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1. Introduction

In the past decades, several mesoscale simulation techniques have emerged as tools to study
hydrodynamic flow phenomena on scales in the range of nano- to micrometers. Examples are
Dissipative Particle Dynamics (DPD), Multiparticle Collision Dynamics (MPCD), or Lattice
Boltzmann (LB) methods. These methods allow one to access time and length scales which
are not yet within reach of atomistic Molecular Dynamics (MD) simulations, often at relatively
moderate computational expense. They can be coupled with particle-based (e.g., molecular
dynamics) simulation methods for thermally fluctuating nanoscale objects, such as colloids or
large molecules. This makes them particularly attractive for the application in microfluidic or
nanofluidic research.

Mesoscale coarse-grained simulation models are characterized by (i) simple potentials and
(ii) simple, often stochastic dynamics. On large length scales, chemical details like the
explicit structure of the water molecules can be neglected, such that the water can either
be replaced by a simpler model fluid (”explicit solvent”) or altogether omitted (”implicit
solvent”). A suspended particle undergoes stochastic collisions with the solvent resulting
in Brownian motion. This process can be described by a Markovian process on the timescale

of microseconds. Mesoscale coarse-grained techniques exploit this behavior. As long as the
relevant conservation laws are obeyed (mass, momentum, energy, charge etc.), the actual
solvent dynamics may be replaced by a computationally cheaper artificial dynamics. For
example, transport mechanisms as well as structure formation processes are often dominated
by hydrodynamic interactions, and these can be reproduced by a variety of dynamical models.
The essence of mesoscopic simulation methods is to combine a significant reduction of degrees
of freedom with an artificial dynamical model that reproduces the main dynamical features
on long time scales. This results in greatly reduced computation times compared to atomistic
simulations.

In this chapter, we focus on the problem of molecular transport in microfluidic geometries,
with particular emphasis on transport driven by electric fields. Due to the emerging
technology of microfluidic devices like micro-arrays and microchips and their applications
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2 Will-be-set-by-IN-TECH

for polymer separation and micromanipulation, the fluid mechanics on these micro- and
nano length scales has been an extensive subject of research over the last years. Mesoscopic
simulation methods provide useful tools for understanding basic physical mechanisms in
these confined systems, and for designing optimal microfluidic setups for given applications.

We intend to give a pedagogical introduction, focusing on the fundamentals of modelling
microchannel flow phenomena using coarse-grained techniques. We briefly present the theory
behind the most important mechanisms and discuss practical applications. Popular mesoscale
simulation methods will be introduced and some examples will be given that illustrate the use
and reliability of the presented methods. For further reading we refer to recent reviews in the
field such as (Pagonabarraga et al. (2010); Slater et al. (2009); Sparreboom et al. (2010); Viovy
(2000)).

2. Physics of flow in micro- and nanochannels: A brief introduction

In the following, we will give a brief overview over important factors that govern flow and
transport phenomena on the nanoscale. Nanochannels are characterized by an exceedingly
large surface-to-volume ratio. Therefore, boundary effects become important and dominate
the flow properties to a large extent. A second factor that strongly influences the transport
properties of molecules in flow is the presence of fluid-mediated hydrodynamic interactions.
They in turn depend on the nature of the driving force (electric field vs. pressure driven
transport or sedimentation) and are affected by the confinement in the channel. Here we can
only touch on these issues. For further information we refer to the references.

2.1 Hydrodynamics

Throughout this chapter, we will restrict the discussion to Newtonian fluids, i.e., isotropic
fluids with a linear stress-strain relationship such as water. Flows in micro- and nanochannels

are characterized by low Reynolds numbers. Even though driven flows can reach fluid
velocities of meters per second in extreme cases and shear rates as high as 106s−1

(Kuang & Wang (2010)), typical values of the Reynolds numbers are still much smaller than
unity due to the tiny characteristic length scales. Therefore, it is almost impossible to enter
the non-laminar regime, and the hydrodynamic behavior of incompressible Newtonian fluids
follows the Stokes equation,

η ∆�u = −ρ�f ext + �∇P, (1)

where �u is the local velocity of fluid, �f ext an external body force, P the local pressure, and η
the dynamic viscosity of the fluid. We will now discuss the two main factors that determine
transport in microchannels in this regime, namely (i) the properties of the channel boundaries

and (ii) the hydrodynamic interactions mediated by the fluid.

2.1.1 Hydrodynamic boundary conditions

Due to the large surface-to-volume ratio, flows in microfluidic channels strongly depend on
the interaction between the fluid and the boundaries. Surface properties such as the local
roughness or wettability can significantly influence the shape and amplitude of flow profiles.
On the mesoscale, such effects can often be incorporated in an effective hydrodynamic
boundary condition. The most popular is the so-called ’stick’ or ’no-slip’ boundary condition,
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Fig. 1. Top: Coarse-grained schematic illustration of fluid flow in close vicinity to the
boundaries. The hydrodynamic boundary is not identical to the fluid-solid interface due to
atomistic roughness. Bottom: Flow profile in the direction normal to the hydrodynamic
boundary. In close vicinity to the boundary, the Navier-Stokes equations are not valid. An
extrapolation of the flow profile determines the slip length.

where the relative flow velocity is taken to vanish at the boundary (Landau & Lifshitz (1987)),

�u(z)|z=zB = 0 (2)

The coordinate z is normal to the surface. Due to the atomistic roughness of the boundary, the
location of the boundary is not obvious. It constitutes an effective parameter in the boundary
condition (2).

The no-slip boundary condition is suitable for describing most macroscopic flows, but it is too
restrictive on the nanoscale. Since the friction between the solid surface atoms and the fluid
particles is finite, one expects some slippage at the physical boundaries, i.e., the fluid velocity
will not strictly vanish. This has been confirmed by a number of experiments on different
surfaces (Neto et al. (2005); Pit et al. (2000); Tretheway & Meinhart (2002)). The amount of
slippage can be estimated by considering the balance of stresses at the surface. (Kennard
(1938)): Let x be the direction of flow and z the direction normal to the flow. The viscous
stress σs

xz (Kennard (1938); Landau & Lifshitz (1987)) exerted by microscopic friction between
the fluid particles and the solid channel walls

σs
xz = ζsux(z) (3)

is proportional to an a priori unknown boundary friction coefficient ζs and the fluid velocity
ux(z) relative to the velocity of the wall. The complementary viscous stress generated within
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the fluid itself, σ
f
xz, is approximated by the corresponding expression in the bulk

σ
f
xz = η

∂

∂z
ux(z). (4)

The stability condition (Landau & Lifshitz (1987)) requires that these two stresses are equal,

i.e., σ
f
xz|z=zB = σs

xz|z=zB at the hydrodynamic boundary zB. After combining Eqns. (3) and (4)
one obtains an effective boundary condition

ux(z)|z=zB = δB

(

∂vx(z)

∂z

)

z=zB

, (5)

which depends on two effective parameters, the hydrodynamic boundary zB and the slip
length

δB =
η

ζB
. (6)

This so-called partial-slip boundary condition (Eqn. (5)) represents the most general

hydrodynamic boundary condition on isotropic surfaces which is consistent with all
requirements of symmetry. It includes the no-slip boundary condition as the special case
δB = 0. Eq. (6) suggests that the no-slip limit can only be reached for vanishing shear viscosity
or infinite wall friction coefficient. It should however be noted that the above ”derivation”
of (6) relied on the assumption that the Stokes equation is valid directly at the boundary,
which is not obvious on rough surfaces. Thus Eq. (6) should not be taken too literally: In
practice, slip lengths may become zero or even negative. As long as the actual flow velocities
at the physical boundaries stay positive, this is not unphysical. A geometrical interpretation
of the slip boundary condition is illustrated in Fig. 1: The slip length is the distance between
the hydrodynamic boundary position zB and the point where the tangent to the Stokes flow
profile at zB hits zero.

2.1.2 Hydrodynamic interactions

Next we discuss the transport of molecules or nanoparticles in a fluid under the influence
of external forces. Consider a particle or a system of particles made of several idealized

point-like ”monomers”. If a force acts on a monomers, it will respond by moving and drag the
surrounding fluid along. This generates a flow field and convective motion at the positions of

the other monomers. Thus all monomers will respond to a force �fi acting on one monomer i.
This fluid-mediated nonlocal dynamical response is termed hydrodynamic interaction (Dhont

(1996)). Specifically, the force �fi on a pointlike particle at position�ri excites a convective flow
with velocity

�u(�rj) = T(�rj,�ri) �fi (7)

at the position�rj of the pointlike particle j, which is proportional to �fi with a tensorial coupling
function T, the ’Oseen tensor’. Since the Stokes equation is linear, all these flow velocities add
up linearly. The Oseen tensor depends on the boundary conditions. In the bulk, it is a function
of the difference�r =�ri −�rj only and given by

Tαβ(�r) =
1

8πη r

(

δαβ + r̂α r̂β

)

. (8)

100 Advances in Microfluidics

www.intechopen.com



Mesoscopic Simulation Methods for Studying Flow and Transport in Electric Fields in Micro- and Nanochannels 5

with r̂ =�r/r. This corresponds to a long-range ”interaction” which decays like 1/r.

Due to their long-range nature, the hydrodynamic interactions strongly influence the

dynamics and transport properties of single molecules and molecule assemblies. For example,
polymer coils in solution move like a Stokes sphere due to hydrodynamic interactions, with
an effective friction coefficient ζ which is proportional to their radius (”Zimm dynamics”),
whereas ζ is simply proportional to the chain length in the absence of hydrodynamics (”Rouse
dynamics”) (Doi & Edwards (1986)).

In nanochannels, the presence of boundaries further complicates the situation. Since the
boundaries break translational symmetry, the assumption T(�ri,�rj) = T(�ri −�rj) is no longer
justified and the Oseen tensor depends on both arguments, �ri and �rj, independently. In
homogeneous channels, one may still assume T(�ri,�rj) = T(�ri‖ −�rj‖;�ri⊥,�rj⊥), where �r‖ is
the component of�r along the channel and�r⊥ = �r −�r‖. In structured channels, even this last
symmetry assumption breaks down.

A second important effect of boundaries is that they constrain the flow. This affects
the hydrodynamic interactions dramatically. For example, the hydrodynamic interactions
between two particles close to a single no-slip wall decay like 1/r3 instead of 1/r
(Dufresne et al. (2000)). The hydrodynamic interactions between two particles confined in
a thin planar slit with no-slip boundaries decay like 1/r2, i.e., much faster than in the
bulk, albeit still long-range. (Diamant et al. (2005); Liron & Mochon (1976)). Even these
remaining long-range contribution may effectively average out in many applications, since
the two-dimensional Oseen tensor in slits is traceless and its orientational average vanishes. It
has been argued that polymers confined in thin sheets should therefore exhibit Rouse-like
dynamics (Tlusty (2006)). In quasi one dimensional thin channels with stick boundaries,
hydrodynamic interactions are altogether screened on distances larger than the channel width

(Cui et al. (2002)).

2.2 Electrokinetics

If external electric fields are involved, flow and transport processes in microchannels
are governed by the interplay of hydrodynamic and electrostatic driving forces. Both
the hydrodynamic and the electrostatic interactions are long-range, thus none of the two
necessarily dominates over the other. We consider the transport of charged macromolecules or
colloids (”macroions”) in solution due to electric fields. On the one hand, typical buffers used
in (bio)technological applications have high ionic strengths (i.e., high salt concentrations), such
that macrocharges are efficiently screened with Debye screening lengths in the nanometer
range. On the other hand, the (micro-)ions in solution respond to external fields just like the
macroions. Furthermore, external fields may induce flow in microchannels by means of an
effect called electroosmosis, which also contributes to the effective transport.

2.2.1 Basic concepts

In the following we will take the correlations between microions to be negligible. Correlation
effects become important at high surface charges, low temperatures, and/or if microions
have a high valency (Boroudjerdi et al. (2005)). In most practical applications, they can be
neglected and one may apply mean-field approaches. At thermal equilibrium, the mean-field
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theory of choice is the Poisson-Boltzmann theory (Hunter (1989); Israelachvili (1991); Lyklema
(1995); Viovy (2000)), which describes the distribution of the microions by a combination of the
Poisson equation and the Boltzmann distribution. The theory neglects the excluded-volume
of the counterions and regards them as pure uncorrelated point-like particles. Ions of
type i are distributed in space according to ρi(�r) ∝ exp(−Zieψ(�r)/kBT), where Zi is the
valency of the ion i, e the elementary charge, kBT the thermal energy, and ψ(�r) the mean
electrostatic potential at position�r. Combining this with the Poisson equation, one obtains the
self-consistent equation

ǫr ∆ψ(�r) = −ρmacro(�r)− ∑
i

Zie ρi(�r) = −ρmacro(�r) − ∑
i

Zie ρ0,i e
−

Zi eψ(�r)
kBT (9)

with the dielectric constant ǫr, the macroion charge density ρmacro(�r), and the bulk microion
densities ρ0,i (the hypothetical densities at infinite distance from the macroions). Here the
ρmacro may also refer to a charged surface.

Due to its nonlinear character, the Poisson-Boltzmann equation (9) can usually not be solved
in closed form. If the potential ψ is small, it can be linearized by expanding the exponent. This
yields the famous Debye-Hückel equation

(∆ − λ−2
D )ψ(�r) = −

ρmacro(�r)

ǫr
(10)

with the Debye-Hückel screening length

λD =

√

ǫr kBT

∑i ρ0,i(Zie)2
. (11)

Here we have used ∑i
Zie
ǫr

ρ0,i = 0. According to the Debye-Hückel theory, the effective
interactions between macroions decay exponentially with the characteristic length λD . The
range of validity of the Debye-Hückel approximation is very limited, it breaks down already

for moderate macroion charges and/or for highly concentrated ion solutions. Nevertheless,
the exponential behavior often persists in systems where the Debye-Hückel approximation
is not valid. For highly charged macroions, the Debye-Hückel theory can still be applied far
from the macroions, but the macroion charge must be replaced by an effective ”renormalized
charge” (Alexander et al. (1984); Trizac et al. (2002)). For high ion concentrations, detailed
theoretical studies have lead to the conclusion that the results of the Debye-Hückel can still
be used in a wide parameter range if λD is replaced by a modified effective screening length
(Kjellander & Mitchell (1994); McBride et al. (1998); Mitchell & Ninham (1978)).

So far, these are equilibrium considerations. At non-equilibrium and in the presence of
flow, the time evolution of the ion distributions at the mean-field level are described by a
convection-diffusion equation, the Nernst-Planck equation

∂ρi

∂t
+∇ · (ρi�u) = ∇ · Di(∇ρi +

Zie

kBT
ρi ∇ψ). (12)

Here Di are the diffusivities of the ion species i, and �u(�r) is the local fluid velocity. The
Nernst-Planck equation, the Stokes (or Navier-Stokes) equation and the Poisson equation
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Mesoscopic Simulation Methods for Studying Flow and Transport in Electric Fields in Micro- and Nanochannels 7

constitute a complete set of equations that fully determine the dynamics of ionic fluids. In
stationary systems without flows, they are solved by the Poisson-Boltzmann distribution.

2.2.2 Boundary layers and electroosmotic flow

In contact with a solvent, many materials acquire charges due to the ionization or dissciation
of surface groups or the adsorption of ions from solution (Israelachvili (1991)). Take for
example PDMS (polydimethylsiloxane), a material commonly used for the fabrication of
microfluidic devices. At PDMS/water interfaces, (OH)− groups dissociate at the end of the
PDMS chains. As a result, the walls of PDMS channels become charged and an ion layer
builds up in front of the surfaces to screens their charge: An electrical double layer forms.

The structure of the ion layer is commonly described by an effective picture that distinguishes
between two regions: In the outer region, the diffuse layer, the ions are mobile, they can
thermally be removed and act as if they are part of the solution. Under the influence of force,
they will drag the fluid along. The inner region, the Stern layer, includes ions which stick to
the surface. The two regions are taken to be separated by a ”plane of shear” for the fluid flow.
In the coarse-grained mean-field picture adopted in this chapter, the motion of the ions in the
diffuse layer is described by the Nernst-Planck equation (12), the plane of shear corresponds
to the hydrodynamic boundary, and the complex of solid surface and Stern layer is replaced

by an effective boundary condition which is characterized by an effective surface charge and
an effective slip length.

At equilibrium, the distribution of ions in the diffuse layer is determined by the

Poisson-Boltzmann equation. In the case of symmetric planar slit channels confined by
homogeneous surfaces, and in the absence of salt (i.e., the fluid contains only the counterions
that neutralize the surface charges), the problem can be solved analytically (Israelachvili
(1991)). The potential in the direction z perpendicular to the surface is then given by

ψ(z) =
kBT

Ze
log(cos2(κz)) (13)

with the screening constant

κ2 =
(Ze)2ρ0

2ǫrkBT
. (14)

Here ρ0 denotes the counterion density in the middle of the channel, and the z-direction is
perpendicular to the channel. In the presence of salt an approximate solution can be obtained
within the Debye-Hückel approximation, giving

ψ(z) ∝ (ez/λD + e−z/λD − 2), (15)

which results in an exponential decay of the ion distribution close to the boundaries with the
decay length λD, the Debye-Hückel screening length λD from Eq. (11). The equilibrium results
(13) and (15) remain valid in stationary situations with constant flow parallel to the surface,
since the parallel and the perpendicular directions in Eq. (12) then decouple. In such cases,

they describe the z-dependent part of the potential ψ.

If an external electric field is applied to the solution, it generates a net volume force in
the diffuse ion layer, which induces flow, the ’electroosmotic flow’ (EOF) (Hunter (1989)).
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This phenomenon provides one with a convenient tool to manipulate and control flows in
microchannels. Furthermore, it significantly influences the effective transport of nanoobjects
in such channels.

The EOF flow profiles can be calculated by combining the Stokes equation (Eq. (1)) with the
Poisson-Boltzmann theory. For simplicity, we consider again our symmetric slit channel. The
net charge density in the channel, ρ(z) = ∑i(Zie)ρi(z), generates a force density f‖(z) =
ρ(z)E‖ in the fluid, where E‖ is a parallel external electric field. Comparing the Poisson
equation for the electrostatic potential,

∂2ψ(z)

∂z2
= −

ρ(z)

ǫr
, (16)

with the Stokes equation for the parallel component of the fluid velocity,

η
∂2u‖(z)

∂z2
= − f‖(z) = −ρ(z)E‖, (17)

one finds immediately

∂2

∂z2
u‖(z) =

ǫrE‖

η

∂2

∂z2
ψ(z). (18)

In a symmetric channel, the profiles u‖(z) and ψ satisfy the boundary condition ∂zu‖|z=0 =
∂zψ|z=0 = 0 at the center of the channel. This gives the relation (Smiatek & Schmid (2010))

u‖(z) =
ǫrE‖

η
(ψ(z)− ψ(0)) + uEOF (19)

The constant uEOF = u‖(0) in Eq. (19) is determined by the hydrodynamic boundary conditions
at the surface of the channel. For example, the counterion-induced electroosmotic flow in the
presence of slip resulting from Eqs. (19) and (13) is given by (Smiatek et al. (2009))

u‖(z) =
ǫrkBT

Zeη
E‖

(

log(cos2(κz))− log(cos2(κzB))− 2κδB tan(κzB)
)

, (20)

where δB is the slip length and zB the position of the hydrodynamic boundary (cf. Eq. (6).
In the presence of salt, the EOF profiles vary mostly at the boundaries and the velocity
profile saturates in the center of the channel (plug flow). In that case, the constant uEOF,

can be identified with the EOF velocity. Setting ψ(0) = 0, Eq. (19) combined with the
partial-slip boundary condition (5) results in the general simple expression (Bouzigues et al.
(2008); Smiatek & Schmid (2010))

uEOF = −
ǫr ψB

η
(1 + κs δB) E‖ =: −

ǫrψζ

η
E‖. (21)

where ψB is the electrostatic potential at the hydrodynamic boundary and we have defined a

’surface screening parameter’

κs := ∓
∂zψ

ψ

∣

∣

∣

z=∓zB

. (22)
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Mesoscopic Simulation Methods for Studying Flow and Transport in Electric Fields in Micro- and Nanochannels 9

In the Debye-Hückel regime, κs is simply the inverse Debye-Hückel length (Joly et al. (2004)).
More generally, the relation (21) also remains valid in the regime where nonlinear effects
become important. On no-slip surfaces, Eq. (21) reduces to the well-known Smoluchowski
result for electroosmotic flow (Hunter (1989)). In the presence of slippage, the amplitude
of the induced flow can be enhanced significantly. This is also found experimentally
(Bouzigues et al. (2008)). The combined effect of slip, surface potential, and surface screening
parameter can be incorporated into one single parameter ψζ = ψB(1 + κs δB), the so-called
”Zeta-potential”, which fully characterizes the electroosmotic response of the surface to an
applied electric field. (Hunter (1989); Lyklema (1995))

So far, we have considered simple slit channels. However, our results can also be used to
assess EOF profiles in more complex channel geometries. We assume that the diffuse layer is
thin compared to the channel dimensions. Then, we make two important observations: First,
Eq. (21) still can be applied close to the boundaries and gives an effective boundary condition for
a steady-state velocity field �uEOF(�r) inside the channel, which depends linearly on the applied
external field �E(ext),

�uEOF = μEOF
�E(ext) with μEOF = −

ǫr ψζ

η
. (23)

(In a steady-state situation, the external field in the vicinity of a wall is necessarily parallel
to the wall.) Cummings and coworkers have shown that for laminar incompressible flow,
the boundary condition (23) effectively defines the flow inside the channel (Cummings et al.
(2000)). Second, the EOF flow field inside the channel obeys the Laplace equation, ∆�uEOF = 0.
The same holds for the external electric field �E(ext). Provided all channel walls are made of the
same material (same slip length, same surface potential ψB) and provided Eq. (23) also holds
a the inlet and outlet boundaries of the channel, Eq. (23) thus becomes valid everywhere in
the channel. Due to this remarkable ’similitude’ property, the EOF velocity profile in such
channels is simply proportional to the applied electric field in the channel, which can be
calculated by solving the Laplace equation in the channels with von-Neumann boundary
conditions. The proportionality factor is μEOF, the so-called ’electroosmotic mobility’.

We note that the condition on the inlet and outlet is less restrictive than it may seem: One
can always separate a steady-state velocity field �u(�r) into an EOF component �uEOF(�r) which
satisfies the EOF boundary conditions, and a residual component with no-slip boundary
conditions at the channel walls and arbitrary boundary conditions at the inlet and outlet.

2.2.3 Electrophoresis

Last in this section we discuss the transport of charged nanoobjects (i.e., colloids or
polyelectrolytes) in microchannels under the influence of constant electric fields. In the linear

regime, the velocity of the nanoobject is proportional to the field,

�vP = μt�E, (24)

The proportionality constant μt denotes the total electrophoretic mobility and results from
two contributions (Smiatek & Schmid (2010); Streek et al. (2005)): The bare electrophoretic
mobility μe in a fluid at rest and the background EOF velocity �uEOF. Due to the similitude
discussed above between the steady-state velocity field of an EOF and the external field �E, the
EOF flow field can be expressed in terms of an electroosmotic mobility μEOF (Eq. (23)), and the
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10 Will-be-set-by-IN-TECH

total electrophoretic mobility of the nanoparticle can be written as

μt = μEOF + μe. (25)

The bare electrophoretic mobility μe subsumes the intrinsic response of the nanoobject to the
external field. For large colloids with a thin Debye layer, this response is dominated by the
same mechanisms than the EOF at the walls: The electric field induces EOF at the surface of
the colloid, which results in a velocity difference (23) between the colloid and the surrounding
fluid. Thus μe is again given by the Smoluchowsky result in this case,

μe = ǫr ψζ/η, (26)

where the Zeta-potential ψζ characterizes the surface of the colloid, i.e., it incorporates the
effects of the Stern layer as well as possible slippage at the hydrodynamic boundary.

For small nanosized particles or ions, the situation is more complicated. The effective friction
of a charged particle in an electric field mainly results from the combination of three factors: (i)
The direct friction of the particle with the surrounding fluid, which can be described by a bare
mobility μ0. It determines the mobility of the nanoparticle in the absence of any other ions. (ii)
The solvent-mediated friction of the particle with the surrounding cloud of oppositely charged
ions (the ”ionic atmosphere”). They are dragged in the opposite direction by the external field,
which generates additional friction. This effect is called ”electrophoretic retardation”. (iii) The
distortion of the ion cloud in the electric field. Since the cloud is a dynamic phenomenon, ions
move in and out, it cannot adjust instantaneously to the motion of the nanoparticle. Moreover,
the electric field drives the nanoparticle and the cloud apart. The cloud is somewhat behind
the nanoparticle and pulls it back, thus slowing it down. This is called the ”relaxation effect”.
The interplay of these three factors and their effect on the electrophoretic mobility of ions has

been discussed already in 1926 by Onsager (Onsager (1926; 1927)). He predicted that the bare
mobility of ions μ0 in electrolytes should be renormalized according to

μe = μ0 − (Aμ0 + B)
√

∑
j

ρjZ
2
j , (27)

where the factors A and B represent the relaxation effect and the electrophoretic effect. Explicit
expressions for A and B for electrolytes having any number of ionic species were derived by
Onsager and Fuoss in (Onsager & Fuoss (1932)). More details can be found in (Wright (2007)).

In systems of several nanoparticles or of extended molecules, hydrodynamic interactions
become important. As discussed in Section 2.1.2, they can crucially affect the dynamics and
transport properties in external fields. In the case of electrophoresis, one must not only
consider the direct hydrodynamic interactions between the macroions, but also the effect
of the surrounding microion cloud. In an external electric field, the polyelectrolyte and
its surrounding ion cloud move in opposite directions, and the net momentum transferred
to the solvent adds up to zero. As a result, the hydrodynamic interactions are largely
screened (Manning (1981)). Within the Debye-Hückel approximation, the corresponding
modified Greens function can be calculated analytically. The convective flow created by a
constant electric field �E acting on a particle at position�ri is given by (Barrat & Joanny (1996);
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Long & Ajdari (2001))
�u(�rj) = G(�rj,�ri) �E (28)

with a Greens function that depends on the Debye screening length λD via

Gαβ(�r) =
e−r/λD

4πη r

(2

3
δαβ +

λ2
D

r2

(

1 +
r

λD
+

r2

3λ2
D

− er/λD
) (

δαβ − 3r̂α r̂β

)

)

(29)

These expressions take the place of Eqs. (7) and (8) in electrophoresis. The modified Greens
function G contains an exponentially decaying part, and an algebraic contribution which
decays with 1/r3 (instead of 1/r) and vanishes upon averaging over all directions. Thus,
the effect of hydrodynamic interactions is greatly reduced. We note that this only applies for
the response of charged particles to a constant electric field. The diffusive behavior of charged
particles is still governed by the usual, long-range hydrodynamic interactions.

The remarkable electrohydrodynamic screening effect in electrophoresis discussed above
has important practical consequences. A common task in bioanalytics is length-dependent
separation and sorting of charged polymers, e.g., DNA fragments. Strategies to sort molecules
in micro- or nanofluidic channels are highly desirable as cheap and versatile alternative to
standard gel electrophoresis. In the absence of hydrodynamic interactions, however, the
electrophoretic mobility of polyelectrolytes does not depend on the chain length. Thus electric
fields cannot be used to separate polymers in simple straight channel geometries, and one has
to resort to more sophisticated approaches.

3. Mesoscale simulation methods

After this brief overview over physical mechanisms governing flow in microchannels and
the transport of nanoobjects on mesoscopic scales, we will now introduce different methods
to study these phenomena by computer simulations. We focus on length scales which are
large compared to the solvent particles (water), but small enough that thermal fluctuations
are important and nanobjects can be resolved and traced individually. On even smaller length

scales, the method of choice is atomistic Molecular Dynamics. It is used, e.g., to study the
microscopic factors that determine surface slip on specific surfaces (Bocquet & Barrat (1994);
Joly et al. (2004; 2006)). On much larger length scales, deterministic approaches can be used
and one may resort to the numerical methods that have been developed in the context of
computational fluid dynamics to solve the Navier-Stokes equations in various geometries. A
software package for studying electrohydrodynamic phenomena in colloidal suspensions at
this level is freely available at (Kim et al. (2006))

http://www-tph.cheme.kyoto-u.ac.jp/kapsel/.

Electrokinetic simulations are challenging, because one has to deal with two types
of long-range interactions simultaneously: Long-range hydrodynamics and long-range
electrostatics. In the following, we will first discuss mesoscale methods for simulating
hydrodynamic phenomena in nanoparticle suspensions. Then we will present a selection of

simulation methods for studying electrokinetic phenomena.
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3.1 Simulation methods for hydrodynamic flows

In mesoscale simulations, one is typically not interested in the explicit dynamical behavior

of the solvent molecules, as typical time scales are much smaller than the time scales of
interest. For example, the relaxation time of water is 15 GHz, whereas the fastest time scale
for reorganization of ionic layers in aqueous solutions is in the MHz regime (ionic migration
in the double layer sets in at 1-10 MHz). A coarse-grained simulation model must therefore
mainly capture the hydrodynamics of the solvent. To make the simulations more efficient, the
molecular solvent can thus be replaced by something simpler. In the case of Newtonian fluids,
such simplified model solvents must fulfill three main requirements:

• It must reproduce the Navier-Stokes Stokes equation. This means that it is a fluid (i.e.,
it yields to stress), that it is ”simple” (no long-range interactions, no memory effects, no
internal order, no phase transitions), and that it preserves momentum locally.

• Since fluctuations are important, it should have a temperature. Simulations of microfluidic
transport are typically nonequilibrium simulations where energy is constantly fed into
the system. Therefore, algorithms should be available that remove this energy from the
system, i.e., coupling to a thermostat should be possible.

• Strategies to implement arbitrary hydrodynamic boundary conditions and interactions
with nanoparticles should exist.

Other symmetry properties such as isotropy of space or translational invariance would also
be desirable. However, they are not strictly mandatory. We shall see that some of the most
successful models do not meet these symmetry requirements.

The reader may have noted that the requirements sketched above are already met by ideal
gases. In fact, many mesoscopic fluid models in use today are actually ideal gas models. This

implies that the fluid is not incompressible, which is acceptable as long as typical velocities V
are much smaller than the speed of sound c in the model. Ideal gas models can be applied to
study incompressible fluid dynamics if the Mach number M = V/c is small.

3.1.1 Dissipative Particle Dynamics (DPD)

Among the mesoscopic simulation methods for fluids, the DPD method comes closest
to classical Molecular Dynamics (MD). It was originally developed as a method
for fluid simulations that combines elements of Lattice Gas Automata and MD
(Hoogerbrugge & Koelman (1992); Koelman & Hoogerbrugge (1993)). In its modern version
(Español & Warren (1995)), it is basically a momentum-conserving, Galilean invariant
thermostat which creates a well-defined canonical ensemble. In DPD simulations, particles
i obey Newton’s equation of motion with the forces

�FDPD
i = �FC

i + ∑
i �=j

(�FD
ij + �FR

ij ), (30)

where �FC
i are the regular conservative forces acting on i, and �FD

ij , �FR
ij are pairwise dissipative

and stochastic forces. The dissipative forces �FD
ij have the form

�FD
ij = −γDPD ωDPD(rij)(r̂ij ·�vij) r̂ij (31)
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with the friction coefficient γDPD, and depend on the interparticle distance rij and the unit

vector r̂ij connecting the two particles i and j. The random force �FR
ij is chosen such that it

fulfills the fluctuation-dissipation relation

�FR
ij =

√

2γDPDkBT ωDPD(rij) θij r̂ij, (32)

with the Boltzmann constant kB and the temperature T, where θij = θji is a Gaussian

distributed random number with zero mean and unit variance. The weighting function ωDPD

is arbitrary and often chosen as a linearly decaying function with a cutoff rc,

ωDPD(rij) =

{

1 −
rij

rc
: rij < rc

0 : rij ≥ rc
(33)

Eq. (30) can be integrated by an ordinary MD integration scheme like the Velocity-Verlet
algorithm (Frenkel & Smit (2001)).

In DPD simulations, arbitrary equation of states can be implemented through appropriate
conservative interactions �FC

i . In practice, the conservative potentials are often chosen pairwise
and soft and with linearly decaying forces (Groot & Warren (1997)). When studying fluid
flow, one may also simply turn them off. For such an ”ideal gas” DPD fluid, approximate
expressions for the viscosity have been derived via a Fokker-Planck formalism (Marsh et al.
(1997)). The shear viscosity of the fluid can be tuned by varying the density, the friction
parameter γDPD or the cutoff parameter of the dissipative interactions, rc. Since the DPD
method was first introduced by Hoogerbrugge and Koelman, various variants and extensions
have been proposed. A recent review can be found in (Pivkin et al. (2010)).

Compared to other mesoscale simulation methods, DPD simulations are relatively expensive
because they require the evaluation of pairwise forces in every time step. Nevertheless, they
present many advantages due to the fact that they are so similar to standard MD simulations.
They can easily be mixed with MD schemes, to the point that the viscous DPD interaction
can simply be used to thermostat MD simulations (Soddemann et al. (2003)). Interactions
with nanoparticles can be implemented in a straightforward manner through the conservative

interactions. Arbitrary hydrodynamic boundary conditions with slip lengths ranging from
full slip to no-slip or even slightly negative can be implemented using a recently developed
”tunable slip” algorithm (Smiatek et al. (2008)). This algorithms introduces a DPD-like friction
interaction with the wall. Slip lengths can be adjusted by varying the amplitude of the friction
force or the interaction range, and an approximate expression for the resulting slip length can
be derived analytically which is in excellent agreement with simulations. The method can
also be used to implement an EOF boundary condition with fixed surface velocity �uEOF (by
choosing a no-slip boundary condition on a hypothetically moving boundary). Alternative
methods for implementing no-slip boundaries in DPD simulations can be found, e.g., in Refs.
(Revenga et al. (1998; 1999)).

3.1.2 Multiparticle collision dynamics (MPCD)

One drawback of the DPD method described in the previous section is that DPD fluids
typically have low Schmidt numbers. The dimensionless Schmidt number Sc = η/ρD

109Mesoscopic Simulation Methods for Studying Flow 
and Transport in Electric Fields in Micro- and Nanochannels

www.intechopen.com



14 Will-be-set-by-IN-TECH

measures the ratio of momentum diffusivity (viscosity η) and mass diffusivity (diffusion
constant D). In gases, particle transport dominates and Schmidt numbers are typically of
order unity. In liquids, dissipative transport dominates and typical Schmidt numbers are high
For example, the Schmidt number of water is Sc ∼ 700. In DPD fluids, typical Schmidt values
are of order unity like in gases, hence the momentum transport ist mostly coupled to particle
transport. High, fluid-like Schmidt numbers are not accessible in DPD simulations.

This problem can be overcome in the MPCD method, which is another increasingly popular
method for simulating fluid flow. MPCD, also known as stochastic rotation dynamics (SRD)
is a particle-based approach for simulating fluid flows which is motivated by the Boltzmann
equation for transport in gases (Malevanets & Kapral (1999; 2000)). An extensive recent
review can be found in (Gompper et al. (2009)).

The basic algorithm is an alternating sequence of streaming and a collision steps. In the
streaming step the positions of the particles i are updated via

�ri(t + ∆t) =�ri(t) + ∆t�vi(t). (34)

In the collision step, the particles are sorted into cells (typically cubic with cell size a chosen

such that one has about 3-20 particles per cell), and the center-of mass velocity �u is evaluated
in each cell. The collision update then reads

�vi(t + ∆t) = �u +R δ�vi(t) (35)

where R is a collision operator acting on the local velocity δ�vi(t) = �vi(t) − �u. In the
classical MPCD scheme, R is a rotation by a fixed angle α about a random axis. Malevanets
and Kapral have shown that this scheme generates a Maxwellian velocity distribution at
equilibrium and reproduces the hydrodynamic equations with an ideal gas equation of state
(Malevanets & Kapral (1999)). The shear viscosity can be calculated analytically, e.g., via a
Green-Kubo formalism, and it can be tuned through tuning a, ∆t, and/or the rotation angle
α. In addition, one can also tune the Schmidt number by adjusting the time step ∆t. Large

fluid-like Schmidt numbers can be realized by choosing small time steps.

Several variants of MPCD have been proposed. The classical version of the MPCD algorithm
is not Galilean invariant due to the underlying grid structure. While this is often acceptable,

it may cause problems if the mean free path of particles is smaller than the cell size. Galilean
invariance can be restored by performing a random shift of the cells before each collision step
(Ihle & Kroll (2003)). Another issue is isotropy of space. The classical MPCD scheme does not
strictly conserve angular momentum. This can be fixed by choosing a stochastic collision step,
where new relative velocities δ�vi are generated randomly from a Maxwell distribution subject
to additional constraints (Noguchi et al. (2007)). The stochastic variant also provides one with
a natural implementation of a thermostat, which is necessary for nonequilibrium simulations.

Since MPCD is a particle-based method, interactions with nanoparticles can be implemented
in a straightforward manner, just like in DPD simulations. Likewise, the tunable slip
method for implementing arbitrary hydrodynamic boundary conditions in DPD simulations
(Smiatek et al. (2008)) should also work for MPCD models, but this has not yet been explored.
Instead, hydrodynamic boundary conditions in MPCD are usually realized by implementing
suitable reflection rules on hard surfaces. Full-slip boundaries can be obtained with specular
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reflections. No-slip boundaries are obtained with ”bounce-back” reflections, where the
velocities of particles are reversed when they hit the boundary. Even though these reflections
take place during the streaming steps, the collision steps are also affected by the presence
of hard walls, due to the fact that the number of MPCD particles is reduced in cells that
contain boundaries. Since the local viscosity of the fluid depends on the local density, a local
reduction may cause artefacts. One common strategy to overcome this problem is to randomly
insert virtual MPCD particles in underfilled cells (Lamura et al. (2001)), with velocities drawn
randomly from a Maxwell distribution which is centered about the mean velocity of the
solid in no-slip cases, or the fluid in full-slip cases. Based on these realizations of full-slip
and no-slip boundaries, one can also implement arbitrary partial-slip boundary conditions
by randomly switching between specular and bounce-back reflections in the streaming step,
and suitably interpolating the mean velocity of the pseudoparticles in the collision step
(Whitmer & Luijten (2010)).

3.1.3 Lattice-Boltzmann method (LB)

Similar to MPCD, the LB method realizes a Boltzmann equation, but this time fully on the
lattice (Dünweg & Ladd (2009); Succi (2001); Yeomans (2006)). Each lattice site�r carries a set
of discrete velocity distribution functions ni(�r, t), which describe the partial density of fluid
particles with velocity�ci at time t. The finite set of velocities {�ci} contains only lattice vectors.
For example, the velocity set of the popular D3Q19 model contains the zero velocity and the
vectors that connect a node with its nearest and next-nearest neighbors on a cubic lattice. The
velocity unit is the ”lattice velocity” c = a/∆t with the lattice parameter a and the time step
∆t.

As in MPCD, the LB dynamics is a sequence of alternating collision and streaming steps. The
distributions are first reshuffled in the collision step,

n∗
i (�r, t) = ni(�r, t) + Lij

(

nj(�r, t)− n
eq

j (ρ,�u)
)

(36)

and then evolve in the streaming step according to

ni(�r +�ci∆t, t + ∆t) = n∗
i (�r, t) (37)

The collision step describes particle scattering events which relax the distributions towards
a local equilibrium distribution {neq

j } with a linear collision operator Lij. The simplest

choice for L is Lij = −δij/τ, corresponding to a lattice Bhatnagar-Gross-Krook operator
with a single relaxation time (Bhatnagar et al. (1954)). Multiple relaxation times schemes

have been conceived as well and have the advantage that shear and bulk viscosity can be
tuned separately (Dünweg & Ladd (2009)). The local pseudo equilibrium distribution {n

eq

i }

depends on the local mass density ρ(�r, t) and momentum density�j(�r, t), which are related to
the moments of the distribution function through

ρ(�r, t) = ∑
i

ni(�r, t), �j(�r, t) = ρ(�r, t) �u(�r, t) = ∑
i

ni(�r, t)�ci. (38)

It is typically constructed as a second order expansion in the velocity,

n
eq

i (ρ,�u) = ρ(Aq + Bq(�ci ·�u) + Cqu2 + Dq(�ci ·�u)
2) (39)
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with coefficients Aq, Bq, Cq, Dq chosen such that {n
eq

i } satisfies the constraints ∑i n
eq

i = ρ,

∑i n
eq

i �ci = ρ�u, and the stress condition ∑i n
eq

i ciα ciβ = ρ uα uβ + Pαβ. Here Pαβ is the local

stress tensor, which takes the form Pαβ = δαβ c2
s ρ in an ideal gas with the isothermal speed of

sound cs. Other equations of state can be implemented as well.

This summarizes the basic structure of LB algorithms. By means of a Chapman-Enskog
equation, one can show that LB fluids reproduce the Navier-Stokes equations on sufficiently

large length and time scales and can thus be used as Navier-Stokes solver (Benzi et al.
(1992); Chen & Doolen (1998)). Such expansions also give analytical expressions for the shear
viscosity as a function of the density and the relaxation time(s). The pseudo equilibrium
distribution defines an intrinsic fluid temperature (which enters through the stress condition).
Nevertheless, the original formulation of the LB algorithm is fully deterministic. Fluctuations
can be incorporated by adding a stochastic term in the collision step, which must to be
chosen carefully such that the fluctuation-dissipation relation is fulfilled (Dünweg et al. (2007);
Yeomans (2006)).

LB strategies for implementing hydrodynamic boundary conditions are very similar to those
used in MPCD. No-slip boundary conditions can be realized by ”bounce-back” boundary
conditions where the velocities are reversed at the walls. In practice, one introduces a
layer of buffer nodes behind the wall, which contains distributions with reversed velocities.
This generates a no-slip boundary condition at a hypothetical wall-plane which is half
way between the real nodes and the buffer nodes. Generalizations for moving boundaries
are available (Ladd (1994a)). Full-slip boundaries can be realized with specular reflection
rules. A simple way to generate partial-slip boundary conditions is to blend bounce-back
and specular boundary conditions with a weighting factor r. This generates finite slip
lengths which depend on r in a complex nonlinear manner (Ahmed & Hecht (1999); Succi
(2002)). Alternative approaches generate wall slip by implementing conservative wall-fluid

interactions which mimick the effect of rough surfaces (Kunert & Harting (2008)) or impose
fixed velocities at the boundaries (Hecht & Harting (2010); Zou & He (1997)). The latter
approach is particularly interesting in the context of EOF.

Since the LB method is not a particle-based method, coupling LB fluids to nanoparticles is
less straightforward than in the case of DPD or MPCD. One popular option is to treat the
nanoparticles as extended objects with a well-defined hard surface which interact with the
LB fluid via collisions at the boundaries. The nanoparticle surface is first mapped on a lattice
grid. Then suitable boundary conditions are implemented, which take into account the local
velocity of the fluid. From the transfer of momentum during the reflections of the LB fluid, one
can evaluate the forces and torques on the nanoparticle and update its velocity and angular
velocity accordingly (Ladd (1994a;b)).

An alternative approach which is more appropriate for studying macromolecules is to couple
the nanoobjects to the LB fluids via the forces that they exert on each other (Ahlrichs & Dünweg
(1999)). We will illustrate this method at the example of a single point particle with velocity �V
and position �R. In a fluid flow �u, this particle experiences a force

�F = �FC − ζ
(

�V −�u(�R, t)
)

+ �FR. (40)
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The first term �FC subsumes the conservative forces acting on the particle, the second
represents the frictional drag in the LB fluid, and the last one (�FR) a stochastic random force
which satisfies the fluctuation dissipation relation

〈FR
α (t) FR

β (t
′)〉 = 2ζ kBT δαβ δ(t − t′). (41)

The dissipative and stochastic terms describe the forces on the particle that stem from the
particle-fluid interactions. To ensure momentum conservation (actio=reactio), the opposite
forces must be transferred to the fluid. This is done by introducing an additional forcing term
in the collision step. Extended nanoobjects are taken to consist of several pointlike monomers.
This is clearly a reasonable picture in the case of polymers. The approach can also be used

for studying colloids, which are then constructed from point-like interaction sites (raspberry
model) (Lobaskin & Dünweg (2004)). In that case, one has the somewhat unphysical situation
that the LB fluid may flow through the particle. In practice, however, the dissipative coupling
ζ ensures that the LB fluid locally moves at exactly the same speed than the colloid – which
effectively generates no-slip boundary conditions at the surfaces.

3.1.4 Brownian Dynamics simulations (BD)

As discussed in section 2.1, fluid flow is laminar on the nanoscale. Therefore, mesoscale
simulation methods must not necessarily be able to reproduce the full Navier-Stokes
equations, it suffices if they reproduce the Stokes equation. Nanoscale hydrodynamic
flow patterns build up almost instantly, on time scales much smaller than the motion
of the nanoparticles: The fluid follows the particles quasi adiabatically. This motivates
BD approaches where the solvent is omitted altogether. In BD simulations, the particles
undergo overdamped Brownian motion and the effect of hydrodynamics are mimicked by
the implementation of suitable hydrodynamic interactions (7). The equations of motion for a
system of particles i subject to the forces �Fi in an external flow field �u(�r) then have the general

form (Ermak & McCammon (1978))

ṙiα = uα(�ri) + ∑
j

∑
β

Diα,jβ Fjβ + ∑
j

∑
β

ξiα,jβ θjβ, (42)

where D is a symmetrical mobility matrix, θ is an uncorrelated Gaussian distributed white
noise with

〈θiα〉 = 0 and 〈θiα(t)θjβ(t
′)〉 = 2 kBT δij δαβ δ(t − t′), (43)

and the matrix ξ is chosen such that ξ ξT = D. The indices i, j denote particles and α, β
cartesian coordinates.

The mobility matrix D incorporates the effect of hydrodynamic interactions in the given
channel geometry. In free solution, it would seem natural to construct it from the Oseen tensor

Diα,jβ = δij δαβμ
(0)
i + (1 − δij) Tαβ(�ri −�rj), (44)

where T is the Oseen tensor of a point particle given by Eq. (8) and μ
(0)
i the mobility of a

single particle, which can be approximated by the inverse Stokes friction μ(0) = (6πηa)−1

for spherical particles of radius a. Unfortunately, the naive implementation of this expression
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leads to numerical problems due to the fact that D may become singular. Therefore, the Oseen
tensor T(�r) in Eq. (44) is usually replaced by the more refined Rotne-Prager tensor

TRP
αβ (�r) =

1

8πη r

(

δαβ + r̂αr̂β + 2(
a

r
)2
(1

3
δαβ − r̂α r̂β

)

)

, (45)

which describes approximately the hydrodynamic interactions between spheres of radius a
with no-slip surfaces (Dhont (1996)).

In confined geometry, the hydrodynamic interactions depend on the boundary conditions at
the walls. General analytical expressions for D are not available. In some cases, however,
solutions for D can be constructed from the knowledge of the mobility matrix in free solution.

For example, D can be calculated in slit geometries calculated by a summation over a series
of image charges (Kekre et al. (2010)).

Even though BD simulations disregard the solvent degrees of freedom, they quickly become

very expensive for large macroion numbers n. This is not only due to the long-range nature
of the hydrodynamic interactions, but also because of the stochastic contribution to Eq.
(42), which has to be determined from the mobility matrix. For symmetric and positively
definite matrices D, a matrix ξ satisfying ξξT = D can be calculated in a straightforward
manner, e.g., via a Cholesky decomposition. Unfortunately, the costs for this operation scale
with n3. This prohibits exact large scale simulations of many-particle systems with BD, and
schemes for treating the noise at an approximate level are necessary (Banchio & Brady (2003);
Fixman (1986); Geyer & Winter (2009)). The evaluation of the hydrodynamic interactions
themselves can be accelerated using methods developed for electrostatics such as fast
multipole techniques.

3.2 Simulation of electrokinetic phenomena

Simulations of hydrodynamic phenomena are challenging. Simulations of
electrohydrodynamic phenomena are even worse due to the long-range nature of the
Coulomb interactions. Even though the static equilibrium interactions between macroions
are exponentially screened in fluids of high ionic strength, the microions in solution still

influence the hydrodynamic flows and can thus not be ignored altogether.

In electrophoresis, we have discussed in Sec. 2.2.3 that the microions also screen
hydrodynamic interactions in some sense. Early simulation approaches have therefore

resorted to local BD simulation models where both hydrodynamic and electrostatic
interactions are neglected (Viovy (2000)) (see Sec. 3.2.2). Such models can be quite successful.
Nevertheless, they clearly disregard important physics. For example, hydrodynamic
interactions are ”screened” only with respect to the response of particles to slowly varying
external electric fields, but not with respect to other external forces, internal forces, or
diffusion. Moreover, time-dependent phenomena where ion relaxation becomes important
cannot be studied within such simplified BD schemes.

To go beyond local BD models, one must account for both hydrodynamics and electrostatics
simultaneously. Three types of approaches have been pursued in the past: Fully explicit
models with explicit solvent and explicit microions, fully implicit models with implicit solvent
and implicit microions, and mixed schemes where either the solvent or the microions are

114 Advances in Microfluidics

www.intechopen.com



Mesoscopic Simulation Methods for Studying Flow and Transport in Electric Fields in Micro- and Nanochannels 19

treated at an implicit level. In the following, we shall give a brief overview over these
approaches with a few examples. More detailed reviews can be found in (Pagonabarraga et al.
(2010); Slater et al. (2009)).

3.2.1 Fully explicit models

In fully explicit simulation approaches, the fluid is treated by explicit mesoscale methods such
as DPD, MPCD, or LB, and the charges are represented by explicit charged point particles
which are coupled to the fluid following the prescriptions described in the Sections 3.1.1–
3.1.3. This is computationally expensive, but feasible. To give an example, the electrophoresis
of short polyelectrolytes in free solutions has been studied recently both by fully explicit LB
and MPCD simulations (Grass et al. (2008); Frank & Winkler (2008)). The computationally
most challenging part of the simulations is the evaluation of the electrostatic interactions,
especially in systems with high salt concentrations. Large efforts are currently dedicated
to developing efficient methods for treating Coulomb interactions in many-particle systems
(Sutmann (2009)), which will undoubtedly also benefit electrokinetic simulations in the future.
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Fig. 2. Left side: Flow profiles for the DPD-method for various slip lengths in the
Poisson-Boltzmann regime. The hydrodynamic boundary positions for the DPD-method are
at |zB| = (3.866 ± 0.265)σ. The straight lines represent the theoretical prediction of Eqn.(20).
Right side: Flow profile for the DPD-(circles) and the LB-method (triangles) with no-slip
boundary conditions and Ex = 1.0ǫ/eσ. The straight line is the theoretical prediction of
Eqn. (20) with |zB| = 4.0σ and δB = 0.0σ. From Ref. (Smiatek et al. (2009)).

Here, we will illustrate the fully explicit approach at the example of two applications in
microchannels. The first one is a comparative study of counterion-induced EOF in symmetric
planar slit channels using fully explicit DPD and LB simulations (Smiatek et al. (2009)). The
theoretical prediction for the EOF profiles in this case is given by Eq. (20). We have studied
such flows by two complementary approaches, DPD and LB, and devised schemes how the
model parameters could exactly be mapped onto each other. Fig. 2 demonstrates that the
results of DPD and LB simulations are in excellent agreement with each other and with
theory. The left graph illustrates remarkable flow enhancement due to slippage already in
the presence of small surface slip. The examples shown in Fig. (2) refer to situations where the
Poisson-Boltzmann theory is applicable, i.e., the microions are monovalent and the charges on
the channel surfaces are moderate. With fully explicit simulations, one can also study regimes
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where the mean-field assumption breaks down. In that case, explicit simulations show that
the relation between flow and electrostatic potential, Eq. (19), remains valid even though the
ion distribution can no longer be calculated analytically (Smiatek et al. (2009)).

The electrophoretic response of polyelectrolytes in symmetric slit channels is considered in
our second example. As discussed in Section 2.2.3, it results from the combination of bare
electrophoresis and background EOF. From Eqs. (21), (23) and (25), one can derive the relation

μt

μEOF

= 1 +
μe

μ0
EOF(1 + δBκs)

. (46)

This relation is verified in Fig. 3 (left). We have studied the electrophoresis of a charged
polyelectrolyte in several electrolytes with different salt concentrations, confined by charged
planar walls with different slip lengths. The behavior of the electrophoretic mobility is in very
good agreement with the theoretical prediction. Most notably, the EOF flow may reverse

the sign of the electrophoretic mobility, such that the polyelectrolyte migrates against the
applied field. Following the discussion in Section 2.2.3, we expect the bare mobility of the
polyelectrolytes to be independent of chain length in solvents of high ionic strength. Fig. 3
(right) demonstrates that this is indeed the case.
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Fig. 3. Left side: Ratio μt/|μEOF| plotted against δB κs for chains of length Nm = 20 and
several slip lengths and salt concentrations. The black line is the theoretical prediction of
Eqn. (46). The ratio μe/μ0

EOF has been fitted to −3.778 ± 0.128. Negative values of μt/|μEOF|
indicate negative total mobilities of the polyelectrolyte. Inset: Total displacement of the
polyelectrolyte’s center of mass for different boundary conditions and a salt concentration of
ρs = 0.05625σ−3 . in units of the ion diameter σ. The total mobility becomes negative for
|μe| ≪ |μEOF|. The lines correspond from top to bottom to the slip lengths
δB ≈ (0.00, 1.292, 1.765, 2.626, 5.664, 14.98)σ. Thus larger slip lengths indirectly enhance the
total mobility of the polyelectrolyte. Right side: Bare electrophoretic mobility for different
monomer lengths Nm in confined geometry in the presence of salt for two slip lengths.

Finally in this section, we mention a special boundary effect which has not been discussed so
far and is often neglected in electrokinetic simulations: The dielectric contrast between water
and typical microchannel materials is very high. Therefore, the surfaces are polarized and
charges are induced at the boundaries. Tyagi et al. have recently developed a general method
that allows one to account for this effect (Tyagi et al. (2007; 2010)). First preliminary studies
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seem to indicatethat it does not influence the transport properties very much on length scales
larger than the Debye length.

3.2.2 Fully implicit models

In fully implicit approaches, both solvent and microion degrees of freedom are disregarded
and their effect on the particles is incorporated in effective interactions and an
effective mobility matrix (see Eq. (42)). This implies an adiabatic approximation: Both
the hydrodynamic flows and the local microion distributions are assumed to adjust
instantaneously to the macroion configuration. Whereas this approximation can be justified
in the case of flows at low Reynolds numbers (as discussed in Section 3.1.4), it is somewhat
questionable in the case of the ions. We have discussed important phenomena in Section
2.2 which cannot be captured within such an approach, e.g., the relaxation effect in
electrophoresis. Relaxation processes in the ionic double layer of charged colloids have
characteristic time scales ranging from microseconds (Maxwell-Wagner relaxation, ionic
migration sets in) to 10 milliseconds (the thickness of the Debye layer adjusts), which is close to

the characteristic time scales of many mesoscale simulations. Thus fully implicit methods are
hardly suited for studying dynamical processes with a time evolution. They can however be
used to study quasi-stationary situtaions such as electrophoresis or pressure-driven transport
at a semi-quantitative level.

A second drawback of implicit schemes is that they usually rely on the Debye-Hückel
approximation, which has a limited range of validity as discussed in Section 2.2.1.
Nevertheless, it can often be applied successfully even in the nonlinear regime as long as
one accounts for nonlinear effects by appropriate charge renormalization or renormalization
of the local Debye Hückel screening length (see 2.2.1).

Fully implicit simulations are stochastic simulations with the structure of BD simulations (Eq.
(42)). Setting up BD schemes for nanoparticles in external electric fields is slightly subtle due
to the fact that one has two mobility matrices: One (DC) which describes the hydrodynamic
interactions in response to conservative forces and is related to the unscreened Greens
function Eq. (8) or (45) in free solution, and one (DE) which describes the hydrodynamic
interactions in response to external electric fields, and can be related to the screened Greens
function (29) in free solution if the external fields vary slowly compared to the Debye Hückel
screening length. A clean way of dealing with this situation is to treat both types of responses
on separate footings: In a constant or slowly varying electric field �E and external flow field
�u(�r), the equation of motion of a system of particles i with charges qi (the equivalent of Eq.
(42) ) is then given by (Kekre et al. (2010))

ṙiα = uα(�ri) + ∑
j

∑
β

DC
iα,jβ FC

jβ + ∑
j

∑
β

ξiα,jβ θjβ + ∑
j

∑
β

DE
iα,jβ qjEβ, (47)

where DC and DE are given by

DC
iα,jβ = δij δαβ μ

(0)
i + (1 − δij) Tαβ(�ri −�rj)

DC
iα,jβ = δij δαβ μel

i + (1 − δij) Gαβ(�ri −�rj)
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and the matrix ξ meets the requirement ξξT = DC. Here μ
(0)
i is the bare frictional mobility

of the particle i, μel

i its electrophoretic mobility, and T, G are the screened and unscreened
hydrodynamic Greens functions, which can be approximated by the Rotne-Prager tensor
(45) and the screened Greens function (29) (or the corresponding Rotne-Prager version
(Fischer et al. (2008))) in free solution. It is important to note that �FC

j subsumes all effective

conservative interactions between ions, including those of electrostatic origin. One can
show rigorously that a procedure where (microion) degrees of freedom are integrated out
adiabatically only renormalizes the conservative potentials of the remaining macroions and
not their mobility coefficients. Thus, the Coulomb potentials are replaced by screened Yukawa
potentials, but the hydrodynamic interactions remain long-range. The situation is different in
electrophoresis since this is an inherently nonequilibrium process.

Solving Eq. (47) for many-particle systems is expensive due to the long-range hydrodynamic
interactions and the noise issue discussed in Section 3.1.4. If the dominating forces in a
system are due to external electric fields, it may become acceptable to neglect the long-range
hydrodynamic contributions. In nanochannels, this approximation can further be justified
by the fact that hydrodynamic interactions are screened in confinement (see Section 2.1.2).
For these reasons, simulation approaches have been popular already early on where both
hydrodynamics and electrostatics were neglected entirely. The motion of macroions in an
external electric field �E(�r) and flow field �u(�r) is then described by simple local Langevin

dynamics, where the force �Fi on a particle i at position�ri is given by the sum

�Fi = �FC
i + �FD

i + �FR
i (48)

of conservative contributions �FC
i = qi

�E(�ri) + �FC
i,int

, the dissipative drag force �FD
i =

−ζ(�vi − �u(�ri)) and a Gaussian distributed random force �FR
I which satisfies the fluctuation

dissipation relation 〈FR
iα(t) FR

jβ(t
′)〉 = 2 ζ kBT δij δαβ δ(t − t′). The internal contributions �FC

i,int

subsume the screened electrostatic interactions between particles as well as other forces with
non-electrostatic origin.

The situation is particularly simple if the external flow �u(�r) has been generated by EOF and
the channel has the similitude property (Section 2.2.2), i.e., �u(�r) = μEOF

�E(�r). In that case, the
total force on the particle i is given by

�Fi = �FC
i,int

+ (qi + μEOFζ)�E(�ri)− ζ�vi + �FR
i . (49)

Thus the EOF flow �u(�r) simply has the effect of renormalizing the charge qi (Streek et al.
(2005)).

Simple local BD approaches such as Eq. (49) have been used quite successfully to study
electrophoresis in complex geometries, and they can yield good qualitative and even
semiquantitative agreement with experiments (Streek et al. (2004); Viovy (2000)). As an
example, Fig. 4 shows results from such a BD simulation of DNA electrophoresis in a
structured microchannel. Both in experiments and simulations, one observes a two-state
behavior where the DNA switches between a ”slow” and ”fast” migration mode. This is
reflected by an inhomogeneous average monomer distribution in the channel (Streek et al.
(2005)).
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b) c)a)

a)a)

b) c) d)

Fig. 4. Top panel (a): Monomer density histograms obtained from local BD simulation of
electrophoresis of charged chains with different lengths N = 50, 100, 120, 140 (top, left to
right) and N = 170, 200, 250 and 320 (bottom) at. Bottom panel: Monomer density
histograms obtained from experiment at applied voltages (b) E = 43V/cm, (c) E = 86V/cm,
and (d) E = 130V/cm for λ-DNA in 5μm constrictions. The fluorescence intensity decreases
because the illumination time was kept constant. Note the depletion zone in the center of the
channel. From (Streek et al. (2005))

Despite these successes, the complete neglect of hydrodynamic interactions sometimes
simplifies the situation too much even in simulations of electrophoretic transport. In these
cases, one may still choose to work with the screened hydrodynamic Greens function
G for reasons of efficiency and neglect the unscreened contributions. Löwen et al have
demonstrated that such a scheme can be used successfully to describe the effect of
hydrodynamic interactions in systems of oppositely charged colloids subject to an external
field. Even the screened hydrodynamic interactions have a noticeable effect on structure
formation and ”laning” in such systems (Rex & Löwen (2008)).

3.2.3 Mixed schemes

Mixed schemes for electrohydrodynamic simulations treat either the solvent or the microions
at an implicit level.

In the first approach, both microions and macroions are represented by explicit particles
which interact with each other by means of the full Rotne-Prager tensor, Eq. (45) (Fischer et al.
(2008); Kim & Netz (2006)). These methods are motivated by the fact mentioned earlier that
hydrodynamic flows adjust very rapidly, whereas ion rearrangement processes can be slow
on mesoscopic time scales. Unfortunately, they suffer from the bad scaling properties of BD
simulations and have therefore not been used to study very large systems.

In the second type of approach, the solvent is modeled as an explicit fluid, but microions are
no longer represented by individual particles. Many kinetic processes in electrolyte solutions
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do not depend on ion correlations and can thus be described satisfactorily at the mean-field
level. To access larger length scales in simulations, one may therefore resort to methods that
treat the ions at the level of the Nernst-Planck equation (12). So far, efforts to develop such
methods have mainly focused on LB approaches (Capuani et al. (2004); Horbach & Frenkel
(2001); Pagonabarraga et al. (2005); Warren (1997)).

A number of authors have proposed simplified schemes that capture basic electrokinetic
phenomena at a heuristic level in explicit fluid simulations. For example, one simple
way to deal with EOF is to impose a velocity boundary condition (Eq. (23)) at the walls
of a microfluidic channel (Duong Hong et al. (2008)). Similarly, the electrohydrodynamic
screening effect in electrophoresis can be mimicked in a LB simulation by adding a slip
term to the Stokes drag on the particle in the LB flow. The dissipative contribution FD =
−ζ

(

�V −�u(�R, t)
)

to Eq. (40) is then replaced by a modified drag force (Hickey et al. (2010))

FD = −ζ
(

�V −�u(�R, t)− μ0�E
)

(50)

Unfortunately, this elegant idea cannot easily be transferred to DPD and MPCD simulations.
Duong-Hong et al. have proposed an alternative approach where charges are assigned to
DPD or MPCD particles that are within a certain distance (the Debye length) of the macroions
or charged walls. These particles are then dragged along by the electric field, which can be
used to mimick electrophoretic retardation, electrohydrodynamic screening effects, and EOF
generation on channel surfaces in a unified manner (Duong Hong et al. (2008b)).

4. Summary and outlook

With the advent of faster computers and improved simulation methods for electrostatics and
hydrodynamics, electrohydrodynamic simulations become an increasingly attractive tool for
studying and predicting electrokinetic phenomena in microgeometries. In this chapter we
have introduced the main concepts behind coarse-grained mesoscale simulations of micro-
and nanofluidic flow and transport. We have focused on boundary effects and mean-field

phenomena, e.g., phenomena that can be rationalized within the Poisson-Boltzmann theory.
Several important phenomena such as counterion condensation, overcharging, shape
transformations of the polyelectrolytes, confinement effects, to name a few, have not been
discussed in this work. Also, important problems of current interest such as electrophoresis
with obstacle collisions or polymer nanopore translocations, have not been mentioned. For
further reading, we refer the interested reader to the reviews (Boroudjerdi et al. (2005);
Graham (2011); Pagonabarraga et al. (2010); Slater et al. (2009); Viovy (2000)).

We have shown that mesoscopic simulation methods are powerful tools to explore fluid
behavior on the micro- and nanoscale. Such simulations not only help to understand and
optimize transport processes in micro- and nanofluidic channels, they can also be used to
study basic mechanisms for many physical processes of life, since such processes often take
place in confinement (e.g., cells) and in aqueous solutions with high ion concentrations. We
expect that the mesoscale techniques introduced in this chapter, combined with microscopic
and macroscopic approaches, will open new routes towards a better understanding of
transport phenomena on the micro- and nanoscale.
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