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1. Introduction 

Living organisms conduct biological processes by transducing biotic and abiotic stimuli 
through gene regulation into well-orchestrated growth and development. Analyzing RNA 
from a transcribed genome (the transcriptome) is fairly easy due to the availability of 
various nucleotide sequencing technologies. The translation of a transcriptome provides a 
blueprint of tens of thousands of different proteins that is known as the proteome (Wasinger 
et al., 1995). The analysis of proteins from whole tissues, organs or organisms has been made 
easier thanks to various technologies, including the Edman degradation technique, which is 
used in sequencing polypeptides (Edman, 1950), and 2 dimensional gel electrophoresis (2-
DE), which could resolve up to 10,000 polypeptides (Barrett & Gould, 1973; O'Farrell, 1975; 
O'Farrell et al., 1977). Thus, the problems of assaying a transcriptome and a proteome from 
samples isolated from tissues, organs or whole organisms have largely been overcome. 
However, although it is fairly easy to assay a transcriptome and a proteome at these higher 
levels of biological organization, assaying a proteome at a cellular resolution level involves a 
set of problems that in primarily centered on the ability to collect sufficient cells for 
meaningful studies. The central focus of this chapter is a discussion on the technologies that 
have allowed the proteomic analyses of cells, isolated from complex samples thanks to a 
procedure that was first called laser microdissection (Isenberg et al., 1976). 

2. The diversity of genome activity 

Thanks to the recent advances in high-throughput technologies, the past decade has 
witnessed an explosion of global transcriptome profiling studies, which have produced novel 
insights into many developmental, physiological and medicinal aspects. Although a great 
deal of information can be obtained from transcriptome profiling, it is however insufficient 
for a comprehensive delineation of biological systems. A single approach cannot fully 
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unravel the complexity of living organisms (Persidis, 1998). In addition, enzymatic reactions 
and signaling pathways depend on the activity of proteins, and protein quantities are 
regulated by protein synthesis and degradation. These processes may be independent of 
transcriptional control or have only a weak correlation (Lu et al., 2007; Nie et al., 2007). By 
generating information on the proteome at cellular resolution, a greater understanding of 
biological complexity is gained, including post-translational modification, isoforms, and 
splice variants, which may lead to the identification of important cell-specific protein entities 
(Schulze & Usadel, 2010). The proteomics approach can shed light on a number of protein 
species that can be translated from a single gene as a result of alternative splicing (AS) or 
PTMs. Proteomics analyses can also provide the biological meaning of each variant (Kim et 
al., 2007; Witze et al., 2007). For example, the Drosophila Dscam1 gene, which encodes a 
membrane receptor protein, has 115 exons. The various combinations permit the possibility 
of 38,016 different proteins to be produced and many have been identified (Schmucker et al., 
2000; Chen et al., 2006; Meijers et al., 2007). On the basis of large-scale EST-cDNA alignments 
and bioinformatics analyses on the genomes of Arabidopsis thaliana (thale cress) and Oryza 
sativa (rice), it has been estimated that approximately 30–35% of the their genes are 
alternatively spliced (Cambpell et al., 2006; Xiao et al., 2005), while in humans up to 95% of 
multi-exon genes undergo alternative splicing (Pan et al., 2008). The number of alternatively 
spliced genes in plants is still likely to be underestimated because of the relatively low EST 
coverage and depth of sequencing of many plant transcripts (Simpson et al., 2008; Xiao et al., 
2005). Extensive AS variation has been shown in some Arabidopsis-specific gene families, for 
example in genes encoding serine/arginine-rich proteins, and this results in a five-fold 
increase in transcriptome complexity (Palusa et al., 2007; Tanabe et al., 2007). In addition, 
stress conditions seem to dramatically alter the splicing pattern of many plant genes (Ali & 
Reddy, 2008). For these reasons, there is growing interest in complementing transcriptomic 
studies with proteomics, which should be considered as part of a multidisciplinary 
integrative analysis that extend from the gene to the phenotype through proteins. 

3. Developmental plasticity of protein complexes 

Many processes and structures are composed of protein complex aggregates. Protein 
complexes can vary in size and composition, and range from mega-Dalton assemblies of 
dozens of proteins (such as the ribosome and the spliceosome) to smaller clusters of just a 
few proteins. The composition and stability of protein complexes is highly regulated in both 
a context dependent manner, such as cell-type-specific differences, and a time-dependent 
manner (Michnick et al., 2004). This biological variability of proteins and their range of 
physicochemical properties reflect the difficulty of characterizing the structure and the 
function of protein complexes (Cravatt et al., 2007). In addition, in proteomics, the sample 
amount is often a limiting factor since, unlike transcript profiling, proteomic approaches 
cannot benefit from amplification protocols. It should be evident that sensitivity, resolution 
and speed in data capture are all significant problems with proteomics techniques. In order 
to circumvent these problems, methods have been developed to extract, separate, detect and 
identify a wide range of proteins from small sample amounts (Gutstein & Morris, 2007). 
Technical advances in mass spectometry have facilitated major progress in both the 
qualitative and quantitative analysis of proteins (Kaspar et al., 2010). Most of these 
improvements have occurred over the last decade and proteomics has developed a broad 
range of new protocols, platforms and workflows.  
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4. Proteomic workflow 

The workflow of a standard proteomics experiment is crucial for the success of any 
experiment and it usually includes a good experimental design, an appropriate 
extraction/fractionation/purification protocol that considers the needs of different samples 
(tissue/cells or organelle), a suitable separation protocol, protein identification, statistical 
analysis and validation. The use of proteomics in plant biology research has increased 
significantly over the last few years with an improvement in both quality and quantitative 
analysis, inaugurating a new phase of “Second Generation Plant Proteomics” (Jorrín et al., 
2009). This growing interest in plant proteomics has continually produced a large number of 
developmental studies on plant cell division, elongation, differentiation, and formation of 
various organs using various proteomics approaches (Hochholdinger et al., 2006; Takàč et 
al., 2011, Miernyk et al., 2011). Most of the studies published in the plant field concern the 
proteome of Arabidopsis and rice. The work has focused on profiling organs, tissues, cells, 
and/or subcellular proteomes (Rossignol et al., 2006; Komatsu et al., 2007; Jorrin et al., 2007; 
Jamet et al., 2008; Baerenfaller et al., 2008; Jorrin et al., 2009; Agrawal & Rakwal, 2011) and 
studying developmental processes and responses to biotic (Mehta et al., 2008) and abiotic 
stresses (Nesatyy & Suter 2008) using differential expression strategies. However, 
proteomics research results have recently appeared on several non-model herbaceous non-
crop species, woody plants, fruit and forest trees (Table 1). Furthermore, over the past year, 
proteome analysis has increasingly been applied to the study of cereal grains with the aim of  

 
model species   

Lycosersicon esculentum tomato Sheoran 2007 

Hordeum vulgare wheat Song et al., 2007 

Glycine max soybean  Djordjevic et al., 2007 

Zea mays maize Dembinsky et al., 2007 

Medicago truncatula alfalfa de Jong et al., 2007  

non-model species   

Elymus elongatum wheatgrass Gazanchian et al., 2007 

Nicotiana alata jasmine tobacco Brownfield et al., 2007 

Boea hygrometrica  Jiang et al., 2007  

Xerophyta viscose  Ingle et al., 2007  

Solanum chacoense chaco potato Vyetrogon et al., 2007  

Citrullus lanatus wild watermelon Yoshimura et al., 2008  

Citrus sinensis  Lliso et al., 2007  

Pinus nigra Australian pine Wang et al., 2006  

Pinus radiate Californian pine Fiorani Caledon et al., 2007  

Eucalyptus grandis rose gum eucalyptus Lippert et al., 2007  

Picea sitchenisis sitka spruce Valledor et al., 2008  

Pyrus communis conference pears  Pedreschi et al., 2007  

Table 1. Proteomics analyses perfomed on model and non-model plants 
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providing knowledge that will facilitate the improvement of crop quality, either in terms of 
resistance to biotic and abiotic stress, or in terms of nutritional processing quality (Salekdeh 
& Komatsu, 2007; Finnie et al., 2011). 

5. Proteomic approaches 

Comparative plant proteomic approaches are still largely based on traditional two 
dimentional polyacrilamide gel electrophorsis (2D PAGE) with isoelectric focusing in the 
first dimension and SDS-PAGE in the second dimension. This technique was initially 
considered the most suitable method to visualize the differences between protein samples 
derived from samples grown under different conditions and/or from different tissues. 
Complex protein mixtures can be resolved efficiently, and the detection of differences in 
bands or spot intensities is intuitive. Currently, it is possible to visualize over 10,000 protein 
spots, corresponding to over 1,000 proteins, on single 2D gels (Görg et al., 2009). In many 
cases, however, individual spots may consist of more than one protein. The differences in 
spot composition can only be identified by means of mass-spectrometry. The quantitative 
mass-spectrometry-based proteomics field is constantly evolving, with continuous 
improvement in protocols, machines and software. Most of the early developments 
quantitative mass-spectrometry-based proteomic applications were driven by research on 
yeast and mammalian cell lines. However, in plant physiology analyses, mass spectrometry-
based proteomics is no longer only used as a descriptive tool. Instead, well-designed 
quantitative proteomics has been applied to various aspects of organelle biology, growth 
regulation and signaling (Schulze & Usadel, 2010). These efforts have greatly improved our 
knowledge of protein diversity during complex processes. Encouraging pioneer studies on 
specific subproteomes in plants have revealed candidate proteins that are phosphorylated 
under specific stress conditions (Oda et al., 1999; Benshop et al., 2007; Niittylä et al., 2007) or 
during the light independent cycle of photosynthesis (Reiland et al., 2009). Protein 
abundance changes have been monitored in response to heat shock (Palmblad et al., 2008), 
during leaf senescence (Hebeler et al., 2008) and during the protein turnover of 
photosynthetic proteins, monitored using pulse-chase labeling in combination with mass-
spectrometry (Nowaczyk et al., 2006). The combination of subcellular fractionation 
techniques and mass-spectrometry has led to the extensive characterization of the plant 
subcellular proteome which in turn has led to the discovery of new metabolic pathways 
(Dunkley et al., 2006). Organelle proteomes were also characterized, such as chloroplasts 
(Kleffmann et al., 2007; Mejaran et al., 2005; Peltier et al., 2000; Pevzner et al., 2001; Reiland 
et al., 2009) and plasma membranes and their microdomains (Kierszniowska et al., 2009; 
Nelson et al., 2006a). 

6. Problems with proteomic analyses 

Although quantitative methods and their results are desirable, the proteomics data that is 
usually produced is very complex and often variable in quality. The main problem is 
incomplete data, since the most advanced mass spectrometers cannot sample and fragment 
all the peptide ions that are present in complex samples. In fact, only a subset of the 
peptides and proteins present in a sample can be identified. The first step in primary data 
extraction is the manual validation of the identity of a peptide and quantification through 
the revision of the spectra assigned to each sequence. The identification of proteins through 
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the use of algorithms has long been practiced and has been well documented (Eng et al., 
1994; Pevzner et al., 2001; Craig & Beavis, 2004; Geer et al., 2004; Tanner et al., 2005). The 
development of robust algorithms to extract quantitative information from 
multidimensional proteomic experiments, based on mass spectrometry, is instead a more 
recent development (Schulze & Usadel, 2010 and references therein). Parallel investigations 
that provide complete genome sequences for several important agricultural crops will make 
proteomics-based analyses more useful and increase confidence in proteomic identification 
and characterization. Unfortunately, genome sequencing is still a relatively new approach 
and is still fairly expensive therefore most plant species of interest have not yet been 
sequenced, with consequent gaps in the databases. In such cases, it is possible to exploit the 
homology-driven proteomics for the characterization of proteomes (Junqueira et al., 2008). 
The availability of fairly large databases of genomic data from model systems has made it 
feasible to explore the proteomics of single cell types isolated from complex tissues through 
a procedure known as laser microdissection. The remainder of this chapter is focused on the 
use of laser microdissection-assisted proteomic analyses on plant tissues. 

7. Laser microdissection in plant biology 

Plants are considered to have about 40 different cell types (Martin et al., 2001). Therefore, the 
gene expression profiles, protein levels and chemical composition of these cell types are 
destined to be different, even when they are directly adjacent to each other. For this reason, 
it is important that the sampling and analysis of data are generated in an ever more spatio-
temporal cognizant manner, to allow for a far greater resolution in gene expression (Moco et 
al., 2009). For many years, in situ hybridization and experiments with transgenic plants 
expressing promoter-gene reporter fusion constructs have been used to identify the 
expression of individual genes in specific cell types (Jefferson et al. 1987; reviewed in 
Balestrini & Bonfante, 2008). While these techniques cannot be developed with a high-
throughput capability, there is a clear need to analyze a transcriptome and proteome at the 
specific cell-type level (Klink et al., 2007, 2009, 2010a, 2010b, 2011a, 2011b). It is well known 
that cell-type specific differences occur in gene expression. Identifying these differences in 
gene expression is complicated by the complexity of the cells that compose the tissues and 
organs. Thus, the primary reason for obtaining gene expression information from specific 
cell types is to minimize the dilution effect caused by the cellular complexity found in 
tissues and organs. This limitation has been overcome by the laser microdissection (LM) 
technique which was first described by Isenberg et al. (1976) and then developed at the NIH 
(National Institute of Health, U.S.) for the dissection of cells from histological tissue sections 
(Emmert-Buck et al., 1996). Laser microdissection permits the rapid procurement of selected 
cell populations from a section of heterogeneous tissue in a manner conducive to the 
extraction of DNA, RNA or proteins. Since it was re-designed for histological sections, LM 
technology has been used routinely in mammalian (Kamme et al., 2003; Kim et al., 2003; 
Mouledous et al., 2003) and, in more recent years, in plant systems (Asano et al., 2002; 
Nakazano et al., 2003; Kerk et al., 2003; Day et al., 2005; Klink et al., 2005). The LM apparatus 
is generally attached to a light microscope and the dissection of the region of interest is 
computer-controlled. Several instruments are commercially available to isolate individual 
cells or groups of cells from intact tissues and they are based on two major methods: laser 
capture microdissection (LCM) and laser cutting (Day et al., 2005; Nelson et al., 2006b). In 
LCM, the target cells are attached to a thermoplastic film, which covers an optically clear 
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tube cap, using a pulsed infrared laser. The laser is manipulated so that it melts and fuses 
the film onto the desired cells. When the cap is removed, the target region is selectively 
pulled away from the surrounding tissues (Emmert-Buck et al., 1996). An alternative 
approach uses a UV laser to excise target regions from tissue sections. In the first system, the 
excised fragment is catapulted upwards into a tube cap (laser microdissection pressure 
catapulting, LMPC), whereas in the second, the sample falls into the collection tube without 
any extra forces (LMD). These two instruments allow the collection of a single cell and/or a 
group of cells or tissue regions. A new generation of LCM systems includes both an infrared 
laser and a UV laser that allow both laser excised microdissection and capture. Some recent 
reviews have highlighted the increasing interest of the scientific community in the 
application of this approach in plant biology (Day et al., 2005, 2006; Nelson et al., 2006b; 
Ramsay et al., 2006; Balestrini et al., 2009). The preparation of plant samples has been 
described extensively (Asano et al. 2002; Nakazono et al. 2003; Kerk et al., 2003; Inada & 
Wildermuth 2005; Klink et al. 2005; Tang et al., 2006; Yu et al., 2007; Balestrini et al., 2007; 
Klink et al. 2007) with additional details being provided in several reviews (Day et al., 2005, 
2006; Nelson et al., 2006b). 

8. Tissue processing for LM 

The tissues for LM are first fixed and sectioned and then the target cells are isolated from the 
non-target cells under the LM microscope. Sample preparation for LM requires a balance 
between two contrasting aims: to preserve enough visual detail to identify specific cells 
during the harvest, and to allow the maximum subsequent recovery of the nucleic 
acids/proteins from the harvested cells (Figure 1). Two methods have been adopted to 
prepare sample sections for LM: cryosectioning and paraffin sectioning. Cryosectioning is 
commonly used in animal research, due to its speed, and it is better at preserving intact 
molecules, including RNAs and proteins. Although cryosectioning has been described in 
plant studies (Nakazono et al., 2003), its applicability should be judged on a case-by-case 
basis (V.K., unpublished observations). Freezing procedures can cause the formation of ice 
crystals inside vacuoles and air spaces between cells in mature plant tissues: both these 
features compromise tissue cytology, and eventually lead to the disassembly of cell 
structures. Cryosectioning of more mature or vacuolated plant material generally requires 
fixation as well as a cryoprotectant treatment using for example 10–15% sucrose, in order to 
alleviate the tissue damage caused by freezing. As an alternative, samples are embedded in 
paraffin after fixation when a more satisfactory preservation of tissue histology is required 
for target identification. Although this protocol provides excellent cytology, the RNA and 
protein yield is reduced compared with that from frozen samples. Therefore, it is clear that 
tissue fixation and paraffin embedding could result in a considerable loss in quality and 
quantity of the extracted material during RNA studies (Ramsay et al., 2006). Nevertheless, 
satisfactory amounts of RNA have been obtained from paraffin-embedded material (Kerk et 
al., 2003; Klink et al., 2005; Tang et al., 2006; Klink et al., 2007, 2009; Hacquard et al., 2010) 
and an improved morphology is sometimes essential to identify the appropriate cell types 
for collection purposes. The embedding of Medicago truncatula roots in Steedman’s wax has 
recently been used as an alternative to paraffin, and sections of satisfactory morphology and 
improved RNA quality have been obtained (Gomez & Harrison, 2009). A method for 
preparing serial sections that reduces RNA degradation has been recently described by 
using a microwave method (Takahashi et al., 2010). As far as the analysis of nucleic acids is  
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Fig. 1. Experimental proteomics workflow. The classical proteomics workflow has been 
adapted for a targeted analysis of microdissected samples.  

concerned, the possibility of amplifying the RNA extracted from laser microdissected cells 
allows a transcriptome to be explored by means of microarrays (Nakazono et al., 2003, 
Casson et al., 2005; Jiang et al., 2006; Klink et al., 2007, 2009; Hacquard et al., 2010) or 
mRNA-seq techniques based on pyrosequencing platforms, such as 454 Roche and 
Illumina/Solexa (Graveley, 2008; Simon et al., 2009).  
In recent years, LM technology has been applied to gene expression analysis on specific 
plant cell-types (Day et al., 2005; Nelson et al., 2006b; Ohtsu et al., 2007; Balestrini & 
Bonfante, 2008; Day et al., 2006; Nelson et al., 2008). The gene expression profile of a 
number of plant vegetative tissues or cell types, including root cortical cells, vascular 
bundles, parenchyma, meristem, incipient leaves, syncytia developed from nematode 
parasitism and abscission zones have been analyzed using the LM technique in several 
plants (Klink et al., 2005; 2007, 2009, 2010a, 2010b, 2011a, 2011b; Ramsay et al., 2006; Cai & 
Lashbrook, 2008; Augusti et al., 2009; Nelson et al., 2008 and reference therein). Recently, 
LM has also been used to provide new insight into fruit development and physiology 
through the collection of epidermal and subepidermal cells from green, expanding Citrus 
clementina fruit (Matas et al., 2010). A few studies have also focused on the application of 
LM to gene expression in plant-microbe interactions (Tang et al., 2006; Balestrini et al., 
2007; Gomez et al., 2009; Guether et al., 2009a, 2009b; Fiorilli et al., 2009; Chandran et al., 
2010; Hacquard et al., 2010). 
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9. Proteomics/metabolomics and LM 

The proteome varies in different cells and various cells respond differently to physiological 
perturbations. Obtaining a better understanding of tissue complexity could be accomplished 
by isolating specific cells and analyzing them through proteomic analyses, that could 
compliment mRNA studies. Over the last few years, the combined use of LM and proteomic 
analysis has been widely adopted in animal biology and significant progress has been made 
in adapting the technology to the study of plant cellular processes (Gutstein & Morris, 2007). 
A list of papers on the application of LM in proteomic and metabolomic studies in plant 
biology is showed in Table 2. However, difficulties in upstream tissue processing, for 
example achieving cellular morphological integrity and extracting specific types of protein 
from cells have limited the efficiency of this approach. The most critical step involves 
extracting as many proteins as possible from the sample of interest. The wide range of 
chemical properties of proteins implies that the extraction of all the different types of 
proteins cannot occur with the same efficiency. Despite these difficulties, recent studies have 
shown that it is possible to obtain useful information from samples as small as those of 
single cells (Rubakhin et al., 2003; Hummon et al., 2006). Two general classes of fixatives are 
usually used in LM analysis: cross-linking and precipitating. Cross-linking fixatives 
generally have little effect on genomic DNA recovery, but have profound effects on RNA 
(Goldsworthy et al., 1999) and proteins (Rekhter et al., 2001). Therefore, precipitating 
fixatives such as ethanol and Methacarn are preferred for protein work (Shibutani et al., 
2000; Ahram et al., 2003). It has been demonstrated that brief ethanol post fixation and LM 
using the IR-laser method does not adversely affect proteomic profiling by 2DE (Banks et al., 
1999). In plant biology UV laser seems the most used for proteomic studies (Table 2). This 
could be probably related to the fact that in more recent years the UV-laser systems are the 
more widespread and also instruments with IR laser cell capture are combined with UV-
laser tissue cutting (Balestrini et al., 2009; Nelson et al., 2006b). It has also been showed that 
paraffin embedding can have only a slight effect on proteomic profiling whether the tissue is 
processed properly (Ahram et al., 2003; Hood et al., 2006). This is an interesting observation 
because it opens the way towards the proteomics analyses of LM-collected cells, above all 
for plant tissues that are particularly prone to cell morphology damage during 
cryosectioning. Several studies on animal systems have suggested the staining of the tissue 
section with such dyes as hematoxylin and eosin to guide the dissection process. However, 
it has been demonstrated that conventional histological staining methods such as cresyl, 
hematoxylin/eosin and tolouidine blue, as well as some non-conventional methods such as 
chlorazol black E and Sudan black B, are incompatible with the 2DE-based proteomic 
analysis of samples isolated by LM (Banks et al., 1999; Craven & Banks, 2001; Moulédous et 
al., 2002; Craven et al., 2002; Sitek et al., 2005).  
As previously mentioned, many efforts have been made to ensure that sample collection 
methods involving LM do not interfere with the subsequent proteomic analysis. Extractions 
can be performed both physically and chemically, or as a combination of mechanical 
disruption and chemical treatments. A wide range of methods has been described to 
physically disrupt cells for protein analysis: homogenization, ultrasonication, freeze-
thawing, pressure cycling, and bead mills (Butt & Coorssen, 2006; Rabilloud et al., 1996). 
Cellular homogenization and ultrasonication methods are generally more applicable for a 
wide variety of biological samples. Chemical extraction and protein solubilization have 
improved substantially over the past few years. The used approaches include denaturation,  
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Subject Tissue 
preparation 

LM 
system 

Technique Reference 

Optimization of 
several tissue fixing 
and embedding 
procedures, and of 
protein extraction 
methods from 
Arabidopsis thaliana 
stem microdissected 
vascular bundle  

Fixation in  
- 70% ethanol  
- ethanol/acetic 
acid (75:25 v/v) 
Paraffin 
embedding  

(30 m) 
Cryosectioning  

(30 m) 

LMPC 
(UV) 

2-DE 
LC-MS/MS 

Schad et al., 
2005a 

Comparison of gene 
expression and 
protein accumulation 
in pericycle cells of 
maize root  

Fixation in 
ethanol/acetic 
acid 3:1 
Cryosectioning  

(10 m) 

PixCell II 
LCM 

2-DE 
ESI-MS/MS 

Dembinsky et al., 
2007 

Analysis of tissue-
specific differences  
in proteome profiles 
during barley grain 
development 

Cryosectioning 

(20 m) 

 

LMPC 
(UV) 

nanoUPLC  
combined with 
ESI-Q-TOF MS 

Kaspar et al., 
2010 

Micromethod for the 
analysis of amino 
acid concentrations 
in NP and ETC cell-
type populations 
from developed 
barley grain 

Cryosectioning 

(15 m) 

LMPC 
(UV) 

UPLC Thiel et al., 2009 

Metabolite 
measurement in 
microdissected 
vascular bundle 
samples from A. 
thaliana stem 

Cryosectioning  

(30 m) 

LMPC 
(UV) 

GC-TOF MS Schad et al., 
2005b 

Analysis of cell wall 
carbohydrates from 
lignified and 
unlignified 
parenchyma cells, 
and xylem fibres of 
Urtica dioica 

Fixation in 0.2% 
glutaraldehyde 
and 2% 
formaldehyde  
Paraffin 
embedding 

(4 m) 

LCM 
(UV) 

GC-MS Angeles et al., 
2006 

Identification of 
secondary plant 
metabolities in 
specific cells from 
Norway spruce  

Cryosectioning 

(30 m) 

LMD 
(UV) 

NMR 
MS 

Li et al., 2007 
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Subject Tissue 
preparation 

LM 
system 

Technique Reference 

Analysis of 
metabolite profiling 
in leaf and flower 
secretory cavities 
from fresh and dried 
sample of Dilatris 
plants 

Cryosectioning 

(60 m) 

LMD 
(UV) 
LMPC 
(UV) 

NMR 
HPLC 

Schneider & 
Hölscher, 2007 

Combined analysis 
of RNA transcripts 
abundance, enzyme 
activity and 
metabolite profiles in 
individual 
specialized tissues 
from white spruce 
stems 

Cryosectioning 

(25 m) 

LMD 
(UV) 

GC-MS Abbot et al., 2010 

Table 2. Application of LM in proteomic and metabolomic studies in plant biology 

osmotic shock, the use of membrane solvents and enzymatic lysis (Asenjo & Andrews, 1990; 
Hopkins et al., 1991). When using chemical methods, it is important to reduce the 
interactions between the proteins, as well as the interactions between the proteins and other 
substances, including nucleic acids and lipids. It is also important to remove contaminants 
and interfering substances, and prevent protein precipitation during the separation process 
(Rabilloud et al., 1996, Gutstein & Morris, 2007). Once the proteins have been extracted, the 
resultant complex mixture needs to be separated for the subsequent detection, abundance 
and differential expression analyses. 

10. Separation technologies used for proteins isolated from LM cells 

One of most common methods used to perform protein quantification, which can be 
coupled with LM technology, is 2D gel electrophoresis (Table 2). At the same time, advances 
in high-efficiency liquid chromatography (LC), in conjunction with tandem mass 
spectrometry (MS/MS) have also been reported (Table 2). Although the application of LM to 
plant biology has been focused above all on cell-specific gene expression profiling, its 
application to protein analysis has rarely been reported for plant tissues (Nelson et al., 2008; 
Balestrini & Bonfante, 2008; Hölscher & Schneider, 2008).  
This is probably because of the difficulties encountered due to the relatively large amount of 
proteins that are needed to achieve successful protein profiling (Schad et al., 2005a). As 
previously mentioned, unlike transcript profiling, which can be performed from very small 
sample amounts due to efficient amplification strategies, no in vitro amplification procedure 
is yet available for proteins. However, the applicability of 2-DE and high-efficiency liquid 
chromatography (LC), in conjunction with tandem mass spectrometry (MS/MS), to plant LM 
material has recently been demonstrated (Schad et al., 2005a). Schad and colleagues (2005a) 
have compared and optimized several tissue fixation and embedding procedures to obtain 
the cross sections of Arabidopsis thaliana stem tissue, which enabled the microdissetion of 
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vascular bundles, as well as an efficient extraction of proteins. They demonstrated that 
cryosectioning retains a reasonable morphology and, at the same time, allows an efficient 
protein extraction. The analysis of proteins from 5000 vascular bundles (~ 250,000 cells 
yielding about 25 µg total protein) by means of analytical 2-DE has indicated that this tissue 
processing procedure does not lead to protein degradation/modification. Furthermore, they 
also optimized the LC-MS/MS approach, starting from a lower amount of material (400 
vascular bundles, ~ 20,000 cells, about 2 µg total protein). This resulted in the identification of 
131 proteins from 20 stem sections without vascular bundles and 33 specific proteins from 
400 vascular bundles. The advantages of the LC-MS/MS approach include the possibility to 
use a lower amount of material, the capacity for high throughput, no bias against protein 
classes and high detection ability. The work of Schad et al. (2005a) has certainly increased 
interest in the application of this procedure, demonstrating that it is a very promising 
alternative for tissue-specific protein profiling. The number of studies that have employed 
LM techniques for protein identification and profiling in plant cells has increased 
significantly over the last years. For example, Dembinsky and colleagues (2007) have 
analyzed the transcriptome and proteome of pericycle cells in the primary root of maize (Z. 
mays) versus non-pericycle cells. For the proteomics experiments, about 1,000 rings of 
pericycle cells (200,000 cells) have been isolated from root cross sections, extracting 

approximately 30 g of proteins, which were separated by 2-DE. The 56 most abundant 
protein spots were picked from a representative 2-D gel, digested with trypsin and the eluted 
peptides were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). 
The pericycle reference map was made in triplicate from indipendent protein preparations 
and all the identified proteins were detected in all the replicates. Twenty of the 56 proteins 
were identified by matching known plant proteins, thus defining a reference dataset of the 
maize pericycle proteome. In another study, Kaspar et al. (2010) focused their attention on 
tissue-specific differences in the proteome during barley grain development. In order to 
address this issue, nucellar projection (NP) and endosperm transfer cells (ETC) of barley 
grain were collected by LM. Proteins were subsequently extracted, digested with trypsin and 
analyzed through nanoLC separation combined with ESI-Q-TOF mass spectrometry. This 
procedure requires material from between 40 and 75 sections per sample. Three independent 
extractions showed highly reproducible chromatograms. Quantitative and qualitative protein 
profiling led to the identification of a number of proteins with tissue specific expression. For 
example, 137 proteins were identified from ETC and 44 from the NP. Among the identified 
proteins, 31 were identified in both tissues. The major differences between ETC and NP 
protein profiles concerned cell wall and protein synthesis (in the ETC but not in the NP) and 
the disease response (with a greater representation in NP), which is in agreement with 
previously published transcript analyses (Thiel et al., 2008). These experiments have shown 
that nanoLC-based separation in combination with MS detection can be considered a suitable 
platform for identifying proteins present in laser-microdissected samples, which contains 
only small quantities of proteins (Kaspar et al., 2010).  

11. Metabolomic studies in cells isolated by LM 

The last decade has seen an increase in metabolomic-based studies, which are crucial to 
understand cellular processes because they can connect metabolite profiles and metabolic 
changes to protein activity, and thus leading to a detailed and more comprehensive 
understanding of the phenotype of the organism of interest. So far, studies in this field have 

www.intechopen.com



 
Integrative Proteomics 

 

58

mainly been performed on whole plants, organs, such as fruits (Moco et al., 2006; Fraser et 
al., 2007), leaves (Kant et al., 2004; Glauser et al., 2008), tubers (Roessner et al., 2001; Sturm et 
al., 2007), flowers (Kazuma et al., 2003; Wang et al., 2004), and roots (Opitz et al., 2002; Hagel 
et al., 2008;). However, some studies have also been performed on specific tissues (Moco et 
al., 2007; Fait et al., 2008) and even on specific cells (Li et al., 2007; Schneider & Hölscher, 
2007). Metabolite analysis at a microscale level from sectioned tissues or cells is a major 
challenge since metabolities (usually < 1500 Da) show an enormous chemical diversity and 
for this reason general multiple approaches are required for extraction, fractionation and 
analysis. Moreover, there is a higher turnover of metabolites than large biomolecules and 
there is a dynamic range of metabolite concentrations. Micromethods have been adapted 
from animal biology in order to determine the spatial distribution of small molecules in 
plant tissue (Schneider & Hölscher 2007; Fait et al., 2008; Hagel et al., 2008). Among the two 
different methods of LM, laser capture microdissection (LCM) and laser cutting, this last 
seems to be the most useful method for harvesting samples for metabolite analysis because, 
in contrast to LCM, it is contact-free and avoids potential contamination from the melting 
foil (Moco et al., 2009). In addition, most of the analyses have exploited the cryosection 
method, thus avoiding any further chemical treatment of the material (Table 2). Using 
standard tissue fixation and embedding protocols, metabolites can in fact either be extracted 
by means of dehydrating solvents, or washed out by embedding agents (Schad et al., 2005b). 
Paraffin embedding has been used for the carbohydrate analysis of the polysaccharides from 
the walls of lignified and unlignified parenchyma cells, and of xylem fibres of Urtica dioica 
(Angeles et al., 2006). The carbohydrate composition of different cell wall types was 
obtained by the combination of laser microdissection and GC-MS analysis.  
For metabolite analyses based on LM, GC-TOF-MS, LC-MS, GC-MS and NMR-related 

strategies have been used (Schad et al., 2005b; Lisec et al., 2006; Moco et al., 2006). MS-based 

analytical methods probably ensure a higher identification power for small molecules than 

NMR measurements. In the first study in which LM was applied successfully to analyze the 

spatial distribution of metabolites in plant tissues, Schad and colleagues (2005b) used the 

GC-TOF MS technique to investigate vascular bundles obtained from Arabidopsis thaliana 

cross sections. Cryo-sectioned stem material of 30 m section thickness was subjected to 

LMPC. Vascular bundles were dissected and catapulted into the collection device, which 

was filled with ethanol to inactivate the metabolic enzymes and protect the cell contents 

from undesired enzymatic modification. An ethanol extract of approximately 100 collected 

vascular bundles (~5,000 cells) was derivatized with N-methyl-N-(trimethylsilyl) 

trifluoroacetamide (MSTFA) and subjected to GC-time-of-flight (TOF) MS analysis to 

simultaneously detect compounds of different classes. Sixty-eight metabolites were detected 

in the vascular bundles; sixty-five metabolites were instead identified in control samples, 

which are sections without vascular bundles.  

As an alternative, Thiel et al. (2009) used a combination of LMPC-based microdissection and 

liquid chromatography (UPLC) to analyze the amino acid concentrations in nucellar 

projections (NP) and endosperm transfer cells (ETC) from developing barley grains. In order 

to guarantee a sufficient amount of material to produce consistent values and detect the 

differences in the amino acid concentrations between the two tissues, the authors prepared 

10-20 cryosections for one sample and analyzed 4-5 biological replicates/sample. UPLC 

technology was used to measure free amino acid concentrations from microdissected tissues 

and the sum of all the measured amino acids was 98 and 112 amol m-3 for NP and ETC, 
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respectively. This metabolite approach based on LM was combined with a transcriptome 

analysis. On the basis of these studies, it has been concluded that combining metabolite data 

with a transcriptome approach leads to a better understanding of the metabolism, 

interconversion and transfer of amino acids at the maternal–filial boundary of growing 

barley seeds. 

Methods have been also developed to analyze laser-microdissected samples by means NMR 

spectroscopy (http://www.ice.mpg.de/ext/769.html). For instance, high-resolution 1H NMR 

spectroscopy has been used, in combination with LM, as a tool to analyze the contents of the 

secretory cavities from fresh leaves and herbarium specimen of Dilatris plants 

(Haemodoraceae) (Schneider & Hölscher, 2007). The secretory cavity sections show a typical 

storage cell surrounded by a thin layer of glandular epithelial cells. Their low water content 

makes them well accessible to LM (Moco et al., 2009). The dissected cavities were localized 

under a stereomicroscope. They were then picked up using an extremely sharp dissecting 

needle and transferred directly to a microcentrifuge tube containing the extraction solvent 

(acetone/water 20:1). In some experiments, the dissected material was transferred directly to 

the NMR tube without centrifugation, and extracted using the NMR solvent (deuterated 

acetone) in an ultrasonic bath. The extracts were subjected to cryogenic 1H NMR spectroscopy 

and reversed-phase high-performance liquid chromatography (HPLC). The results obtained 

from 180-year-old herbarium specimens of Dilatris corymbosa and Dilatris viscosa showed that 

phenylphenalenones, which are typical secondary metabolites of Hemodoraceae, were 

identified in secretory cells of leaves and flower petals (Schneider & Hölscher, 2007). 

LM has not been widely applied to woody plant tissue. Cell-specific metabolic profilings 
have been conducted on special cells harvested from the bark of Norvegian spruce (Picea 

abies) (Li et al., 2007) by means a combination of LM, NMR, and MS. Sclereids (stone cells) 
were detected in cryosections of the bark taking advantage of their characteristic 
fluorescence and this was followed by laser microdissection. Non-fluorescing phloem tissue 
was microdissected from the same cryosections and used as a control sample. The collected 
samples were then transferred to NMR tubes to which deuterated methanol was added for 
extraction. 1H and 2D NMR spectra were measured using a cryogenically cooled probehead. 
The results indicate that both sclereids and the adjacent parenchymatic tissue show similar 
phenolic components. Comparison with the spectra of reference compounds, together with 
MS analysis, revealed that astringin (major component) and dihydroxyquercetin 3′-O-β-D-
glucopyranoside (minor component) are present in both the sclereids and the control cells. 
The control cells (sclereid-surrounding cells) showed higher levels of the two components.  
Abbott and colleagues (2010) have recently reported, in a methodology article, the successful 
use of LMD technology to isolate individual specialized tissues from the stems of the woody 
perennial Picea glauca (white spruce), suitable for subsequent combined analysis of RNA 
transcripts abundance, enzyme activity and metabolite profiles. In agreement with previous 
papers, the authors underlined that sample preparation protocols for LM can vary 
substantially on the basis on the type of tissue and down-stream analysis. A tangential 
cryosectioning approach was essential to obtain large quantities of cortical resin ducts (CRD) 
and cambial zone (CZ) tissues using LM. Gene expression results showed a differential 
expression of genes involved in terpenoid metabolism between the CRD and CZ tissues, and 
in response to methyl jasmonate (MeJA). In addition, terpene synthase enzyme activity has 
been identified in CZ protein extracts and terpenoid metabolites were detected, by means of 
GC-MS, in both the CRD and CZ tissues. These analyses supported by LM seem to be very 
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promising to improve the characterization of complex processes related to woody plant 
development, including cell differentiation and specialization associated with stem growth, 
wood development and the formation of defense-related structures such as resin ducts.  

12. Bioinformatics 

In 2002, Scheidler and colleagues demonstrated altered gene activity in Arabidopsis infected 

with Phytopthora. The work provided a meaningful context for the gene expression analyses 

that were performed, and resulted in the identification of the major shifts in physiology and 

metabolism that occur during the infection process. However, the analyses focused on gene 

expression in whole infected plants. Unlike Scheideler et al. (2002), Klink et al. (2011b) and  

 

 

Fig. 2. A PAICE pathway for cyanoamino acid metabolism for 3 day post infection syncytia 
undergoing a resistant reaction in G. max as it is being infected by Heterodera glycines 
(soybean cyst nematode). The green boxes represents active genes (adapted from Matsye et 
al., submitted). 
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Matsye et al. (submitted) have used the same principle, adapting the publically available 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/ 

catalog/org_list.html) and modifying it so that gene expression can be visualized using a 

KEGG application called Pathway Analysis and Integrated Coloring of Experiments 

(PAICE). PAICE was developed in the laboratories of Dr. Benjamin Matthews (USDA; 

Beltsville, MD) and Dr. Nadim Alkharouf (Towson University, Baltimore, MD) (Hosseini et 

al., unpublished) and is freely available (http://sourceforge.net/projects/paice/). PAICE 

has been used on LM cells infected with parasitic nematodes, and it provides a deeper 

understanding of the biochemical and metabolic activities during multiple defense reactions 

in multiple G. max genotypes compared to both pericycle control cell populations and the 

susceptible reaction (Klink et al., 2011; Matsye et al., submitted). However, the analyses 

were based on RNA isolated from the specific cell types and not on proteins or metabolites 

(Figure 2). It is believed that PAICE could be expanded to provide a comprehensive 

understanding of any cell isolated by LM and analyzed for its proteomic and metabolic 

content. 

13. Conclusion 

To have a better understanding of tissue and organ-defined processes and functions, it is 

necessary to study the biochemical activity at a cellular resolution level by analyzing the 

proteome. This has become increasingly important, since it has been demonstrated, in 

several comparative studies, that protein expression and abundance often poorly correlate 

with the mRNA levels in the same cell types (Schad et al., 2009a). Many proteins are the 

primary determinant molecules of physiological processes and are often restricted to 

specific tissues and cell types. Thus, the monitoring of protein expression at a very high 

spatial resolution could help enhance our understanding of the biological processes that 

control plant growth and development. At the same time, the use of different strategies and 

protocols for the characterization of a wide number of metabolites from a single cell or 

tissue have increased significantly over the last decade making the broad applicability of 

these analyses tractable. In order to address these issues, sampling methods, for example 

LM in plants, have been adopted to extract highly specific tissue regions and homogeneous 

cell-type populations with limited damage, and have led to the discovery of functions of 

genes/proteins/metabolites that contribute to cell specialization (Galbraith & Birnbaum 

2006). Despite these considerable efforts, the current strategies used for protein/metabolite 

characterization still face significant obstacles. These challenges are mainly caused by the 

cellular complexity and spatial and temporal distribution of localized gene activity within 

living tissues, including metabolic processes. Other challenges concern the identification of 

the high degree of chemical diversity of the different cell types that can be affected by the 

analysis procedures. Technical improvements are still required to achieve reliable protein 

and metabolite profilings in small samples. The introduction of statistical analysis, applied 

to the handling and manipulation of data from proteomics and metabolomics, will lead to 

the development of promising strategies that can be used to extract precious information 

from large data sets and to identify new proteins and metabolites. Although most of these 

restrictions have already been solved in the field of genomics and transcriptomics, the 

problem still remains of adapting these computational strategies for proteomic and 

metabolic analyses. 
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