close to yr(t+┬). This is accomplished by minimizing .  
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The relative degree of the output, defined to be the number of times of output 
differentiation until the control input appears, is r1=2 for speed output and r2=2 for flux 
output. Taylor series expansion (5) can be used for the prediction of the machine outputs in 
the moving time frame. The differentiation of the outputs with respect to time is repeated r 
times.  
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   (4) 

The predicted output y(t+┬) is carried out from (4) 

    t t( )  y Τ Y                                (5) 

where 
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I I I
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( )
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The outputs differentiations are given in matrix form as 
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where 
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A similar computation is used to find the predicted reference yr(t+┬) 

      t t  r ry Τ Y                         (8) 

where 
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ref ref
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 r r r r
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Using (7) and (8), the cost function (3) can be simplified as 

          T
t t t t

1
( , )

2
   r rx u Y Y Π Y Y                   (9) 
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where 
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The optimal control is carried out by making 
u
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The conditions     r r0 , 0 0     and the set  r r
2 2 0      allow G1 to be invertible. 

The singularity of this matrix occurs only at the start up of the motor, which can be avoided 

by putting initial conditions of the state observer different from zero. Let the optimal control 

(10) is developed as: 

         i i
i

i

t L t
2

1 [ ]

0





 
   

 
1 f ru G x K h x y                                 (11) 

where 

rr

K I K I I K K0 0 2 2 1 1 2 2 2 2 2 0 12
10 5* ; * ; ; ;

23   
 

     
 

K K K  

4. Nonlinear PID predictive control 

In the development of the NMPC, the load torque is taken as a known parameter and its 

values are used in the control law computation. In case, where the load torque is considered 

as an unknown disturbance, the nonlinear model of motor with the disturbance variable is 

given by 
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 Lt t T t( ) ( ) ( ) ( ) ( ) ( )   1 2x f x g x u g x                            (12) 

where 

 

T

g
J

21

1
[ ] 0 0 0 0

 
   

 
2g   

The function f(x) in (12) is similar to the one in (1), but without the term (–TL/J). 
We assume that the load torque follows this condition 

 0)( tTL
                        (13) 

Note that the assumption (13) does not necessarily mean a constant load torque, but that the 
changing rate of the load in every sampling interval should be far slower than the motor 
electromagnetic process. In reality this is often the case. 

On the basis of equations (12), (13) and (9) it can be shown, in a manner similar to (10), that 
the optimal control becomes 

     T  T
Lt  [ I ]  I  T t1 1 1

2 2 2 2( ) [ ] ( ) ( )  
   1 3 2 3 2 2u G x Π Π M Π Π G x            (14) 

where 

T

g gL h L L h
21 211 1( ) 0 0 ( ) 0 ( ) 0   2 fG x x x  

The optimal NMPC PID proposed in (Chen et al., 1999) has been developed for the same 
output and disturbance relative degrees. However, in the motor model (12), the disturbance 
relative degree is lower than the output one, which can be seen in the forms of G1(x) and 
G2(x). The same method is used in this work, to prove that even in this case a NMPC PID 
controller can be applied to induction motor drive. 

From (12), we get 

 LT t t t( ) ( ) ( ) ( ) ( ) ( )  2 1g x x f x g x u                  (15) 

An initial disturbance observer is given by 

  )()()()()()(ˆ)()()(ˆ tttTtT LL uxgxfxxlxgxl 12  
               (16) 

In (16), l(x) 5 is a gain vector to be designed. 
The error of the disturbance observer is 

 
LT L Le t T t T tˆ( ) ( ) ( )                   (17) 

Then, the error dynamic is governed by 

 
L LT Te t x x e t( ) ( ) ( ) ( ) 0 

2l g               (18) 

It can be shown that the observer is exponentially stable when 
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     c c, 0 2l x g x            (19) 

The disturbance (load torque) TL is replaced by its estimated value in the control law given 
by (14); which then becomes 

     T  T
Lt  [ I ]  I  T t1 1 1

2 2 2 2
ˆ( ) [ ] ( ) ( )  

   1 3 2 3 2 2u G x Π Π M Π Π G x         (20) 

Substituting (20) into (16) yields  
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2 1
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l x f lg lg u

l x f lg lg G Π Π M Π Π G
           (21) 

Based on the definition of G2(x), (14) and the condition (19), let’s define (see B6)   

 
L h h

p K
x

1 1
0 1

( )
( ) ,

      
f x

l x
x

 p0≠0 is a constant          (22) 

Substituting l(x) into (21), and using Lie derivatives simplifications (see appendix B), we get 
a simple form for load torque disturbance estimator. 

  L ref ref refT p K K0 1 0
ˆ ( ) ( ) ( )                           (23) 

Integrating (23), we get 

 
t

LT p e t K e t K e d0 1 0

0

ˆ ( ) ( ) ( )    
 

    
 

             (24) 

The structure of this observer is driven by three tunable parameters, where p0 is an 
independent parameter and Ki (i=0, 1) depend on the controller prediction horizon ┬r. It can 
be seen that the load toque observer has a PID structure, where the information needed is 
the speed error. Compared to the work in (Marino et al., 1993), where the load torque is 
estimated only via speed error, the disturbance observer (24) contains an integral action, 
which allows the elimination of the steady state error and enhances the robustness of the 
control scheme with respect to model uncertainties and disturbances rejection. 

5. Global stability analysis 

Initially, the model predictive control law is carried out assuming all the states are known 
by measurement, which is not always true in the majority of industrial applications. In fact, 
the rotor flux is not easily measurable. Therefore, a state observer must be used to estimate 
it. However, the coupling between the nonlinear model predictive control and the observer 
must guarantee the global stability. 

5.1 Nonlinear state observer 

To estimate the state, several methods are possible such as the observers using the 
observation errors for correction, which are powerful and improve the results. To construct 
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an observer for the induction motor, written in (┙, ┚) frame, the measurements of the stator 
voltages and currents are used in the design. 

The real state, estimated state and observation errors are 
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The state observer, derived from the motor model (1) with stator current errors for 
correction, is defined by 
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u  (26) 

LL L TT T e tˆ ( )   and (fia, fib) are additional terms added in the observer structure, in order to 

establish the global stability of the whole system. 

5.2 Control scheme based on state observer 

The process states are used in the predictive control law design. However, in case of the IM, 
the states are estimated by (26). Including this observer in the control scheme allows 
defining the outputs (2) by 

 
r r
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The relative degrees are r1=2 and r2=2. Then, the first Lie derivatives of 
1ĥ and

2ĥ are 
obtained by 
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          (28) 

In (28), f̂ is the function of the motor model expressed with estimated states. Since h1
̂

and 

h 2
̂

are not functions of the control inputs, one should derive them once again. However, 
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they contain terms which are functions of currents. The differentiation of those terms 

introduces terms of flux, which are unknown. To overcome this problem, auxiliary outputs 

are introduced (Chenafa et al., 2005; Van Raumer, 1994) as 
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The derivatives of h11
ˆ and h 21

ˆ are given by 
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The errors between the desired trajectories of the outputs and the estimated outputs are 
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Using (31), (32), the estimated states and the auxiliary outputs, the predictive control law 

(11), developed above through the cost function (3) minimization, becomes 
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The decoupling matrix in (33) is the same as in (7), since 
i ig gL h L L h  
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From (31), (32) and (33), we get the error dynamic as 
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The references h1r and h2r and their derivatives are considered known. 

In order to have (34) under the form given in (35) below, to use it in Lyapunov candidate, 

the references h11r and h21r must be defined as in (36) 
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An appropriate choice of K0, K1 ensures the exponential convergence of the tracking errors. 

We now consider all the elements together in order to build a nonlinear model predictive 

control law based on state observer.  
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The functions V1 and V2, given by (37) and (38) below, are chosen to create a Lyapunov 

function candidate for the entire system (process, observer and controller); where ┛2 is a 

positive constant. 
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where, 
LTe e5  , represents the load torque observation error driven by the equation (18).  

 

 
 

Fig. 1. Block diagram of the proposed nonlinear predictive sensorless control system. 

The Lyapunov function and its derivative are respectively  
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The following conditions form a sufficient set ensuring V 0  
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Replacing Δ by its value leads to the following equation 
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Equation (42) is satisfied if fia and fib are chosen as 
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V is then a Lyapunov candidate function for the overall system, formed by the process, the 
observer and the controller. Hence, the whole process is stable and the convergence is 
exponential. 

6. Simulation results and discussion 

In order to test all cases of IM operations, smooth references are taken for reversal speed and 
low speed. The results are compared with those of the standard FOC controller. The load 
torque disturbance is estimated by the observer (24) discussed above, which is combined 
with NMPC to create NMPC PID controller. The 1.1 kW induction motor (appendix D), 
which is fed by a SVPWM inverter switching frequency of 10 kHz, run with a sample time 
of 10 μs. The voltage input is given from the controller at the sample time Ts = 100 μs. The 
tuning parameters are the prediction time ┬r, the disturbance observer gain p0 and (k1, k2, k3) 
the gains of the state observer. All parameters are chosen by trial and error in order to 
achieve a successful tracking performance. The most important are (┬r= 10*Ts, p0=-0.001), 
which are used in all tests. 

Figures 2 and 3 present the results for rotor speed and rotor flux norm tracking responses 
for the NMPC PID controller and for the well-known Field Oriented Controller (FOC). 
Figure 4 shows the components of the stator voltage and current. It can be seen that the 
choice of the prediction time ┬r has satisfied the tracking performance and the constraints on 
the signal control to be inside the saturation limits. Figure 5 gives the estimated load torque 
for different conditions of speed reference in the case of the proposed controller. As shown, 
the tracking performance is satisfactory achieved and the effect of the load torque 
disturbance on the speed is rapidly eliminated compared with the FOC strategy. Figures 6 to 
8 present the proposed NMPC PID tracking performances for low speed operation. These 
results are also compared to those obtained by the FOC. As shown, the tracking 
performance is satisfactory achieved even at low speed. 

In order to check the sensitivity of the controller and the state observer with respect to the 
parametric variations of the machine, these parameters are varied as shown in figure 9. It is 
to be noted that the motor model is affected by these variations, while the controller and the 
state observer are carried out with the nominal values of the machine parameters. The same 

values of tunable parameters (r, p0, k1, k2, k3) have been used to show the influence of the 
parameters variations on the controller performance.  
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Fig. 2. Speed tracking performances - (a) proposed NMPC PID Controller, and (b) Field 
Oriented Controller (FOC). 

 

 
 
 

 
 

Fig. 3. Flux norm tracking performances - (a) proposed NMPC PID Controller, and (b) Field 
Oriented Controller (FOC). 
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Fig. 4. Stator voltage and current components with NMPC PID controller 

 

Fig. 5. Reference and estimated load torque 

 

Fig. 6. Low speed tracking performances - (a) proposed NMPC PID Controller, and (b) Field 
Oriented Controller (FOC). 
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Fig. 7. Flux norm tracking performances for low speed operation - (a) proposed NMPC PID 
Controller, and (b) Field Oriented Controller (FOC). 

 

Fig. 8. Reference and estimated load torque 

 

Fig. 9. Variation of machine parameters 
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Figure 10 gives the tracking responses for speed and flux norm in case of reversal speed. It 

can be seen that the speed and rotor flux are slightly influenced by the variations. However, 

the disturbance observation, in figure 11, is deteriorated by the variations. Although a 

deterioration of perturbation estimation is observed, the tracking of the mismatched model 

is achieved successfully, and the load torque variations are well rejected in speed response, 

which is the target application of the drive. Figure 12 gives the tracking responses for speed 

and flux norm in case of low speed. The speed and rotor flux responses are not affected by 

the parameters variations. The disturbance observation, shown in figure 13, is less affected 

than in first case. Although the load torque estimation is sensitive to the speed error, its 

rejection in speed response is achieved accurately.  

 

 

Fig. 10. Speed and flux norm tracking performances under motor parameters variation. 

 

 

Fig. 11. Reference and estimated load torque under motor parameters variation. 
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Fig. 12. Speed and flux norm tracking performances under motor parameters variation. 

 

Fig. 13. Reference and estimated load torque under motor parameters variation. 

It can be seen that the disturbance observation is influenced by transitions in speed 

response. Furthermore, the use of the state observer may influence on the system response. 

Therefore, a more powerful state observer can improve the controlled system performance.  

An improvement can be achieved by introduction of an on-line parameters identification, 

which leads to the adaptive techniques (Marino et al., 1998; Van Raumer, 1994), which is 

beyond the scope of this chapter.  

7. Conclusion 

An application of nonlinear PID model predictive control algorithm to induction motor 

drive is presented in this chapter. First, the nonlinear model predictive control law has been 

carried out from the nonlinear state model of the machine by minimizing a cost function. 

Even though the control weighting term is not included in the cost function, the tracking 
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performance is achieved accurately. The computation of the model predictive control law is 

easy and does not need an online optimization. It has been shown that the stability of the 

closed loop system under this controller is guaranteed. Then, the load torque is considered 

as an unknown disturbance variable in the state model of the machine, and it is estimated by 

an observer. This observer, derived from the nonlinear model predictive control law, is 

simplified to a PID speed controller. The integration of the load torque observer in the 

model predictive control law allows enhancing the performance of the motor drive under 

machine parameter variations and unknown disturbance. The combination between the 

NMPC and disturbance observer forms the NMPC PID controller. In this application, it has 

been noticed that the tuning of the NMPC PID controller parameters is easier compared 

with the standard FOC method. 

A state observer is integrated in the control scheme. The global stability of the whole system 

is theoretically proved using the Lyapunov technique. Therefore, the coupling between the 

nonlinear model predictive controller and the state observer guarantees the global stability.  

The obtained results show the effectiveness of the proposed control strategy regarding 
trajectory tracking, sensitivity to the induction motor parameters variations and disturbance 
rejection. 

8. Appendices 

8.1 Lie derivatives of the process outputs 

The following notation is used for the Lie derivative of state function hj(x) along a vector 

field f(x). 
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8.2 Simplification of Lie derivatives according l(x) 

Using the Lie notations (A1, A2) and output differentiations, in (4) and (6), with l(x), defined 

by (22), we have 
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8.3 Lie derivatives of the auxiliary outputs 
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8.4 Induction machine characteristics 

The plant under control is a small induction motor 1.1 kW, with the following parameters 

ωnom = 73.3 rad/s, r = 1.14 Wb, nomT  = 7 Nm, Rs = 8.0 Ω, Rr = 3.6 Ω, Ls = 0.47 H, Lr = 0.47  H, 

Lm = 0.44 H, p = 2, fr = 0.04 Nms, J = 0.06 kgm2 
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