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1. Introduction  

Hepatitis B virus (HBV) is one of the most important human pathogens. The outcome of 
HBV infection as well as the severity of HBV-induced liver disease varies widely from one 
patient to another. In around 90-95% of adults, exposure to HBV leads to an acute infection 
which is rapidly cleared without long-term consequences. The remaining 5-10% fail to 
control viral infection that consequently evolves to chronicity. The rate of chronicity of viral 
infection is dramatically higher (up to 90%) in neonates born from infected mothers, 
suggesting that infection around birth successfully induces peripheral tolerance to viral 
antigens which prevents clearance. About 2 billion humans have been infected by HBV 
worldwide and more than 350 million are chronic carriers. The latter have high risk to 
develop severe liver disease, including liver cirrhosis and hepatocellular carcinoma. Around 
600,000 persons die each year due to consequences of hepatitis B infection. As HBV is a non-
cytopatic virus, HBV-related liver damage very likely results from the immune response 
against infected hepatocytes which is activated but not strong enough to clear infection. 

Our knowledge of the molecular biology of HBV has increased considerably over the past 
decades, leading to the development of very effective prophylactic vaccines and to the 
development of direct antivirals active against HBV. Five nucleos(t)ide analogs are currently 
approved to treat chronic hepatitis B. Belonging to the same class of nucleosidic reverse 
transcriptase inhibitors, they specifically inhibit viral polymerase activity and thus suppress 
HBV replication, significantly improving liver histology and the clinical outcomes of the 
disease after one year of treatment (Liaw et al., 2004). Unfortunately, nucleos(t)ide analogs 
act at a late stage in the HBV life cycle (i.e. maturation of newly formed viral capsids by 
reverse transcription of pregenomic RNA) and do neither prevent formation and nuclear 
establishment nor activity of the HBV transcription template, the so called HBV covalently 
closed circular (ccc) DNA.  

Long-term treatments with nucleos(t)ide analogs are thus necessary to cure HBV infected 
cells and unfortunately lead to the selection of HBV drug-resistant strains (Zoulim, 2006). 
Even very effective antivirals such as Tenofovir lead to HBsAg seroconversion in only 3 to 
8% of patients over three years (Heathcote et al., 2011; van Bommel et al., 2010). Pegylated 

(PEG)-IFN- is an established treatment alternative and acts as an antiviral but also 

enhances the host’s immune defense. However, only 30% of PEG-IFN- -treated patients 
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achieve a sustained antiviral response (Karayiannis, 2003), and only about 8-10 % of patients 
clear the virus (Marcellin et al., 2009) with slightly increasing rates during long-term follow-
up (Moucari et al., 2009). New therapeutic approaches that target other viral proteins, 
besides viral polymerase, are needed to decrease viral drug resistance and improve 
treatments against HBV.  

This chapter will particularly focus on the hepatitis B virus X protein (HBx) that is essential 
to initiate and maintain transcription of HBV RNA from nuclear cccDNA and thus is a key 
regulator of the virus life cycle. Due to its central role, HBx represents a very promising new 
target for antiviral strategies against HBV.  

1.1 Hepatitis B virus structure and proteins 

HBV belongs to the family hepadnaviridae. It is a small, enveloped DNA virus that replicates 
via reverse transcription of an RNA intermediate. HBV virions, also called Dane particles, 
are spherical lipid-containing structures with a diameter of ~42 nm (Fig. 1). The inner shell  

 

Fig. 1. HBV proteins and virion structure. (A) List of all HBV proteins. (B) Viral particles 
present in the serum of HBV-infected patients are schematically represented. The so-called 
“Dane particles” are fully infectious viral particles containing the HBV capsid and one 
rcDNA genome copy with the viral polymerase attached. Subviral particles of spherical or 
filamentous shapes consist of empty viral envelopes. Together, Dane particles, spheres, and 
filaments are recognized as HBsAg. The precore protein is secreted as HBeAg. 

of the virus consists of an icosahedral capsid, which is assembled from 180 or 240 subunits 
of the core protein. The capsid is covered by a lipid bilayer membrane densly packed with 
the three envelope proteins, large (L), middle (M), and predominantly small (S) protein, and 
is acquired by budding into the endoplasmic reticulum. They are translated from individual 
start codons but share the open reading frame and the same C-terminal amino acids, called 
the S domain. As a consequence, the M protein shares the S and has an extra N-terminal 
domain called preS2, and the L protein encompasses the S and two extra domains: preS2 
and preS1. Capsids contain a single copy of the HBV genome consisting of a 3.2-kb partially 
double-stranded relaxed circular (rc) DNA molecule. The viral polymerase serves as a 
protein primer and remains covalently linked to the 5’ end of the complete strand, also 
called viral (–) strand DNA of the rcDNA after reverse transcription. Besides virions, HBV 
infection leads to secretion of huge amounts of subviral particles, which consist of empty 
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viral envelopes with filamentous or spherical shapes (Fig. 1) containing mainly S and little L 
protein. Subviral particles are the most abundant HBV structures released into the 
bloodstream, are commonly defined as hepatitis B surface (HBs) antigen and are thought to 
facilitate virus spread and persistence in the host by adsorbing virus-neutralizing antibodies 
and tolerizing T cell responses. 

In addition to polymerase and the structural proteins, the HBV genome also encodes for two 
non-structural proteins, which have less well-defined functions. Secreted HBeAg may have 
immunoregulatory functions (Bertoletti & Gehring, 2006; Chen et al., 2005; Chen et al., 2004; 
Visvanathan et al., 2007), whereas HBx seems to have multiple key functions as it will be 
detailed later.  

1.2 Overview of the hepatitis B virus life cycle  

A schematic overview of the HBV life cycle is depicted below in Fig. 2. HBV infection is 
restricted to hepatocytes. HBV entry into these cells is thought to be a multistep process. 
Virions are first trapped at the surface of the cell by heparan sulfate proteoglycans (Schulze 
et al., 2007) and then bind to a receptor allowing uptake into the cells via an endocytosis 
process (Kott, 2010; Leistner et al., 2008). So far, this cellular receptor as not been identified. 
Proteolytic cleavage of the surface protein occurs within the endosomal compartment, 
probably resulting in a conformational change that exposes some translocation motifs at the 
surface of the viral particle allowing fusion of viral and cellular membranes and release of 
the capsid into the cytosol (Stoeckl et al., 2006).  

 

Fig. 2. Schematic overview of the HBV life cycle. 
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The naked capsid is then directed towards the nucleus, and the HBV genome is translocated 
to the nucleus (Rabe et al., 2006). In the nucleus, the rcDNA genome is converted by cellular 
enzymes into a covalently closed circular DNA (cccDNA), the episomal persistance form of 
the virus serving as transcription template. The 3.5 kb RNA species serves as pregenomic 
RNA (pgRNA) and as messenger RNAs for the synthesis of polymerase and core proteins as 
well as HBeAg. The 2.1 and 2.4 kb subgenomic RNAs encode for the three viral envelope 
proteins, a small 0.7 kbRNA for the HBx. The pgRNA is exported in an unspliced form, 
encapisidated together with the viral polymerase and used as a template for reverse 
transcription. The capsid spontaneously self-assembles from core dimers present in the 
cytoplasm (Zlotnick et al., 1999) due to the nucleic acid-binding domain of the core protein. 
Specific packaging of pgRNA into the capsid is mediated by binding of the primer region of 

the viral polymerase to the  stem-loop in the 5’ region of pgRNA (Hirsch et al., 1990; Junker-
Niepmann et al., 1990; Knaus & Nassal, 1993; Nassal, 1992; Porterfield et al., 2010). The 
pgRNA is then reverse transcribed by the reverse transcriptase domain of the polymerase 
within the capsid in the cytoplasm of the infected cell. Upon minus and then plus strand 
DNA synthesis the capsid matures and can be enveloped or reimported into the nucleus to 
fill up a cccDNA pool.  

HBV budding has been shown to be strictly dependent on the L protein (Bruss & Vieluf, 
1995): when the ratio between L proteins and nucleocapsids is not optimal, the latter are 
preferentially targeted to the nucleus to amplify the cccDNA pool (Summers et al., 1990). 
Whether HBV virions bud into the endoplasmic reticulum or late endosomes or 
multivesicular bodies, before they exit the cell via the exosome pathway, is not entirely clear 
(Patient et al., 2009). As an alternative and although it is not essential for the HBV life cycle, 
the viral genome may also integrate into the host genome using cellular enzymes such as 
topoisomerase I (Wang & Rogler, 1991). 

1.3 General features about HBx  

HBx is translated from a small subgenomic RNA controlled by the HBx promoter (Guo et al., 

1991). Alternatively, HBx may be produced form a very long RNA (3.9 kb) containing all the 

HBV open reading frames (ORF) (Doitsh & Shaul, 2003). The ORF was originally designated 

X because of the lack of homology with known sequences. HBx is a protein composed of 154 

amino acid residues with a molecular mass of around 17.5 kDa. Due to the lack of successful 

crystallography analyses, little is known about its three dimensional structure. Post-

transcriptional modifications of HBx such as phosphorylation or acetylation have been 

described (Schek et al., 1991; Urban et al., 1997), the latest being observed only in insect cells. 

But the significance of such modifications for the described activities of HBx has not been 

assessed yet. 

Cellular localization of HBx has been debated over the years. Indeed, some studies show a 
cytoplasmic localization (Dandri et al., 1996; Doria et al., 1995; Sirma et al., 1998; Su et al., 
1998), whereas others find that HBx is preferentially nuclear (Weil et al., 1999), or present 
both in the cytoplasm and the nucleus (Hoare et al., 2001; Schek et al., 1991). It appears that 
HBx expressed at very low level is predominantly nuclear, whereas high levels of HBx lead 
to cytoplasmic accumulation (Cha et al., 2009; Henkler et al., 2001). Discrepancies regarding 
HBx localization could thus be attributed to variations of HBx expression levels according to 
the models used for the experiments in the different studies.  
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Cellular localization of HBx was shown to influence the half-life of the protein. Indeed, the 
pool of HBx associated with the cytoskeleton and nuclear framework has a longer half-life 
(around 3 h) than the one associated with the cytosolic fraction (15 to 20 min) (Dandri et al., 
1998; Schek et al., 1991). Both ubiquitin-dependent and ubiquitin-independent mechanisms 
have been involved in HBx turnover (Hu et al., 1999; Kim et al., 2008). 

2. Importance of HBx for HBV infection 

In the woodchuck model of HBV infection, it was shown that the woodchuck hepatitis virus 
(WHV) X protein (WHx) is essential for the establishment of viral infection in vivo (Chen et 
al., 1993; Zoulim et al., 1994). Indeed, injection of WHV wild type genomes into the liver of 
woodchuck lead to WHV infection of all the tested animals whereas no replication was 
observed when genomes deficient for WHx expression were injected (Chen et al., 1993; 
Zoulim et al., 1994). Few years later, it was observed that animals injected with WHx-
defective mutants eventually developed a low viremia after an extended period of time 
(Zhang et al., 2001), suggesting that this WHx-defective mutant were not completely 
defective but largely attenuated for HBV replication in vivo. Accordingly, genotypic 
reversions to wild type WHV were observed in all animals inoculated with WHx-deficient 
mutants (Zhang et al., 2001). Taken together, these results point out the importance of WHx 
for a productive and long lasting WHV infection.  

In addition, it was shown that HBx-deficient HBV genomes are somewhat compromised for 

HBV replication using HBV hydrodynamically-injected mice (Keasler et al., 2007; 2009) or 

cell culture models (Belloni et al., 2009; Blum et al., 1992; Keasler et al., 2007; Leupin et al., 

2005). Surprisingly, the absence of HBx had no effect on HBV replication in human 

hepatoma Huh7 cell lines, but impaired replication in HepG2 cells (Blum et al., 1992; Keasler 

et al., 2007; 2009; Leupin et al., 2005). Accordingly, data in HBV transgenic mice are 

contradictory with some mouse lines showing reduced replication (Xu et al., 2002), whereas 

others replicate HBV to high levels (Dumortier et al., 2005). 

The importance of HBx in the context of human HBV infection was demonstrated very 

recently using human hepatocyte chimeric mice and relevant cellular models of HBV 

infection. Indeed, it was observed that mice injected with HBx deficient HBV virus 

developed measurable viremia only in HBx-expressing livers (Tsuge et al., 2010). Moreover, 

using primary human hepatocyte (Schulze-Bergkamen et al., 2003) and differentiated 

HepaRG cells (Gripon et al., 2002), that are the only two models of HBV infection in vitro, we 

recently demonstrated that HBx is essential to initiate and constantly required to maintain 

productive HBV infection (Lucifora et al., 2011).  

This latter study highlighted the importance of performing experiments in relevant in vitro 
and in vivo models. Indeed, results obtained with in vitro HBV infection models (i.e. primary 
human hepatocyte and differentiated HepaRG cells) (Lucifora et al., 2011) support and 
explain the above mentioned observations obtained in mouse livers (Keasler et al., 2007; 
Tsuge et al.). However, they differ from results obtained by transfection of linearized HBV 
genomes into transformed cells (Blum et al., 1992; Leupin et al., 2005) especially when HBx is 
overexpressed to non-physiological levels. Solving this apparent discrepancy, we were able 
to demonstrate that HBx is essential when HBV transcription is initiated from its natural 
transcription circular template (cccDNA) but not from a linearized 1.3-fold genome length 
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HBV genome (Lucifora et al., 2011) containing a duplicate copy of the HBx open reading 
frame 5’ of the HBV genome (Reifenberg et al., 2002; Sprinzl et al., 2001; Zhang et al., 2004) – 
irrespective of whether the linearized HBV genome is integrated or episomal.  

3. Functions of HBx in the HBV life cycle 

Different functions have been attributed to HBx regarding HBV life cycle (Fig. 3).  

 

Fig. 3. Functions attributed to HBx in the HBV life cycle. HBx is an important regulator of 
HBV transcription. Moreover, it might also enhance pgRNA encapsidation and viral 
polymerase activity.  

Several studies have shown that HBx can stimulate HBV replication by activating viral 
transcription (Cha et al., 2009; Leupin et al., 2005; Tang et al., 2005; Zhang et al., 2004; Zhang 
et al., 2001) or enhancing viral polymerase activity via calcium signalling pathways 
(Bouchard et al., 2003; Bouchard et al., 2001; Klein et al., 1999). HBx was also proposed to 
enhance pgRNA encapsidation by increasing phosphorylation of the viral core protein 
(Melegari et al., 2005) although these results were recently challenged (Cha et al., 2009).  

We recently showed that HBx does not determine the ability of HBV to enter the host cell or 
to deposit functional nuclear cccDNA but is essential for viral transcription from its natural 
transcription template, the nuclear HBV cccDNA (Lucifora et al., 2011). Indeed primary 
human hepatocytes or differentiated HepaRG cells inoculated with different HBV virions, 
HBV(wt) and HBV(x-) established comparable amounts of nuclear transcription templates but 
in contrast to HBV(wt), transcription of HBV RNAs and expression of HBV proteins was 
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dramatically impaired in cells inoculated with HBV(x-) (Lucifora et al., 2011). Trans-
complementation of HBx in HBV(x-)-infected cells was able to rescue HBV transcription, 
antigen secretion and replication even weeks after infection. This demonstrated that HBx-
deficient cccDNA is fully functional and very stable, but also that HBx is necessary to initiate 
and maintain HBV replication after infection of human hepatocytes (Lucifora et al., 2011).  

Our results complement a series of data indicating that HBx has an important role in 

epigenetic regulation of HBV transcription from cccDNA. Indeed, cccDNA can persist in the 

cell nucleus as a stable chromatin-like episome (Bock et al., 2001) and was shown to be 

submitted to epigenetic modifications such H3 and H4 histone acetylations when HBV was 

actively replicating (Pollicino et al., 2006). Besides cellular proteins such as histone 

acetyltransferases and histone deacetylases, HBx is also recruited onto the cccDNA with a 

kinetic paralleling HBV replication (Belloni et al., 2009). Moreover, in the absence of HBx, the 

acetylation of cccDNA-bound histones H4 was significantly reduced (Belloni et al., 2009; 

Lucifora et al., 2011), the recruitment of the histone acetyltransferase p300 was severely 

impaired whereas the recruitment of the histone deacetylases hSirt1 and HDAC1 was 

increased and occured at earlier times (Belloni et al., 2009).  

The differences mentioned above in the regulation of viral transcription from cccDNA and 

from linearized HBV genomes (which are present in all plasmid constructs and stable cell 

lines) may help to explain, why the function of HBx was evaluated differently when 

different HBV constructs were used (Blum et al., 1992; Bouchard et al., 2001; Melegari et al., 

2005; Reifenberg et al., 2002; Sprinzl et al., 2001). However, transcriptional regulation by HBx 

may also depend on the cell type used, since transformed cells may lack or antagonize 

cellular proteins with a positive or negative influence on viral transcription. 

Although HBx is essential for the expression of the other viral proteins, no evidence for 

packaging of HBx into the HBV particle has been provided (Lucifora et al., 2011). Therefore, 

the question of how HBx expression itself is induced and regulated remains open. Different 

hypotheses may apply. First, HBx mRNA transcription may be specifically regulated and 

may occur before transcription of the other HBV RNAs. This implies the question whether 

an early-late shift exists for HBV such as for most other viruses – with HBx as an early 

protein essential for expression of the remaining (late) proteins. Some studies performed in 

transfection models support this assumption (Doitsh & Shaul, 2004; Wu et al., 1991) 

suggesting that HBV may express its gene products in a defined order.  

A second hypothesis does not require the presence of HBx in the early phase of HBV 

infection. If HBV transcription from cccDNA starts shortly after infection independent from 

HBx, this would lead to the production of all the HBV proteins including HBx. Subsequent 

activation of a cellular response controlling HBV replication and/or binding of cellular 

restriction factor(s) could - in the absence of HBx - inhibit HBV transcription from cccDNA. 

HBx would here be essential to prevent inhibition of HBV transcription by cell-intrinsic 

mechanisms. Since HBx would have to up-regulate its own expression in a “positive feed-

back loop”, this would explain why a lag phase is observed before HBV replication starts 

after infection in all the HBV infection models (Dandri et al., 2005; Gripon et al., 1988; Gripon 

et al., 2002; Walter et al., 1996; Wieland et al., 2004). Whether one of these hypotheses or a 

third one explains dependency of HBV replication on HBx is currently investigated. 
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4. HBx influences many cellular processes 

Besides its role in HBV replication, thousands of publications showed that HBx interacts with 
various cellular partners and modifies many cellular processes including transcription, cell 
cycle progression, DNA damage repair, apoptosis and carcinogenesis (for review, see 
Benhenda et al., 2009; Bouchard & Schneider, 2004; Wei et al., 2010). As we will show with the 
following examples, interactions of HBx with cellular components may represent an attempt of 
the virus to manipulate the cellular context in order to stimulate virus replication and spread.  

HBx has been described to be a weak transactivator able to activate HBV promoters and 
enhancers as well as many different cellular promoters (Yen, 1996). Whereas, HBx does not 
seem to directly bind to DNA, its transactivation activity was reported to occur via several 
DNA binding sites such as NF-KB, AP-1, c-EBP, ATF/CREB, NF-AT, SP1 etc. (for review, 
see Quasdorff & Protzer, 2010; Yen, 1996).  

Different studies have shown an interplay between HBx and apoptosis pathways. Indeed, HBx 
could sensitize the cells to apoptotic signals such as treatments with TNF or doxorubicin, 
oxidative stress or growth factor deprivation (for review, see Benhenda et al., 2009; Bouchard & 
Schneider, 2004; Wei et al., 2010). This may promote hepatocyte regeneration, thus providing a 
larger reservoir of cells for infection. However HBx may also prevent apoptosis induction 
since it rapidly blocks spread of HBV progeny (Arzberger et al., 2010).  

HBx may also be involved in cell cycle regulation but its relative influence seems to differ 
according to the models used (for review, see Benhenda et al., 2009; Bouchard & Schneider, 
2004; Wei et al., 2010). For example, using primary rat hepatocytes, it was recently 
demonstrated that HBx induces normally quiescent hepatocytes to enter the G1 phase of the 
cell cycle and that this calcium-dependent HBx activity is required for HBV replication 
(Gearhart & Bouchard, 2010). While this effect of HBx on cell cycle progression can probably 
lead to carcinogenesis and thus become deleterious for the host, it is believed that it might be 
important for the virus to induce expansion of available deoxynucleoside triphosphate pools 
within the cells which it needs for replication (Bouchard et al., 2003). Indeed, using HepG2 
cells, it was reported that HBx is sufficient for the induction of the R2 subunit of the 
ribonucleotide reductase (RNR) (Cohen et al., 2010). RNR is the key enzyme responsible for de 
novo dNTP synthesis and is composed of R1 and R2 subunits (Nordlund & Reichard, 2006). 
While the R1 subunit is expressed in quiescent cells, the R2 subunit expression is silenced 
(Chabes et al., 2003). As a consequence of induction of R2 by HBx, the dNTP pool for effective 
viral production was increased without affecting cell cycle progression (Cohen et al., 2010).  

Different groups using different models showed that HBx may localize and interact with the 
proteasome components thereby influencing proteasome subunit composition (Chen et al., 
2001; Fischer et al., 1995; Hu et al., 1999; Zhang et al., 2000). Moreover proteasome inhibition 
was shown to enhance HBV replication in cell culture and in mice models (Zhang et al., 2004; 
Zhang et al., 2010). Indeed, in the presence of proteasome inhibitors, the replication of the wild-
type virus was not affected, while the replication of the HBx-negative virus was enhanced and 
restored to the wild-type level (Zhang et al., 2004; Zhang et al., 2010). Thus HBx may functions 
through the inhibition of proteasome activities to enhance HBV replication. 

Finally, several studies have pointed out an interaction between HBx and the DNA repair 
protein DDB1 that would be essential for HBV infection (Leupin et al., 2005; Sitterlin et al., 
2000). However, the exact mechanism by which this interaction may help the virus is still 
debated.  
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Of note, most of the interactions of HBx with cellular processes have been studied in many 
different models often leading to significant overexpression of HBx and outside the context of 
HBV infection. Thus, it remains important to determine whether similar manipulations of the 
cellular machinery by HBx would also occur in the context of an authentic HBV infection. 

5. Conclusion  

Numerous and significant studies have been performed over the past decades to analyze the 
role of HBx in the HBV life cycle. Many data were generated by using different in vivo and in 
vitro models, but contradictory results describing HBx function were obtained. The 
importance and the precise role of HBx on HBV life cycle thus remained unclear until 
recently models allowing an authentic HBV infection were used (Lucifora et al., 2011; Tsuge 
et al., 2010). Most studies, including the most recent, agree that HBx is essential for HBV 
infection. Besides its importance for HBV transcription from nuclear HBV cccDNA, it may 
also influence downstream steps of the HBV life cycle possibly by manipulating different 
cellular machineries. Unfortunately, in the long-term, these manipulations are probably 
leading to hepatocellular de-differentiation and progression towards liver cancer. As HBx 
plays a central role in HBV infection and cannot avoid influencing many cellular processes 
related to disease progression, it may be a very interesting target for new therapies against 
chronic hepatitis B. Targeting HBx may prevent both: viral replication as well as liver tissue 
damage and carcinogenesis. 
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