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Principles and Practices of  
Integrated Pest Management on Cotton  

in the Lower Rio Grande Valley of Texas  

Shoil M. Greenberg, John J. Adamczyk and John S. Armstrong 
Kika de la Garza Subtropical Agricultural Research Center, Agricultural  

Research Service, United States Department of Agriculture, Weslaco 
USA 

1. Introduction 

Sustainable agriculture is ecologically sound, economically viable, socially just, and 
humane. These four goals for sustainability can be applied to all aspects of any agricultural 
system, from production and marketing, to processing and consumption. Integrated Pest 
Management (IPM) may be considered a key component of a sustainable agriculture system. 
This publication reviews recent advances in the development of IPM programs for cotton in 
the Lower Rio Grande Valley of Texas. We describe annual losses caused by arthropod pests 
in general and by specific key insect pests,  briefly showed sampling of insect populations 
and cotton growth stages, which  importance of the proper timing of scouting procedures 
and treatments; and economic threshold harmfulness (ETH) for optimizing control and 
minimizing risk from insects. We describe effectiveness of cotton insecticides; transgenically 
modified cotton; microbial insecticides; native, most widely-distributed and augmentative 
releases of beneficial insects; and cultural control techniques for cotton insects. We also 
show cotton diseases and weed controls. IPM is a process that considers all control options 
in the proportion shown in the model of a pyramid, and it can be used to demonstrate how 
growers might productively construct their pest management programs. 

2. What is IPM 

Integrated Pest Management (IPM) has been defined as  a sustainable approach to managing 
pests by combining biological, cultural, physical, and chemical tools in a way that minimizes 
economic, health, and environmental risks (ND IPM Homepage, Texas Pest Management 
Association); IPM has also been defined as a knowledge-based, decision–making process that 
anticipates limits and eliminates or prevents pest problems, ideally before they have become 
established. IPM typically combines several strategies to achieve long-term solutions. IPM 
programs include education, proper waste management, structural repair, maintenance, 
biological and mechanical control techniques, and pesticide application when necessary 
(www.PestControlCanada.com). IPM is a pest management strategy that focuses on long-term 
prevention or suppression of pest problems through a combination of techniques such as 1) 
monitoring for pest presence and establishing treatment threshold levels, 2) using non-
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chemical practices to make the habitat less conducive to pest development; improving 
sanitation; and 3) employing mechanical and physical controls. Pesticides that pose the least 
possible hazard and are effective in a manner that minimizes risk to people, property, and the 
environment are used only after careful monitoring indicates they are needed, according to 
established guidelines and treatment thresholds (California Department of Pesticide 
Regulation, cdprweb@cdpr.ca.gov). IPM employs approaches, methods, and disciplines to 
minimize environmental impact, minimize risks, and optimize benefits. An expansion of the 
IPM concept is the process of Integrated Crop Management (ICM), which includes other 
agricultural decision-making tasks such as fertilizer and soil water management. An ICM 
program would include an IPM component to deal with pest management decisions plus 
address remaining issues applicable to the total crop production process (Ohio Pest 
Management & Survey Program, http://ohioline.osu.edu/icm-fact/fc-01.html). Thus, IPM is a 
system of pest management decisions based on ecological, economic, and sociological values.  

2.1 Pest management practices and set of IPM principles 

It may be classified according to the approach or the method used to deal with a pest 
problem. In terms of approach, pest management practices may be designed to prevent, 
suppress, or eradicate problems. Pest management practices are grouped under four 
categories: biological, chemical, cultural and mechanical, and legal. IPM approaches and 
methods are used to minimize environmental contamination, minimize risk from harmful 
organisms, and optimize benefits. It is a systems approach to pest management that utilizes 
decision making procedures based on either quantitative or qualitative observations of the 
pest problem and the related host or habitat (Ohio Pest Management & Survey Program, 
http://ohioline.osu.edu/icm-fact/fc-01.html).  

The U.S. Environmental Protection Agency (EPA) has developed a useful set of IPM 
principles. Acceptable pest levels occur when pest population (s) are present but occur at 
densities too low to cause economic damage. Controls are applied only if pest densities 
increase to action thresholds for that particular crop. Preventive cultural practices involve 
selecting the best varieties for local growing conditions, together with plant quarantine, 
cultural techniques, and plant sanitation. Monitoring plant growth and densities of key and 
secondary pest species (commonly referred to as scouting) is a cornerstone of IPM. 
Mechanical controls include a variety traps, vacuuming, and tillage to disrupt survival and 
reproduction by various pest species. Biological controls involve the use of predators, 
parasitoids and pathogens to maintain pest populations at densities lower than would occur 
in their absence (and hopefully at subeconomic levels). Chemical controls which involve use 
of synthetic pesticides only as required and often only at specific times in a pest life cycle 
(Bennett et al., 2005) 

Therefore, setting up an IPM program and designing a monitoring plan for a given crop 
should be based on the phenology of the plant and population densities of key and 
secondary pests. 

2.1.1 Cotton production and insect diversity 

Cotton production in the U. S. occurs on 30,000 farms and covers an average of 14.4 million 
acres (5.8 m ha) with a mean yield of 683.3 lb of lint per acre (766 kg/ha) (for 2004-2006) 
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(Williams, 2007).  Cotton generates $6.2 billion in cash for farmers, and the total business 
revenue for the U.S. cotton industry is estimated at $40.2 billion per year. Texas ranks first in 
cotton production in the U.S., averaging 6.0 million acres (2.4 m ha) and generates $1.6 
billion in cash for farmers, thus providing a total economic impact of $5.2 billion (Statistical 
Highlights of United States Agriculture, 2007; Agricultural Statistics, 2008). In the Lower Rio 
Grande Valley (LRGV) of Texas, an average of 220,000 acres (88,710 ha) of cotton were 
planted each year during 2004-2006 and generated an estimated $63.8 million in crop 
production (Lower Rio Grande Valley Cotton Blue Book, 2006)  

Cotton production in the LRGV is challenged with a diversity of pests, and links the North 
American cotton states with those of Mexico and other South American cotton-producing 
areas. The most notable pest of Texas cotton production is the boll weevil (BW), Anthonomus 

grandis grandis Boheman, which entered the U.S. near Brownsville, Cameron Co, TX, during 
the 1890’s. Other noted pests of cotton that emerged during the progression of cotton 
production in the LRGV were numerous lepidopterans (bollworm, Heliothis zea (Boddie); 
tobacco budworm, Heliothis virescens (Fabricius); beet armyworm, Spodoptera exigua 
(Hübner); cabbage looper, Trichoplusia ni (Hübner); black cutworm, Agrotis insilon 
(Hufnagel); fall armyworm, Spodoptera frugiperda (J. E. Smith); pink bollworm, Pectinophora 

gossypiella (Saunders); yellowstriped armyworm, Spodoptera ornithogalli (Guenée); and the 
leaf perforator, Bucculatrix thurberiella Busck); the plant sucking cotton aphid, Aphis gossypii 
Glover; stinkbugs; cotton fleahoppers, Pseudatomoscelis seriatus (Reuter); whiteflies, Bemisia 

tabaci (Gennadius) biotype B and Trialeurodes abutilonea (Haldeman); spider mite, 
Tetranychus spp.; thrips, Thrips spp.; cotton leafminer, Stigmella gossyppi (Forbes & Leonard); 
the verde plant bug, Creontiades signatus (Distant); Texas leaf cutting ant, Atta texana; and 
lubber grasshopper, Brachystola magna (Girard) (Cotton insects and mites: Characterization 
and management, 1996; French et al., 2006; Armstrong et al., 2007; Castro et al., 2007; Lei et 
al., 2009; Greenberg et al., 2009a and 2009b) 

2.1.2 Cotton losses due to pests 

A diversity of harmful organisms challenges the profitable production of agricultural crops 

and if left unmanaged, can result in significant losses. Estimates of crop losses vary widely 

by location and by year, but those are about one-third of potential global agricultural 

production in the form of food and fiber. Total annual losses in the world are estimated at 

about U.S. $300 billion (FAO, 2005). Average yield loss range from 30 to 40% and are 

generally much higher in many tropical and subtropical countries. 

Cotton is the most important fiber crop in the world and is grown in almost all tropical and 
subtropical countries. Cotton production is especially threatened by insect attacks 
(Homoptera, Lepidoptera, Thysanoptera, Coleoptera) and by weed competition during the 
early stages of development. Pathogens may be harmful in some areas and years. Only 
recently have viruses reached pest status in South Asia and some states of the U.S. The 
estimates of the potential worldwide losses of animal pests and weeds averaged 37 and 36%, 
respectively. Pathogens and viruses added about 9% to total potential loss. The proportional 
contribution of crop protection in cotton production areas varied from 0.37 in West Africa to 
0.65 in Australia where the intensity in cotton production is very high. Despite the actual 
measures, about 29% of attainable production is lost to pests (Oerke, 2006). 

www.intechopen.com



 
Integrated Pest Management and Pest Control – Current and Future Tactics 

 

6 

In the U.S. arthropod pests reduced overall cotton yield by $ 406.2 million (the mean for 

2004-2006), in Texas - $ 99.3 million, and in the LRGV - $ 5.6 million (Williams 2005-2007) 

(Table 1). 

 

*One bale of lint = 200kg 
Source: Williams, 2007. 

Table 1. Cotton losses in the United States due to insects. 

2.1.3 Sampling insect populations 

IPM is a process of pest monitoring and sampling to determine the status of a pest, and, 
when control actions are needed, all control options are considered. Field observation 
(scouting) is a vital component of cotton insect control. Fields should be checked at least 
once and preferably twice a week to estimate the species present, the type of damage, and 
the level of damage which has occurred up to that point in time. Scouting should also 
include monitoring plant growth, fruiting, weeds, diseases, beneficial insect activity, and 
the effects of prior pest suppression practices. The number of samples required depends 
on the field (plot) size and variability. Several different sampling methods are used in 
IPM programs. Visual observations of plants (generally ranges from 25-100 plants; 

Insect 

Rank by 
% loss 

Bales lost 
Rank by % 

loss 
Bales lost 

Rank by 
% loss 

Bales lost 

USA Texas LRGV of Texas 

Bollworm/Budworm 1 229,186 2 78,826 1 39,063 

Lygus 2 171,478 6 10,314 0 0 

Thrips 3 145,040 3 65,062 6 1,563 

Fleahopper 4 119,745 1 108,057 2 26,042 

Aphids 5 80,418 4 61,162 3 5,208 

Stinkbugs 6 68,823 5 13,186 0 0 

Spider mites 7 60,720 10 2,917 9 163 

Bemisia tabaci 8 14,817 8 3,926 4 3,906 

Fall armyworm 9 12,071 7 5,404 7 456 

Boll weevil 10 3,190 9 3,190 5 3,190 

Beet armyworm 11 1,104 12 229 8 228 

Cutworms 12 1,100 0 0 0 0 

Saltmarsh Caterpillars 13 237 0 0 0 0 

Pink bollworm 14 232 13 28 0 0 

Grasshopper 15 131 0 0 0 0 

Loopers 16 144 0 0 0 0 

Green Mirid 17 0 11 685 0 0 

Total lost: bales*  908,436  352,985  79,818 
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preferred method is to examine 5 consecutive plants in 10-20 representative locations 
within a field); sweep net (5 sweeps per sample, and at least 20 samples per treatment); 
beat bucket (3-5 plants per bucket, and at least 20 samples per treatment); drop cloth (the 
standard length – three feet long [=0.9144 m], used if row spacing is 30 inches [=0.762 m] 
or wider; a minimum of 4-6 drop cloth samples should be taken per field); colored sticky 
traps; and pheromone traps. Some of the sampling methods are shown in Fig.1. Methods 
of identification and sampling procedures for cotton insect pests and beneficial are 
available in some sources (Steyskal et al., 1986; Cotton scouting manual, 1988; Bohmfalk et 
al., 2002; Spark & Norman, 2003; Greenberg et al., 2005). Scouting is not a suppression 
tool, but is essential in formulating management decisions. The cost of controlling insects 
is one of the larger items of the crop production budget, ranging from $70 to over $100 per 
acre (from $173 to over $247 per ha) (Pest management strategic plan for cotton in the 
midsouth, 2003). 
 

Modified beat bucket method                                               Remote sensing technology 

       
 

       Yellow color sticky traps 

                    
 

 

Fig. 1. Examples of sampling methods used in cotton IPM programs. 
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Knowledge of growth stages is important to the proper timing of scouting procedures and 

treatments (Table 2). 

 

Developmental period 

Calendar days Accumulated heat units, DD60’s 

Avg. Range Avg. Range 

Planting to emergence 7 5-10 43 15-71 

Emergence of: 

First true leaf 8 7-9 74 53-96 

Six true leaf 25 23-27 239 161-320 

Pinhead square 29 27-30 269 192-351 

1/3 grown square 43 35-48 400 264-536 

Square initiation to bloom 23 20-25 496 382-609 

Bloom to: peak bloom 18 14-21 693 525-861 

Full grown boll 23 20-25 751 588-912 

Open boll 47 40-55 1059 1014-1105 

Source: Lower Rio Grande Valley  of Texas, Cotton Blue Book, 2006-2008). 

Table 2. Cotton development by calendar days and heat units. Accumulated heat units, 
DD60’s measures are in Fahrenheit (Fº). Conversion degrees Fahrenheit to Centigrade (Cº): 
Cº= Fº - (32*5/9). 

2.1.4 Economical threshold of harmfulness 

Control is needed when a pest population reaches an economic threshold (Table 3) or 

treatment level at which further increases would result in excessive yield or quality losses. 

This level is one of the most important indices in IPM for optimizing control and 

minimizing risk from insects.  

Suppression activities are initiated when insect pest populations reach treatment 

thresholds which are designed to prevent pest population levels from reaching the 

Economic Injury Level (EIL) when economic losses begin to occur (value of the crop loss 

exceeds the cost of control).  
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Insects Season Economical Threshold of Harmfulness (ETH) 

Boll weevil 
Early 

Mid and Late 
40 overwintered boll weevils per acre, 15-20% damage 

squares from squaring to peak bloom 

Thrips 
From 50% 

emergence to 3-
4 true leaves 

The average number of thrips counted per plant is equal 
to the number of true leaves at the time of inspection 

Fleahoppers 
(FH) 

All 
1st-3rd weeks of squaring - 15-25 nymphs and adults per 

100 terminals.  After 1st bloom – treatment is rarely 
justified. 

Aphids All ≥50 aphids per leaf 

Whiteflies All 
When ≥40% of the 5th node leaves are infested with 3 or 

more adults 

Plant Bugs 
(Creontiades spp.) 

During the first 
4 to 5 weeks of 

fruiting 
15-25 bugs per 100 sweeps 

Spider Mites All 
When 50% of the plants show  noticeable reddened leaf 

damage 

Bollworm 
Before bloom 

After boll 
formation 

≥ 30 % of the green squares examined are worm 
damaged and small larvae are present 

10 worms ≤ ¼-inch in length per 100 plants and 10% 
damage fruit for Non-Bt cottons; or 10 worms >1/4-inch 

in length per 100 plants with 5% damaged fruit 

Beet Armyworm All 

When leaf feeding and small larvae counts exceeded 16-
24 larvae per 100 plants and at least 10% of plants 

examined are infested; when feeding on squares, blooms, 
or bolls the threshold needs to be 8-12 larvae larger than 

¼ inch per 100 plants 

Fall Armyworm 
Before first 

bloom 
30% of the green squares are damaged 

 
Bolls are 

presented 
15-25% small larvae are present per 100 plant terminals 

and 10-15% of squares or bolls are worm damaged 

Inch =2.54 cm 
Source: Norman & Sparks, 2003; Castro et al., 2007. 

Table 3. Economic thresholds for some major cotton insects on cotton in the Lower Rio 
Grande Valley of Texas. 

2.2 Insect control by synthetic chemicals 

Synthetic chemicals continue to be the main tool for insect control. The total cost of 
pesticides applied for pest control is valued at $10 billion annually (Sharma & Ortiz 2000). 
Conventionally grown cotton uses more insecticides than any other single crop and 
epitomizes the worst effects of chemically dependent agriculture. Each year, cotton 
producers around the world use nearly $2.6 billion worth of pesticides, more than 10% of 
the world’s pesticides and nearly 25% of the world’s insecticides (http://www.panna.org/ 
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files/conventionalCotton.dv.html). On agricultural crops in the U.S., about 74.1 million kg 
of insecticides is used. Over half of this amount is applied to cotton fields, corresponding 
roughly to 7.3 kg/ha of AI per hectare (Gianessi & Reigner 2006). In Texas, the direct insect 
management treatment cost is $115.6/ha; and, in the LRGV of Texas, the direct cost is $168.9 
per hectare (Williams 2005-2007). Insecticides recommended for use on cotton are described 
in Table 4. Statewide, 46% of insecticides are applied aerially, 46% with ground equipment, 
and 8% by irrigation. Farmers perform 51% of pesticide application themselves (Lower Rio 
Grande Valley Cotton Blue Book, 2006-2008). Hollow cone spray nozzles are recommended 
for insecticide applications because they provide better foliar coverage than flat-fan or flood-
jet nozzles. A straight spray boom with two nozzles per row is required for adequate 
coverage. 

2.3 Changes in Texas cotton IPM during recent years 

During recent years, there have been significant changes in Texas cotton IPM, and this 
system continues to evolve rapidly. These changes are occurring because of three major 
factors: boll weevil (BW) eradication; new and more target-specific insecticides used; and 
the development and use of transgenic Bt-cotton. The BW is currently the most important 
key pest of cotton in the LRGV of Texas where it has caused extensive damage since its 
appearance in 1892. Control of BW is through multiple applications of synthetic insecticides. 
In 1995, during the initial BW eradication program, farmers in the LRGV lost 13.5 million kg 
of cotton lint worth $150 million. This loss of 15% of the harvest was due to extensive ULV 
malathion spraying, mostly by plane, that led to massive secondary pest outbreaks of the 
beet armyworm (BAW) and areawide natural enemy disruption (http://www.panna. 
org/files/ conventionalCotton.dv.html; Summy et al., 1996). The BW eradication program in 
the LRGV was initiated for the second time during 2005. The second attempt at BW eradication 
did not trigger major secondary pest outbreaks because was initiated in the fall and reduced 
the heavy malathion use before the following the spring planting of cotton; improved pesticide 
application techniques (mostly ground rigs, helicopters versus airplane, treatments only edge 
strip of the fields); preventive activity; availability of target-specific pesticides for 
lepidopterans.  Progress in the U.S. BW eradication effort where BW was successfully 
eradicated has resulted in a sharp decrease in the number of insecticide applications. The 
reduction in foliar sprays has also had an indirect effect in reducing outbreaks of secondary 
pests, such as cotton aphids and beet armyworm. 

Cotton IPM in the LRGV of Texas has also improved due to: target specific insecticides such 
as Tracer and Steward for lepidopterans, (Leonard, 2006); cotton seed treatments with the 
systemic insecticides Gaucho Grande and Cruiser, which protect cotton from sucking insect 
damage for 30 days after planting (Greenberg et al., 2009, Zhank et al., 2011); reducing the 
application rate of insecticides without reducing efficacy of the program, for example, the 
malathion rate was reduced from 16-oz/ac to 12-oz/ac when oil was added as an adjuvant 
(Texas Boll Weevil Eradication Foundation, 2011); combination of applications for 
maintaining and preserving beneficial insects, lessening the environmental impacts, such as 
early-season spraying of cotton for overwintering BW and fleahoppers; pre-harvest 
application of the insecticides Karate or Guthion at half-rate with the cotton defoliant Def 
[synergistic effects] (Greenberg et al., 2004; 2007); termination of insecticide treatments 
based upon crop maturity; and improved pesticide application techniques (correct nozzle 
placement, nozzle type, and nozzle pressure) (Leonard et al., 2006; Lopez et al., 2008). 
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Class Common name Brand name Recommended target pests 

OP 
Acephate  
(0.5-1.0)* 

Orthene® 90S 
(generics) 

Thrips, cutworms, Greontiadis plant bugs, 
fleahoppers, cutworm, fall armyworm 

OP 
Dicrotophos 

(0.25-0.5) 
Bidrin 

Thrips, plant bugs, fleahoppers, stinkbugs, 
aphids, boll weevil 

OP 
Dimethoate 
(0.11-0.22) 

Dimethoate 
(generics) 

Thrips, fleahopper, and Greontiadis plant bugs 

OP 
Malathion  
(0.61-0.92) 

Fufanon ULV9.9 Boll weevil 

OP 
Methamidophos 

(0.7-2.2) 
Monitor Thrips, plant bugs, fleahoppers, whiteflies 

C Oxamyl (0.25) Vydate® 2L Boll weevil, plant bugs, fleahoppers 

C Methomyl (0.45) Lannate®2.4LV 
Aphids, beet armyworm, fall armyworm, 

fleahoppers 

C 
Thiodicarb  

(0.6-0.9) 
Larvin ®3.2 

Boll worm, beet armyworm, fall armyworm, 
tobacco budworm, loopers 

CN 
Imidacloprid 

(0.05) 
Provado®1.6F Plant bugs, fleahoppers, aphids, whiteflies 

CN 
Acetamiprid 
(0.025-0.05) 

Intruder®70WP Aphids, whiteflies, fleahoppers 

CN 
Thiamethoxam 

(0.03-0.06) 
Centric® 40WG Plant bugs, aphids, whiteflies, fleahoppers 

IGR 
Methoxyfenozid 

(0.06-0.16) 
Intrepid®2F Beet armyworm, fall armyworm, loopers 

OC 
Dicofol  

(0.75-1.5) 
Kelthane® MF Spider mites 

P Bifenthrin (0.37) 
Capture or 
Discipline 

Bollworms, fall armyworm, aphids,  
plant bugs 

P 
Cyfluthrin  
(0.01-0.06) 

Baythroid® 2E 
Cutworm, stinkbug, bollworms, boll  

weevil, whiteflies 

P 
Cyhalothrin 
(0.01-0.04) 

Karate-Z Cutworm, stinkbug, bollworms, boll weevil 

P 
Deltamelthrin 

(0.04-0.2) 
Decis 

Cutworm, stinkbug, bollworms,  
whiteflies, thrips 

 
Spiromesifen 
(0.094-0.25) 

Oberon® 2SC Whiteflies,  spider mites 

 
Plant Growth 

Regulation 

Ethephon (Prep) 
Mepiquart 

Clorade 
Modified plant growth 

 Defoliants 
Def, Dropp, 

Ginstar 
For early harvest 

*In parentheses – rate AI lb/ac; 1 pound (lb) =0.4536 kg; 1 ac= 0.4047 ha; OP –organophosphate; C –

carbamate; CN –chloro-nicotinyl; IGR –insect growth regulator; OC –organochlorine; P –pyrethroid 

Source: The Pesticide Manual, 2003. 

Table 4. Insecticides recommended for use on cotton in U.S. 
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2.3.1 Changes in the sucking bug complex – Stinkbugs, plant bugs and the cotton 
fleahopper 

The sucking bug pests of cotton (suborder Heteroptera) have been elevated in pest status 
within the cotton growing regions of the United States over the past decade. Some of the 
most notable heteropterans are: tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); 
western tarnished plant bug, Lygus hesperus Knight; the stinkbug complex (Pentatomidae); 
and the cotton fleahopper, Pseudatomoscelis seriatus (Reuter). This transition from being 
considered secondary pests and now elevated to key pest status has also coincidentally 
followed the functional eradication of the boll weevil from the southeastern and southern 
cotton belt regions. (Grefenstette and El-Lissy, 2008). 

Other reasons often mentioned for increases in bugs infesting cotton with the progression of 
BW eradication is the adoption of varieties containing the Bt endotoxins that were being 
released in conjunction with eradication efforts. Over time, the number of BW was reduced, 
coinciding with a reduction in number of ULV malathion applications within a season, 
which may have been suppressing the bugs. Because lepidopteran pests were the key target 
at the time, Bt cotton varieties significantly reduced these pests, and, at the same time, safer, 
more target-specific insecticides were in development and being applied under full label. 
These three factors -  the progress of BW eradication and the reduction of ULV malathion, 
the adoption of cotton varieties with BT, and the use of target-specific insecticides for 
control of lepidopteran pests are most often cited as the reason for changes in shift from 
lepidopteran management to sucking bug attacking cotton (Layton, 2000; Greene & Capps, 
2003). 

Some of the cotton growing regions of Texas are in the process of actively eradicating the 
BW from the LRGV in south Texas and the Winter Garden area (WGA) south and west of 
San Antonio, near Uvalde. However, the intensity of problems with the sucking bug 
complex and economic losses they cause varies by production region.  For example, the 
tarnished plant bug, L. lineolaris (Palisot de Beavois) has increased in pest status in the 
southern and mid-south cotton regions following BW eradication (Layton, 2000), and has 
developed resistance to a wide variety of insecticides (Snodgrass, 1996; 2008). Not all bug 
complexes have increased or are related to BW eradication. California and Arizona had 
perennial problems with L. hesperus and L. elisus Van Duzee (Heteroptera: Miridae) in alfalfa 
and cotton before and after BW was eradicated from the cotton producing regions of these 2 
states (Leigh et al., 1985; Zink & Rosenheim, 2005). Cotton damage from tarnished plant 
bugs results from feeding on cotton squares (flower buds), with the most significant impact 
when fruit abscises or drops to the ground (Tugwell et al., 1976). Further to the west in 
Arizona and California, the western tarnished plant bug causes similar feeding injury to 
cotton (Leigh T. et al., 1996).  

For the last few years, the verde plant bug, Creontiades signatus Distant, has been reported 
infesting cotton grown in the LRGV and the Lower-Coastal Bend regions of south Texas, 
causing injury to developing lint and seed inside cotton bolls (Armstrong et al., 2009 a, 
2010). The verde plant bug has increased in pest status since the initiation of the second 
attempt to eradicate the BW in the LRGV (2005) and from 1999 to the present in the Upper 
and Lower Coastal Bend production areas (Texas Boll Weevil Eradication Foundation, 2011). 
Feeding injury from the verde plant bug is similar to that caused by lygus bugs, but it has 
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thus far been considered a late season pest, injuring and causing abscission in bolls <315 
heat units (DD) from anthesis. Molecular and taxonomic work identified C. signatus as being 
native to the Gulf Coast of the U.S. and Mexico (Coleman et al., 2008). Reasons for increases 
in the densities of this new plant bug pest of south Texas can only be speculated. Some 
factors that may account for these increases the significant recent increase in the acres of 
soybean, Glycine max (L.) Merr., planted in the LRGV. C. signatus can reproduce on soybean 
and within the seed-head of grain sorghum, Sorghum bicolor (L.) Moench. Moreover, several 
weedy species also serve as reproductive hosts. Cotton may not be the most highly preferred 
host of the verde plant bug, but the bug survives on the cotton plant and has a preference for 
oviposition on the petioles of cotton leaves similar to other Lygus species (Armsrong & 
Coleman, 2009, Armstrong et. al, 2009 b, c).  

The stinkbugs attacking cotton can be varied and complex. The most frequently encountered 
species are the southern green stinkbug, Nezara viridula (L.), the green stinkbug, Acrosternum 
hilare (Say), and the brown stinkbug, Euschistus servus (Say) (Hemiptera: Pentatomidae). 
These three species are considered the primary targets for a significant number of insecticide 
applications applied to cotton (Williams, 2008), most notably in the mid-south and southern 
cotton regions and have also been associated with elevated pest status following BW 
eradication (Green et al., 1999; Turnipseed et al., 2004; Willrich et al., 2004). However, in 
Texas, the diversity of species seems to be broader from central Texas to the Lower-Gulf 
Coast region south of Corpus Christi, and includes the rice stinkbug (RSB), Oebalus pugnax 
(F.); in the LRGV, Winter Garden area, and in far west Texas, there is the Conchuela 
stinkbug, Chlorochroa ligata (Say) (Muegge, 2002). Stinkbugs of all species and localities are 
noted for being more injurious to small to medium size cotton bolls, and, on a comparative 
basis, can cause more injury by lacerating thicker boll tissue, resulting in greater injury to 
the tissues, seed, and lint (Greene et al., 1999; Musser et al., 2009).  

The most consistent early season true-bug pest of cotton in the state of Texas is the cotton 
fleahopper, which prefers feeding on small, primordial squares developing in the upper 
terminal of plants (Stewart & Sterling, 1989). When injured, the small squares abscise from 
the plant. However, the cotton plant is noted for compensation, and if management 
practices are instigated or populations decrease before the EIL is reached, losses due to 
fleahopper feeding injury may be negligible (Sterling, 1984). The length of the growing 
season is often associated with compensatory gain because of the delayed fruit set. The 
historical relationship between the severities of cotton fleahopper infestations with the 
progress of BW eradication, in the state of Texas is difficult to make, as severe fleahopper 
outbreaks have been noted before, during, and after an area has been functionally 
eradicated. The High Plains of Texas was declared functionally eradicated in 2003, but 
cotton fleahopper populations are as much a threat now as they were before eradication. In 
south Texas, cotton fleahoppers are still considered a significant pest, and BW eradication 
has not yet been fully realized. 

With the more recent changes in the pest status of heteropteran pests of cotton, there is a 
greater realization of the pests’ feeding injury and association with incidence of boll rot. 
Cotton fleahopper feeding injury to cotton squares and bolls is important because the 
wounds allow bacterial and fungal pathogens to enter and invade the interior of the forming 
fruit. Environmental conditions in the cotton field, mostly in the form of temperature, 
humidity, and moisture, can prevent or promote the growth of the boll rotting pathogens. 
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Economic thresholds established for most sucking pests are generally based on direct 
feeding injury and do not include boll rot as a yield-limiting factor. Square and boll rot 
may promote the delayed abscission of cotton fruit due to the production of ethylene by 
the rotting and degradation of fruiting tissue (Duffey & Powell, 1979). Cotton bolls do not 
normally sustain extensive damage from cotton fleahopper, due to the fact that their 
mouthparts (stylets) are not long enough to penetrate the wall of the boll. Boll rot 
pathogens have, however, been associated with direct transmission of common plant 
pathogen and cottonseed-rotting bacteria, Pantoea ananatis (Bell et al., 2006; Bell et al., 
2010). The stinkbugs and plant bugs possess stylets that are long and broad enough to 
cause physical damage from insertion and laceration of the tissue, injection of digestive 
enzymes, and the ingestion of the enzymatic soup. This subsequently causes loss of boll, 
lint, and seed tissue, and provides an entry for pathogens that collectively may cause boll 
rot (Medrano et al., 2009). Even if the cotton fruit, including bolls, does not abscise, the 
quality and quantity of lint will be reduced.  

2.3.2 Improving management options for the integrated approach to control bug pests 

The plant bugs as a group have, in the past, been targeted for the discovery of host plant 
resistance traits that could be integrated into traditional cotton breeding programs. Host 
plant resistance of the cotton fleahopper and plant bugs have been studied extensively 
during the last four decades. The three main sources of host plant resistance identified were 
relatively high gossypol levels (Lukefahr, 1975), smooth (rather than hirsute) genotypes 
(Lukefahr, 1970), and  production of nectar. No active cotton breeding programs have 
continued with any forms of resistance since Lidell et al. (1986) screened for glabourous, 
pilose, and nactariless traits. Many of these same traits were screened in cotton for the lygus 
bugs (Gannaway & Rummel, 1994; Tingey & Pellemer, 1977; Jenkins & Wilson, 1996). No 
information is available for host plant resistance for stinkbugs in cotton. Treatment 
thresholds for insecticide applications for these bugs have been provided in several 
extension-based publications that list the bug pests and insecticides used for their control. 
Little research-based economic injury levels (EIL) have been provided for the green plant 
bug, which has, thus far, been considered a late season pest. Late-season injury levels for the 
green plant bug, based on boll damage parameters such as boll size (diameter) and age from 
tagged white-blooms, has been reported by Armstrong et al. (2009c, 2010). Early season 
infestations occurring during the pre-bloom period have not been observed in south Texas. 
Economic thresholds could improve if the dynamics of confounding factors, such as the 
relationship of boll rot and injury levels based on bug pest densities are studied. The 
overwintering biology and ecology of plant bugs and stinkbugs and the means to monitor 
movement into the agricultural crops would be of significant use for management of 
stinkbugs. 

2.4 Control Lepidopteran by using transgenically modified cotton 

Transgenically modified cotton that expresses an insecticidal protein derived from B. 

thuringiensis Berlinger is revolutionizing global agriculture (Head et al., 2005). In 1996, it was 

introduced as transgenic cotton, Bollgard® (Monsanto Co., St. Louis, MO) encoding the Cry 

1Ac insect toxin protein (Layton, 1997); in 2002, Bollgard II® (Monsanto Co., St. Louis, MO), 

which produced the Cry1Ac and Cry2Ab endotoxins (Sherrick et al., 2003); Dow 
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AgroSciences, LLC (Indianapolis, IN) introduced their pyramided-gene technology into the 

market in 2004 as Widestrike™, which produced two Bt endotoxins, Cry1Ac and Cry1Fa 

(Adamczyk and Gore, 2004). VipCot is new transgenic cotton. The active Bt toxin is Vip 3A, 

which is an exotoxin produced during vegetative stages of Bt growth (Mascarenhas et al., 

2003). In the first year of commercial availability in the United States, Bollgard cotton was 

planted on 850,000 hectares or 15% of the total cotton area, and, by 2007, expanded to about 

2.9 million hectares, or 65.8% of U.S. cotton area. However, adoption of Bt cotton has varied 

greatly across growing regions in the U.S., and other countries, depending on the 

availability of suitable varieties and, more importantly, the particular combination of pest 

control problems. Bollgard cotton varieties have been rapidly accepted by farmers in areas 

where tobacco budworm-bollworm complex (BBWC) is the primary pest problem, particularly 

when resistance to chemical pesticides is high. There are many factors which can affect 

changes in expressing the amount of stacked endotoxins. Individual lepidopteran species vary 

in their susceptibility to Bt proteins (Luttrell & Mink, 1999), and efficacy can be affected by 

protein expression levels in different plant structures (Adamczyk et al., 2008) and among 

different varieties (Adamczyk and Gore, 2004). Differences in susceptibility can also occur 

based on the geographic location of populations (Luttrell et al., 1999). The LRGV of Texas is 

dominated by beet armyworm, bollworm, and fall armyworm, and suitable Bt varieties have 

not been readily available for more rapid increase in the adoption of Bt technology. 

Microbial insecticides are environmentally friendly and highly selective. Transgenic plants 
reduce the need for conventional insecticides, providing benefits for human health and the 
environment. For example, in U.S. cotton, the average number of insecticide applications 
used against tobacco budworm [Heliothis virescens (Fabricius)]-bollworm [Helicoverpa zea 
(Boddie)] complex decreased from 5.6 in 1990-1995 to 0.63 in 2005-2009 (from Proceedings of 
Beltwide Cotton Conferences). 
 

Year Bt cotton, ha 
% Bt cotton of 
total planted 

Hectares Bt 
sprayed 

Average number 
applications 

USA 

2005 2,994,086 51.8 1,234,855 0.54 

2006 3,439,604 57.2 1,603,722 0.59 

2007 2,877,114 65.8 895,232 0.50 

Texas 

2005 546,898 22.6 75,061 0.78 

2006 669,891 27.2 37,823 0.44 

2007 929,654 47.5 22,657 0.44 

LRGV of Texas 

2005 3,474 4.7 0 0 

2006 2,285 5.8 0 0 

2007 8,097 20.0 0 0 

Source: (Williams, 2006-2008). 

Table 5. Bt cotton area. 
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Carpenter & Ginanessi (2001) estimated that the average annual reduction in use of 
pesticides on cotton in the U.S. has been approximately 1,000 tons of AI . Traxler et al. 
(2003) estimated that the benefits gained from the introduction of Bt cotton fluctuates 
from year to year but averaged $215 million. The adoption of transgenic Bt-cotton is 
described in Table 5. 

Bt types, traits, and varieties mostly used in the LRGV of Texas for the last five years (2005-

2010) are shown in Table 6. 

 

Bt type Bt trait Variety Bt endotoxins Owner of Bt trait Owner of variety 

None Non-Bt DPL 5415RR None None Delta & Pineland 

Single Bollgard NuCotn 33B Cry1Ac Monsanto 
Delta & Pineland 

(Monsanto) 

Dual Bollgard II 
DPL424 
BGII/RR 

Cry1Ac + 
Cry2Ab 

Monsanto Delta & Pineland 

Dual WideStrike Phy485 WRF 
Cry1Ac + 

Cry2F 
Dow Agroscience 

Dow 
Agroscience 

Source: Greenberg & Adamczyk, 2010. 

Table 6. Bt cottons used in the LRGV of Texas. 

During the 2005-2007 seasons, the average percentage of leaf damage on non-Bt trait 

varieties was 1.5-fold greater than on Bollgard varieties. Leaf damage was 3.6-fold less on 

Bollgard II and WideStrike-trait varieties than on non-Bt cotton, and 2.4-fold less than on 

Bollgard-trait varieties (F = 18.8, df = 3, 36, P = 0.001, 2005; F = 15.6, df = 3, 36, P = 0.001, 2006; 

and F = 10.2, df = 3, 36, P = 0.009, 2007) (Fig. 2). The same trend was observed for the 
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Fig. 2. Percent damage. 
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proportion of consumed leaves. On non-Bt cotton varieties, the index was 1.6-fold greater 

than on Bollgard varieties and 2.4-fold greater than on Bollgard II and WideStrike varieties. 

The proportion of consumed leaves on Bollgard was 1.5-fold greater than on Bollgard II or 

WideStrike cotton (F = 23.3, df = 3, 36, P = 0.001, 2005; F = 25.8, df = 3, 36, P = 0.002, 2006; F = 

23.1, df = 3, 36, P = 0.001, 2007) (Fig. 3). The differences of leaf damage between varieties 

containing dual Bt endotoxins (Bollgard II and WideStrike) during the cotton-growing 

seasons were not significant (t = 0.440; P = 0.668) except at the end of the season (110 days of 

age). The damage to WideStrike cotton (Phy 485 WRF) was 1.4-fold greater than to the 

Bollgard II variety (ST 4357 BG2RF) (t = 4.332; P = 0.001).  
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Fig. 3. Proportion of consumed leaves on different Bt trait of cotton. 

The seasonal average of damage to fruit on the plant (88.5% attributed to bollworm and, to a 
lesser extent, beet armyworm) on non-Bt cotton (15.2%) was about 4.6-fold greater than on 
WideStrike (3.3%), 3.8-fold greater than Bollgard II (4.0%), and 1.7-fold greater than Bollgard 
(9.0%) (F = 8.9, df = 3, 31, P = 0.001). Damage by noctuids on abscised cotton fruit was 39.0% 
for non-Bt, 28.5% for Bollgard, 12.6% for Bollgard II, and 8.5% for WideStrike cottons (F = 
17.8; df = 3, 16; P = 0.001). In non-Bt cotton, live larvae were 6.2-fold greater than on 
WideStrike, 4.5-fold greater than on Bollgard II, and only 1.7-fold greater than on Bollgard 
(F = 11.7; df = 3, 16; P = 0.001). Live larvae in fallen fruit were 92.6% bollworm and 7.4% beet 
armyworm (Greenberg & Adamczyk, 2010). 

Bt cotton has proven itself to be a useful tool in BW eradication zones in minimizing risk of 
outbreaks of lepidopteran, secondary pest problems; and augmenting activity of beneficial 
insects. 

2.5 Biorational and botanical insecticides 

Some registered and produced biorational and botanical insecticides are shown in Tables 7 
and 8. 
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Country Product name Based on Target Insects 

U.S. 
DiPel DF or ES, 

Condor, Javelin WG 
Bacillus thuringiensis Noctuids 

U.S. Mycotrol Beauveria bassiana Sucking insects 

U.S. Naturalis Beauveria bassiana Sucking insects 

U.S. BioBlast Metarhizium anisopliae Thrips, mites, Coleoptera 

U.S.-Europe PFR-97TM Paecilomyces fumosoroseus Whiteflies, thrips 

U.S. Spinosad (SpinTor) Saccharopolyspora spinosa Noctuids, thrips 

Source: The Biopesticides Manual, 2001. 

 

Table 7. Registered and produced biorational pesticides. 

 

 
 
 
 

Common name Produced Azadirachtin Target insects 

Neemix™ 
W.R. Grace & Co. -Conn., 

Columbia, MD 
0.25% Noctuids, aphids 

Neemix®4.5 Certis USA, L.L.C. 4.5 
Noctuids, aphids, 
whiteflies, thrips 

Ecozin EC Amvac, USA, CA 3.0 Noctuids, whiteflies 

Agroneem 
AgroLogistic Systems, Inc., 

CA 
0.15 Noctuids 

Source: Isman, 1999. 

 

Table 8. Registered and produced botanical insecticides. 

The  effectiveness of some biopesticides based on B .bassiana and M. anisoplia against sucking 

insects is not significantly different from synthetic insecticides (Table 9), but B. thuringiensis 

showed satisfactory results against lepidopteran pests (Table 10). 
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Pesticides Rate 

Mortality, % 

Young           Old 
Bemisia tabaci 

Aphis gossypii Thrips spp. 

B.bassiana 2gr/L 98.8 ± 0.6a 97.6  ± 1.4a 96.4  ± 2.1a 90.4 ± 1.8a 

M. anisoplia 5gr/L 90.4  ± 4.8a 91.4  ± 3.1a 91.6  ± 3.6a 98.6  ± 0.8a 

Neemix 41.3gr/L 41.6  ± 10.4b 26.0  ± 6.7d 72.1  ± 9.7b 51.4  ± 4.2c 

Azadirect 32.3gr/L 68.0  ± 10.2b 64.6  ± 2.5c 90.4  ± 6.5a 46.7  ± 1.8c 

QRD 1.3gr/gal 82.1 ± 5.5a 80.3  ± 5.5a 92.4  ±2.7a 69.1  ± 7.7b 

Insecticides:      

Fulfil 0.4gr/L - - 100a - 

Oberon 0.2gr/L 98.9  ± 0.8a 95.9  ± 3.3a - - 

Control (H2O)  6.2  ± 2.0c 1.8  ± 0.8e 4.6  ± 2.0c 1.4  ± 0.9d 

Source: Greenberg, unpublished data. 

Table 9. Effects of different biorational and botanical pesticides on sucking insects 
(Greenberg, unpublished data). 

 
 
 
 

Insect Larvae Pesticides Mortality, % 

Fall armyworm 
Spinosad (SpinTor), 
12-150 g  a.i. per ha 

72.3 ± 1.6 

Complex (Fall and beet armyworms, 
bollworm) 

Spinosad, 1st spray; 
DiPel, 2nd spray, 

100-300 g a. i. per ha 
76.2 ± 3.8 

Beet armyworm DiPel 65.3 ± 3.6 

Bollworm Spinosad 71.3 ± 5.8 

Bollworm DiPel 61.3 ±2.1 

Source: Greenberg, unpublished data. 

Table 10. Effectiveness of biorational pesticides against lepidopteran. 
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Three commercial neem-based insecticides, Agroneem, Ecozin, and Neemix, were evaluated 
for oviposition deterrence of beet armyworm. In controls, the proportion of eggs laid on 
cotton leaves by beet armyworm was from 2.5 to 9.3-fold higher than neem-based 
treatments. Neem-based insecticides also deterred feeding by beet armyworm larvae. In 
controls, the mean percentage of cotton leaves eaten by first instars per day were 3-fold; 
third instars, 5-fold; and fifth instars,9.3-fold higher than in neem-based treatments, 
respectively (P<0.001). Agroneem, Ecozin, and Neemix caused 78, 77, and 72% beet 
armyworm egg mortality after direct contact with neem-based insecticides, respectively, 
while in non-treated controls, only 7.4 % mortality. Survival of beet armyworm larvae fed 
for 7 days on cotton leaves treated with neem-based insecticides was reduced to 33, 60, and 
61% for Ecozin, Agroneem, and Neemix, respectively, compared with 93% in the non-
treated controls (P=0.015) (Greenberg et al., 2005). Neem-based insecticides could control 
other lepidopteran, also (Isman, 1999, Ma et al., 2000, Saxena & Rembold, 1984). 

2.6 Beneficial insects 

Beneficial insects in conventional cotton under BW eradication or intensive pressure of 
synthetic insecticides can control about 10-15% of harmful insects.  Native, most widely-
distributed beneficial insects in the LRGV of Texas are described in Table 11. 
 

Beneficial Insects Target insects 

Minute pirate bug, Orius tristicolor 
(White) 

Aphids, thrips, whiteflies, mites, and moth eggs and 
small larvae 

Bigeyed bug, Geocoris uliginosus 
(Say) 

Mites, whiteflies, thrips, plant bug Creontiades, 
fleahoppers, and moth eggs 

Lady beetles, Hippodamia 
convergens (Guerin-Meneville) 

Aphids, moth eggs and small larvae 

Green lacewings, Chrysopa 
rufilabris (Burmeister) 

Immature feed on aphids, spider mites, whiteflies, 

Syrphid fly larva Aphids 

Spider, Hibana futilis (Banks) 
Fleahoppers, Pseudomatoscelis seritatus (Reuter), plant 

bug, Creontiades signatus (Distant) 

Encarsia pergandiella Howard Parasites on whiteflies nymphs 

Trichogramma spp. Egg parasite 

Bracon spp. Larva parasite mostly of lepidopteran 

Source: Based on Extension Entomologists of LRGV of Texas and authors observations. 

Table 11. Native, most widely-distributed beneficial insects in the LRGV of Texas. 
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We estimated that native parasitoids can control whiteflies in organic cotton (95-100%); 

sustainable agriculture cotton (80-90 %); Bt cotton (50-60%); conventional cotton (25-30%); 

and under BW eradication (0-5%). 

One of potentially effective strategy for early-season suppression BW involves periodic 

augmentation an ecto-parasitoid of BW larvae such as Catolaccus grantis (Burks) (Summy et 

al., 1994) 
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Fig. 4. Parasitism of boll weevil larvae by C. grandis. 

The alternative to chemical control can be propagation and augmentative releases 

Trichogramma spp., an egg parasite of numerous lepidopteran species. Trichogramma 

pretiosum Riley and T. minutum Riley are widely use species in the USA. Some lepidopteran 

species distributed in LRGV, like as beet armyworm and fall armyworm, deposited hair-

covering egg masses and protected a portion of eggs from parasitization. But these eggs 

punctured by Trichogramma and rapidly desiccated. The percentage of desiccated eggs 

tended to increase the total host mortality induced by Trichogramma compared with those on 

bollworm eggs (Greenberg et al., 1998) (Table 12, Fig. 5) 
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Treatment 

Percentage 

Parasitized eggs Desiccated eggs Total mortality 

BAW BWTreat BAW BW BAW BW 

T. pretiosum 44.8±4.3 90.3±1.7 24.9±2.1 5.5±1.2 69.7±5.6 95.9±0.5 

T. minutum 51.6±3.7 88.9±1.6 29.3±2.2 6.5±1.6 80.9±3.3 95.3±1.6 

Control 0 0 5.8±1.2 4.4±1.7 5.8±1.2 4.4±1.7 

Source: Greenberg et al., 1998. 

Table 12. Effectiveness of Trichogramma spp. against noctuids on cotton. 

 

 

 

 
a                                          a 

 
 
 

 
b 

 
 

Fig. 5. Trichogramma parasitized beet armyworm (a) and bollworm (b) eggs. 
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3. Cultural control in IPM system 

Among the important alternatives to insecticides in cotton are cultural control techniques. 

Different tillage systems are one of the most important cultural control tools. Conservation 

tillage has found some acceptance among growers because it reduces soil erosion, conserves 

soil moisture, and substantially lowers cost of field operations compared to conventionally 

tilled systems. In the LRGV, 30% of cotton acreage is under conservation tillage. Water 

availability for irrigation has become a major concern for south Texas. In this case, 

conservation tillage can be a valuable tool for improving soil moisture. Our results 

demonstrated that different tillage practices had indirect potentially positive or negative 

effects on pest and beneficial populations in cotton. The effects are influenced by both 

abiotic and biotic factors which can be created or manipulated by conventional (cv) and 

conservation (cs) tillage systems. Tillage operations modify soil habitats where some insect 

pests and beneficial insects reside during at least part of their life cycles. These modifications 

can alter survival and development of both soil and foliage-inhabiting insects. 

Conventional tillage in dryland cotton increased water stress, causing plants to shed squares 
and bolls, and allocated more resources into vegetative growth. The conservation tillage 
cotton responded by fruiting at a higher rate. Increased plant height and number of leaves in 
conventional tillage provided significantly more light interception and shading of the soil 
surface between rows. Temperatures in conservation tillage rows were higher than in 
conventional tillage fields by about 15ºC and resulted in increased mortality of insects in 
fallen fruit (Greenberg et al., 2004, 2010).  

Boll Weevil: In dryland cotton, the average number of boll weevils per plant during the 
2001 cotton growing season was 2.3-fold (P=0.011) and, in 2002, - 3.5-fold (P=0.019) higher in 
conventional versus conservation tillage fields (Greenberg et al., 2003).  

Aphids: On seedling cotton, numbers of aphids were higher in conventional tillage plots. In 
late spring and early summer, aphids primarily migrated to conservation tillage cotton 
where there was higher soil moisture and RH, and plants were more succulent and 
attractive to aphids than in conventional tillage.  

Bollworm and Tobacco Budworm, Beet Armyworm. Fruit fallen on the ground were 
infested with larvae at 15.7 % higher in conventional than in conservation plots. Numbers of 
live larvae in infested fruit were 4.7-fold higher in conventional versus conservation tillage 
plots (69.3% vs. 14.7%). The number of larvae per plant was 5.9-fold higher in conventional 
than conservation tillage.  

Cutworm. Higher infestation densities and plant damage have been observed in 
conservation tillage fields on seedling cotton (18.3% damaged plants in conservation tillage 
and 2.7 % in conventional tillage). Conservation tillage promotes the development of weeds 
that serve as oviposition sites for adults and alternative plant hosts for larval development 
(Greenberg et al., 2010). 

4. Cotton diseases 

A plant disease occurs when there is an interaction between a plant host, a pathogen, and 
the environment. When a virulent pathogen is dispersed onto a susceptible host and the 
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environmental conditions are suitable, then a plant disease develops and symptoms become 
evident.  

Seedling Disease Complex. Seedling disease is caused by a complex of soil fungi which 
may occur separately or in combinations. These fungi are Pythium sp., Fusarium sp., 
Rhizoctonia solani, and Thielaviopsis basicola. Symptoms include decay of the seed before 
germination, decay of the seedling before emergence, girdling of the emerged seedling at or 
near the soil surface, and rotting of root tips. Crop rotation, quality of the seed, timely 
planting, and the use of fungicides like Captain, Maxim, Nu-Flow ND, Nu-flow M, Vitavax, 
and Baytan can reduce losses to seedling diseases and are registered for commercial seed 
and soil treatments (Allen et al., 2010). 

Root Rot. This disease, caused by the fungus, Phymatotrichum omnivorum, generally becomes 

evident during the early summer. It causes rapid wilting, followed by death of the plants 

within a few days. Leaves shrivel, turn brown and die, but they remain attached to the 

plant. The disease kills plants in circular areas ranging from a few square yards to an acre or 

more in size. Dead plants will remain standing in the field but can be easily pulled from the 

soil. Control procedures include: 1) altering the growing environment in the root zone by 

applying soil amendments to increase organic matter and reducing soil PH by using the 

chelated element sulfur and in organic trace elements zinc and iron; 2) using winter cover 

Brassicae plants as a cultural control for disease suppression; 3) fumigating infested planting 

holes will usually only delay the onset of disease in non-infested plants; and 4) applying 

sulfur in trenches 4 to 6 inches wide and 4 to 6 feet deep around the outside of the drip line 

of infested plants to prevent the spread of root rot. Incidence and control of cotton root rot is 

observed with color-infrared imagery by using remote sensing equipment (Matocha et al., 

2008, 2009). 

Boll Rot. This disease is prevalent in high moisture and heavy plant densities. If excessive 
stalk growth has occurred, one may encounter boll rot problems. Reducing some of the leaf 
tissue with the selective use of defoliants may be a practical answer. Good weed and insect 
management will decrease incidence of boll rot (Allen et al., 2010). 

Nematodes. The nematode Rotylenchus reniformis Linford & Oliveria is a major problem 
confronting cotton production in the LRGV of Texas. Root-knot nematode, Meloidogyne 
incognita (Kofoid & White), is prevalent in sandy or sandy clay loam soils. Larvae feed on 
the root plants causing swellings (galls) on them. Control practices for nematodes include 
crop rotation and chemical control with nematicides or soil fumigants (Robinson et al., 
2008). 

5. Weed control 

The main winter and spring weeds in cotton are common purslane (Portulaca oleracea L.), 
pigweed (Amaranthus palmeri Wats.), wild sunflower (Helianthus annuus L.), and 
Johnsongrass[Sorghum halepense (L.) Persoon]. Control is by use of a conventional tillage 
system, winter cover crops, and selective herbicides. Black oat (Avena strigosa Schreb.) and 
hairy vetch (Vicia villosa Roth) suppressed winter weeds to the same extent or more than did 
winter tillage in no-cover plots. In the spring, soil incorporated black oats cover was slightly 
more beneficial to cotton than incorporated hairy vetch, but neither cover controlled spring 
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weeds. Two years of winter cover cropping did not obviate the need for cultivation, and 
hand-weeding for sustainable spring weed management in cotton in the LRGV of Texas. 
(Moran & Greenberg, 2008). 

6. Conclusion – IPM models 

The model of a pyramid can be used to demonstrate how growers might construct their 
pest management programs. There are different models of pyramids, but they are 
basically similar. In Fig. 6 (Model #1), the foundation of a sound pest and disease 
management program in an annual cropping system that begins with cultural practices 
which alter the environment to promote crop health. These include crop rotations that 
limit the availability of host material used by plant pathogens, judicious use of tillage to 
disrupt pest and pathogen life cycles, destruction of weeds, and preparation of seed beds. 
Management of soil fertility and moisture can also limit plant diseases by minimizing 
plant stress. Environmental control can regulate in terms of temperature, light, moisture, 
and soil composition. However, the design of such systems cannot wholly eliminate pest 
problems. The second layer of defense against pests consists of the quality of crop 
germplasm. Newer technologies that directly incorporate genes into crop genomes, 
commonly referred to as genetic modification or genetic engineering, are integrating new 
traits into crop germplasm. The most-widely distributed are the different insecticidal 
proteins derived from Bacillus thuringiensis. Upon these two layers, growers can further 
reduce pest pressure by considering both biological and chemical inputs (McSpadden 
Cardener & Fravel, 2002). 

 

 

Source: Gardener & Fravel, 2002. 

Fig. 6. Model # 1. 

www.intechopen.com



 
Integrated Pest Management and Pest Control – Current and Future Tactics 

 

26

High yields of agricultural crops can only be obtained if there is sufficient control of pests. 

In the mid 20th century, development of chemical pesticides seemed to provide an effective 

answer, but pests became resistant and, by killing natural beneficial species, resurgence of 

pest populations occurred. The LRGV played a key role in the acceptance of IPM concept by 

entomologists. The devastating outbreaks of tobacco budworm (Heliothis virescens) in the 

LRGV of Texas during the late 1960’s and early 1970’s (and the similar outbreaks of Heliothis 

armigera in Australia during the same period) demonstrated conclusively that unilateral 

reliance on pesticides for insect control was not sustainable and could lead to economic 

calamities. This led to the concept of integrated pest management utilizing a range of control 

tactics in a harmonious way (Fig.7, Model #2 adapted from Naranjo, 2001). The diagram 

shows the different aspects of IPM – avoidance of pest, then surveillance and finally, if 

necessary, control using a bio- or chemical pesticide. 

 

 

Source: Naranjo, 2001. 

Fig. 7. Model #2. 

In Texas, IPM implies integration of approaches and methods into a pest management 
system, which takes into consideration that environmental impacts and economic risks have 
been minimized.  

IPM models (Figs. 8, 9) based on conceptions of Extension Entomologists Texas A&M 

University System and authors of this article. No single pest control method is relied on in 

IPM systems. Chemical control is used only when needed (in relation to economic 

thresholds), and it is important to optimize their application. Nozzles need to be selected to 

optimize the droplet sizes so that the pesticides can be distributed where the pests are 

located with minimal spray drift. Monitoring (sampling) of the pest is constantly needed. 

Mere presence of a pest is not a reason to justify action for control.  
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Fig. 8. 

 

Fig. 9. 

In the future, IPM is expected to continue to be dominant in agriculture. This will include 
increased use of reduced-risk pesticides and genetically-engineered crops. Recent surveys of 
both conventional and organic growers indicate an interest in using biocontrol products 
(Van Arsdall & Frantz, 2001). The future success of the biological control industry will 
depend on innovative business management, product marketing, extension education, and 
research (Mathre et al., 1999). These will contribute substantially to making the 21st century 
the age of biotechnology by the development of innovative IPM strategies.  
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