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1. Introduction 

Today, after more than 100 years of tuberculosis (TB) research, which have produced a 
vaccine and several drugs, TB still remains the most important bacterial infection 
worldwide. Every year more than 1.5 million people are killed by the infection and around 8 
million new cases are reported. The risk of developing the disease is greatly increased by 
acquired immunodeficiency syndrome (AIDS) and immune-compromising conditions, such 
as diabetes and malnutrition.  

In order to exert a better control of the disease, more effective vaccines and/or 

chemotherapeutics should be developed. In order to achieve this, better understanding of 

the immune mechanisms underlying the host-pathogen relationships in TB should be 

obtained first (Nathan, 2009). Of particular interest is the innate immunity generated by 

Mycobacterium tuberculosis infection, and more precisely the role of neutrophils, since their 

exact participation in the immunity or pathogenesis of TB is still poorly understood.  

Because M. tuberculosis is transmitted via aerosols, classically alveolar macrophages, and 

more recently dendritic cells have been considered to be the first cells to encounter the 

bacilli in the alveolar sack. This view has just recently started to change dramatically, 

despite results obtained by Antony et al. in 1983, which clearly demonstrated, both in vitro 

and in vivo, an active participation of neutrophils in monocyte recruitment, granuloma 

formation and lung repair (Antony et al., 1983). 

Neutrophils are polymorphonuclear cells (PMNs), with abundant granules in their 
cytoplasm that present large amounts of bactericidal molecules such as antimicrobial 
peptides and different proteolytic enzymes. Besides this molecular repertoire, PMNs are 
phagocytic cells and are prone to produce abundant Reactive Oxygen Species (ROS). 
Usually, PMNs that are part of the tisular inflammatory infiltrate are terminal differentiated 
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cells and with a short lifespan of 6 to 10 h, a notion that has been challenged recently by 
Pillay et al. (Pillay et al., 2010).   

The goal of this chapter is to describe current knowledge about the role of neutrophils 
during M. tuberculosis infection, and their relationship with other cells. The importance of 
recent molecular and cellular processes described in neutrophils such as pathogen shuttling, 
antigen presentation, NET formation and ectosome release will be discussed as well as their 
contribution to the pathophisiology of TB.   

2. Neutrophils 

Neutrophils or polymorphonuclear cells (PMN) form the first line of defense of the human 
innate immune system. They are the most abundant leukocytes in the blood (65% to 75% of 
all white blood cells) (Nathan, 2006) and are armed with powerful weapons to kill foreign 
microorganisms. Neutrophils kill by both oxidative (phagocytosis) and non-oxidative 
(degranulation) mechanisms (Kumar et al., 2010). They are differentiated in the bone 
marrow from pluripotent hematopoietic progenitor cells into mature neutrophils and have a 
life span of only a few hours in the bloodstream (Borregaard, 2010). However in a paper 
published last year, this life span was increase to 5.4 days, ten times longer, forcing to 
rethink the functions these cells might play in health and disease (Pillay et al., 2010). 

Neutrophils possess a multi-lobulated nucleus, abundant storage granules in the cytoplasm 

(azurophilic or primary, secondary and tertiary granules) (Borregaard et al. 1997), glycogen 

in the cytosol from which they derive almost all of their energy, and only a few 

mitochondria. The granules in mature neutrophils contain a variety of proteins that 

contribute to anti-microbial host defense. Among the proteins in the azurophilic granules 

are those with direct antimicrobial action (i.e. defensins, bactericidal-permeability-increasing 

protein, azurocidin), proteases (i.e. elastase, cathepsins), and a peroxidase that is normally 

expressed only in neutrophils and monocytes (i.e. myeloperoxidase (MPO)) (Borregaard & 

Cowland, 1997). 

The recruitment of neutrophils from the bloodstream to the site of infection is initiated by 

chemokines and cytokines in a process called extravasation (Kobayashi & DeLeo, 2009). 

Then, microbes and microbial compounds such as lipopolysaccharide (LPS) activate the 

neutrophils via transmembrane receptors. Once neutrophils are at the site of infection, they 

can internalize both opsonized and non-opsonized microbes (Lee et al., 2003). Fc receptors 

and a subgroup of ┚2 integrins, which are the principal opsonin receptors of neutrophils, 

bind to immunoglobulin and to complement-coated particles respectively (Witko-Sarsat et 

al., 2001). The vesicles containing the pathogens, called phagosomes, fuse with neutrophil 

granules, and the antimicrobial contents are discharged into the lumen of the phagosome, 

which is then called the phagolysosome (Segal, 2005). 

Upon activation, neutrophils are highly effective at generating reactive oxygen species 
(ROS) by a process known as respiratory burst. In stimulated neutrophils, ROS are 
generated almost exclusively by NADPH oxidase (Kobayashi & DeLeo, 2009). If 
phagocytosis is not to occur following pathogen interaction with the neutrophils, the release 
of granule contents and ROS formation will be directed to the outside of the cell to eradicate 
extracellular pathogens. Anti-microbial compounds from granules not only kill the bacteria, 
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but may also act as chemoattractants for T-cells and immature dendritic cells (iDCs), which 
in turn recruit more neutrophils to the site of infection and also initiate an adaptive immune 
response (Burg & Pillinger, 2001).    

2.1 Neutrophil Extracellular Traps (NETs) are induced by M. tuberculosis 

Another recently described microbicidal mechanism of neutrophils is the release of 
structures called neutrophil extracellular traps (NETs) which can trap and kill microbes. 
These structures are composed of nuclear chromatin or mitochondrial DNA, associated 
mainly with nuclear histones and granular antimicrobial proteins (Brinkmann et al., 2004; 
Yousefi et al., 2009). NETs are formed in response to a variety of pro-inflammatory stimuli 

such as LPS, IL-8, TNF and PMA (Brinkmann et. al., 2004), as well as by fungal (Urban et 
al., 2006; McCormick et al., 2010), bacterial (Beiter et. al., 2006; Brinkmann  et al., 2004; 
Ermert et al., 2009; Ramos-Kichik. et al., 2009), or protozoal (Baker et al., 2008; Guimaraes-
Costa et al., 2009) strains and species both in vivo and ex vivo. The formation of NETs has 
been demonstrated in many non-infectious pathophysiological conditions in mice, cows and 
humans (i.e. pre-eclampsia, Crohn’s disease, systemic Lupus erithematosus and cystic 
fibrosis) (Gupta et al., 2005; Hakkim et al., 2010; Marcos et al., 2010; Yousefi et al., 2008). 

There is much evidence indicating that NETs are released in the context of a cell death 
different from apoptosis or necrosis. Other granular cell types, such as eosinophils 
(Yousefi et al., 2008) and mast cells (Kockritz-Blickwede et al., 2008), but not basophils, 
also release extracellular traps. Therefore, Wartha et al., introduced the term ETosis as a 
more generalized term to name the process of extracellular trap release by dying cells 
(Wartha et al., 2008). During ETosis, the lobulated nuclear morphology of neutrophils is 
lost. Later, both nuclear and granular membranes disintegrate, but plasma integrity is 
maintained, allowing the antimicrobial granular proteins to mix with nuclear 
components. Finally, NETs emerge from the cells as the cytoplasmic membrane breaks 
(Fuchs et al., 2007). No morphological signs of apoptosis are observed, such as membrane 
blebbing, nuclear chromatin condensation, phosphatidyl serine (PS) exposure before 
plasma membrane rupture and internucleosomal DNA cleavage (Fuchs et al., 2007). 
Caspase activity is only detected during spontaneous neutrophil apoptosis, but not 
during PMA induced ETosis (Remijsen et al., 2011a). In contrast with necrosis, neutrophils 
do not stain positive for F-actin after they have undergone ETosis (Marcos et al., 2010; ; 
Palik et al., 2007; Ramos-Kichik et al., 2009). Although the regulation of subcellular events 
during ETosis remains unclear, increasing evidence indicates that the collapse of the 
nuclear envelope during ETosis and concurrent chromatin decondensation are regulated 
by the interplay between histone citrullination, superoxide production and autophagy 
(Remijsen, 2011b).  

Traditionally, neutrophils are viewed as phagocytes important in the resolution of rapidly 
growing microorganisms. Thus, they were disregarded in the control of intracellular 
pathogens responsible for chronic diseases. This is the case of tuberculosis, which today is, 
after AIDS, the second cause of death from an infectious disease worldwide (Young, 2008). 
The etiological agent, M. tuberculosis, is one of the most successful pathogens at evading the 
host immune response to establish infection. Its pathology is so complex that it has not been 
fully understood yet.  For several years neutrophils were not believed to have a role in the 
pathogenesis of tuberculosis due to their short life-span and because their microbicidal 
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mechanisms, although efficient, were associated with tissue damage and inflammation 
observed during acute infections. However, evidence has accumulated in the past few years 
emphasizing the role of neutrophils during M. tuberculosis infection. In vivo studies have 
revealed that the earliest immune response during mycobacterial infection is a migration of 
neutrophils to the site of infection during the acute phase of tuberculosis (Appelberg et al., 
1989; Barrios-Payán et al., 2006; Pedroza et al., 2000). Moreover, they are thought to be 
essential for early granuloma formation during chronic M. tuberculosis infection (Seiler et al., 
2003).   

The question of whether neutrophils play a role in killing M. tuberculosis or contribute to the 
development of the pathology remains controversial, and will be discussed at the end of this 
chapter. 

Recently, Ramos-Kichik et al., reported that two different genotypes of the M. tuberculosis 

complex with different virulence degrees (M. tuberculosis H37Rv and M. canetti), induce 

subcellular changes that led to NETs formation in a time dependent manner, causing the 

death of infected neutrophils. Although the mechanism by which M. tuberculosis induces 

this process has not been elucidated yet, it is possible that a direct recognition through 

TLR2/TLR4 of mycobacterial cell-wall pathogen associated molecular patterns (PAMPs) 

such as lipoarabinomannan (LAM), lipomannans (LM), phosphatidylinositol mannosides 

(PIM2, PIM6) and/or the 19 kDa lipoprotein, may be involved in NETs induction. In 

Addition, it was shown that NETs can trap mycobacteria (Ramos-Kichik et al.,2009). The 

outermost layer of the mycobacterial cell wall may be involved in NETs attachment, since 

this is an electrodense structure exposing negatively charged groups (Paul et al., 1992, 

Takade et al., 2003). Despite the ability to bind mycobacteria, NETs were unable to kill any 

of the M. tuberculosis genotypes tested, regardless of their virulence. Neither could intact 

neutrophils kill M. tuberculosis genotypes either. Instead, M. tuberculosis-induced NETs were 

able to kill Listeria monocytogenes (a rapid-growing intracellular bacteria) confirming their 

antimicrobial effect, and therefore establishing that M. tuberculosis is resistant to the 

microbicidal activity of NETs.  It seems that the molecular composition and structural 

features of the mycobacterial cell wall confer an effective permeability barrier, thereby 

evading the host innate immune response. Accordingly, more studies are needed to 

dilucidate the strategies used by M. tuberculosis to resist and escape from the microbicidal 

effect of neutrophils.  

Since NETs trap but do not kill M. tuberculosis, the role of NETs in vivo could be relevant in 

maintaining the infectious focus localized, thus preventing mycobacterial spreading and at 

the same time setting the basis for granuloma formation. On the other hand, it is also 

conceivable that NETs could act as a barrier avoiding phagocytosis of mycobacteria by 

macrophages, which are one of the few cells with known microbicidal properties against 

mycobacteria.  

It would be interesting to clarify whether engulfment of mycobacteria could switch-on 

different cell death pathways or if there are mechanisms behind neutrophil maturation or 

environmental conditions regulating which neutrophils undergo apoptosis and which ones 

undergo autophagy and ETosis. The fact that NETs are induced by M. tuberculosis opens 

another perspective about the possible extracellular role that neutrophils might play during 

tuberculosis infection.  
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3. Ectosomes released from M. tuberculosis infected neutrophils 

The release of vesicles from cell membrane of different eukaryotic cells has been observed in 
response to chemical stimuli (Allan et al., 1980; Scott & Maercklein, 1979; Scott et al., 1979), 
complement attack (Hess et al., 1999; Morgan & Campbell, 1985; Morgan et al. 1987) or pro 
inflammatory agents (Hess et al. 1999; Gasser et al. 2003). The process of vesicle release has 
been named by Stein and Luzio, ectocytosis and the vesicles released from the cell 
membrane ectosomes (Ects) (Stein & Luzio, 1991). Ects with size ranging from 50 to 200 nm 
released from PMNs in response to complement attack or fMLP (formyl-methionyl-leucyl-
phenylalanine), a bacterial product with chemo-attractant and pro inflammatory properties 
have been extensively studied. Ects are cholesterol enriched compared with the cell 
membrane composition (Stein & Luzio, 1991), express CD35 (complement receptor 1, CR1), 
a marker abundantly expressed on secretory vesicles present in the PMNs cell cytoplasm 
(Sengelov et al., 1994), myeloperoxidase and human leukocyte elastase (Hess et al., 1999) 
(both present in the azurophilic granules of PMNs), proteinase 3 and matrix 
metallopeptidase 9 (Gasser et al., 2003). Due to the presence of these enzymes, a role for Ects 
as ecto-organelles with anti microbial activity was initially proposed (Hess et al., 1999). 
Other markers found on the Ects membrane are MHC I, CD11a, CD11b, L-selectin, CD46, 
CD16, CD32. Ects bind annexin V, suggesting the presence of phosphatidilserine (PS) in the 
external side their membrane. Interestingly, Ects released by PMNs bind selectively to 
endothelial and macrophages but not to red cells. These findings suggest that Ects could 
play a role in the immune response. (Gasser et al., 2003).  

Recently anti-inflammatory properties have been attributed to Ects, this effect is exerted on 
macrophages after they enter in contact with Ects. The anti-inflammatory effect has been 

attributed to the presence of PS on the Ects and the concomitant production of TGF-1 by 
macrophages. This event could provide a mechanism for the resolution of inflammation 
(Gasser & Schifferli, 2004). Likewise, it was demonstrated that PS on the Ects membrane can 
inhibit the maturation of monocyte derived dendritic cells, preventing the expression of co-
stimulatory molecules and therefore the proper stimulation of T cells (Eken et al., 2008). 

All these interesting findings have been gather from experiments with Ects obtained from 

human PMNs stimulated with a fMLP. And until recently there were no reports concerning 

Ects release in an in vitro infection model. For this reason we investigated if Ects could be 

released after the phagocytosis of M. tuberculosis by human neutrophils.  

Previously Gasser et al. noticed that Ects released by human PMNs after fMLP stimulation 
did not constitute a homogenous population in size, prompting the author to hypothesize 
that these different sizes Ects could have different properties (Gasser, et al. 2003). In our in 
vitro infection model we observed that after 10 min of infection with M. tuberculosis H37Rv, 
human PMNs produced Ects. The Ects released constituted an heterogeneous population; 
we observed small Ects, similar in size to the population previously described (50 - 200 nm) 

and larger Ects (González-Cano et al., 2010) (0.5 – 0.75m). Both populations differed not 
only in size, but also in the presence of superoxide anion (O2-), which was clearly visualized 
in the lumen of the larger Ects.  

These larger Ects were characterized by the presence of CD35, Rab5, Rab7, Ps and gP91phox (a 
component of the NADPH oxidase) and the presence of O2- (figure 1). Human PMNs were 
infected with M. tuberculosis for 10 min, stained with the lypophilic dye CellVue® Jade and 
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the presence of O2- was demonstrated with diaminobenzidine (Kobayashi et al., 1998). 
Fluorescence microscopy showed that Ects are membranous compartments (fig. 1A) 
containing O2- (fig 1B).  In other experiments we confirmed that the release of these larger 
Ects was not an exclusive event related to M. tuberculosis infection, but a general event 
induced by Gram positive and negative bacteria, as well as by an intracellular parasite. 
Therefore Ects release could reflect a mechanism of response of PMNs upon invasion 
(Gonzalez-Cano et al., 2010). More work needs to be done in order to assess the effect that 
this Ects may have on the anti-microbial capacity of macrophages.  

 

Fig. 1. Ectosomes released by human PMNs infected with M. tuberculosis H37Rv showing O2- 
in their lumen. Jade dye staining demonstrates that Ects are membranous compartment 
(arrow in A), containing O2- in their lumen (arrow in B).  

Since neutrophils and macrophages “work in a concert” as described by Manuel T. Silva 
(Silva, 2101a, 2010b) it is essential to analyzed the effect that Ects released by neutrophils 
may exert on the anti-microbial activity of macrophages. 

4. Antigen presentation  

PMNs were originally described as short lived and terminally differentiated phagocytes that 
contribute only to the innate immune response. During the last years they have also been 
considered to be intimately associated with the establishment of acquired immunity. In 
resting neutrophils, major histocompatibility complex class (MHC) class I molecules are 
expressed, while MHC class II and costimulatory molecules are not detected on the cell 
surface. However, these surface molecules exist intracellularly and some studies indicate 
that human neutrophils express MHC Class II, CD80 and CD86 molecules on the cell 
surface, either following in vitro activation via CD11b (Sandilands et al., 2005), with IFN┛, 
IL-3 and GM-CSF (Fanger et al., 1997; Gosselin et al., 1993; Radsak et al., 2000 ) or IL-4 
(Abdel-Salam, 2011).   

Potter and Harding demonstrated murine neutrophil Class I restricted antigen presentation 
and additionally showed that neutrophils processed phagocytosed bacteria via an alternate 
MHC Class I antigen-processing pathway. Such neutrophils may ‘regurgitate’ processed 
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peptide into the extracellular space, this peptide may then bind MHC Class I on neighboring 
macrophages or dendritic cell for presentation to CD8 cells. Hypothetically, neutrophils may 
directly present peptide to effector T cells in vivo at sites of inflammation, inducing cytokine 
production, whereas dendritic cells in contact with neutrophil-derived antigenic peptides 
may migrate to lymphoid organs to initiate T cell responses (Potter & Harding 2001). 
Additionally, another study demonstrated that murine neutrophils present MHC II- 
restricted peptides and induced T cell proliferation (Culshaw et al., 2008). These evidences 
suggested that PMNs may communicate with T cells through direct cell contact.  

Since neutrophils have a short life-span and are highly susceptible to apoptosis, their role in 
antigen presentation has been questioned. However, various pro-inflammatory cytokines, 
such as IL-1, IL-6, TNF-┙, produced at the site of inflammation activate neutrophils and 
suppress apoptosis (Cowburn et al., 2004; McNamee et al., 2005) and as described 
previously when PMN are cultures in the presence of IFN-┛, GM-CSF or IL-4, these cells 
show enhanced expression of cell surface molecules and become as competent as dendritic 
cells or macrophages in their ability to present antigen.  

Abi Abdallah et al. demonstrated that mouse neutrophils express MHC class II molecules 
that directly present antigenic peptides, induce T-cell proliferation and promote generation 
of Th17 effector cells. MHC class II molecules were not constitutively expressed by 
neutrophils, but instead up-regulation of these proteins required contact with T cells. Most 
importantly this group showed that ovalbumin-pulsed neutrophils are programmed to 
induce Th17 differentiation even without addition of exogenous cytokines. This would 
appear to be an important, and possibly unique, property of PMN, since other antigen 
presenting cells (APC), such as dendritic cells, typically require addition of recombinant 
cytokines to mediate optimal T-lymphocyte subset differentiation during cell culture (Abi 
Abdallah et al., 2011). This is not a recent suggestion, since 1997 PMNs have been 
demonstrated to act as required accessory cells during T-cell activation with staphylococcal 
enterotoxin, a superantigen that does not require intracellular processing prior to 
presentation (Fanger et al., 1997).  

Further studies of surface marker expression present additional evidence for the ability of 

PMNs to differentiate. CD83, a traditional dendritic cell marker, was shown to be expressed 

on the surface of PMNs stimulated with IFN-┛ (Iking-Konert et al., 2001; Iking-Konert et al., 

2002; Yamashiro et al., 2000). To assess whether dendritic-like PMN are also generated in 

vivo, cells of patients with acute bacterial infections were tested, the results showed that over 

half of the patients tested had circulating PMNs expressing CD83. This fact indicates that 

this phenomenon was not simply the result of unlikely in vitro cytokine cocktails, but that 

the function of CD83 on PMN is still elusive (Iking-Konert et al., 2002). In ex vivo 

experiments Aleman et al. demonstrated that neutrophils in tuberculous pleural effusions, 

neutrophils expressed CD86, CD83, and major histocompatibility complex class II antigens, 

acquiring dendritic cell (DC) characteristics. Confirming the fact that the cytokine 

environment in the pleural space influence the activation of neutrophils allowing them to 

acquire DC characteristics that in turn influence the immune response against M. tuberculosis 

(Aleman et al., 2005). 

PMNs are professional phagocytes that play important roles in many infections, and 
abundant neutrophils are observed in the bronchoalveolar lavage fluid of patients with 
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pulmonary tuberculosis (TB) and more intracellular bacilli were found in neutrophils than 
macrophages in sputum, in bronchoalveolar lavage fluid and in cavities (Eum et al., 2010). 
The interaction of neutrophils with M. tuberculosis induces apoptosis of these cells (Alemán 
et al., 2002, 2004). Alemán et al. demostrated that M. tuberculosis triggers the maturation of 
DC while it is impaired by the presence of apoptotic  PMN, which abrogate Mtb-induced 

expression of costimulatory and HLA class II molecules, reducing IL-12 and IFN release by 
DC and partially inhibiting Mtb-driven lymphocyte proliferation (Aleman et al., 2007). 
Other experiments have shown that phagocytosis of apoptotic neutrophils by macrophages 
results in the decreased viability of intracellular M. tuberculosis suggesting a cooperative role 
of neutrophils in the host’s defensive strategy against M. tuberculosis infection (Tan et al., 
2006). All these experiments provide evidence about the complex interactions between 
neutrophils and M. tuberculosis, supporting the idea that there still much to learn about the 
immune mechanisms involved in this disease.  

5. Interaction of neutrophils with other cells 

Neutrophils are viewed as important cellular elements for the control of bacterial infections 

due to its phagocytic ability and their potential to produce several effector molecules. 

However, little is known about their role in the regulation of the immune response and the 

interaction with other cellular elements. One of the first interactions described were between 

apoptotic neutrophils and macrophages that lead to the removal of apoptotic bodies in a 

‘silencing’ manner because there is not induction of the inflammatory process (Fadok et al., 

2000; Newman et al., 1982).  So, it is not surprising that neutrophils isolated from patients 

with active TB are prone to apoptosis either spontaneously or when activated with the 

bacilli (Aleman et al., 2002). However, apoptotic bodies from Mtb infected neutrophils do 

not induce an anti-inflammatory state in macrophages, as reflected by the induction of 

TNF┙ and IL-1┚ (Sawant et al., 2010). Moreover, it has been shown that residues of 

apoptotic neutrophils that are phagocytosed by infected macrophages can co-localize in 

early endosomes with engulfed mycobateria inducing a decrease in their viability (Tan et al., 

2006). Furthermore, the relationship between neutrophils and macrophages has been 

described in vivo through a pleural tuberculosis model. In this model an early recruitment of 

neutrophils that first ingest bacteria and later undergo apoptosis was observed, a 

phenomenon that was influenced by the pleural environment (Aleman et al., 2005). The 

apoptotic bodies, which contained bacteria, were taken by macrophages and these were in 

turn stimulated to produce suppressor molecules of the inflammatory process such as PGE2 

and TGF 1, which could be detrimental for bacilli elimination (D´Avila et al., 2008) and 

consequently neutrophils would behave as ‘Trojan horses” a phenomenon described for 

other infections caused by intracellular microorganisms (van Zandbergen et al., 2004). 

A second cellular element that can interact with neutrophils is the dendritic cell (DCs), 
which represent an essential element for the induction of T cell responses during 
mycobacterial infections (Tian et al., 2005). DCs are present as immature cells in different 
tissues, but when these cells sense a microorganisms or an inflammatory response they fully 
mature and migrate to draining lymph nodes, where they are responsible for the selection 
and activation of antigen specific naïve T cells. M. tuberculosis is capable of inducing this 
maturation process, however, in the presence of apoptotic bodies derived from neutrophils 
this process is inhibited. Interestingly cross-presentation is not blocked by this process 
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allowing antigen presentation to T cells (Aleman et al., 2007). A more recent work showed 
that in vivo neutrophils are important for DCs migration from the lung to mediastinal lymh 
nodes facilitating the inducton of CD4+ response. The authors suggest that neutrophils 
deliver M tuberculosis to DCs and this process promotes the migration of DC’s, making this 
more efficient and favoring the T cell response (Blomgran & Ernst, 2011). 

Although much work has focused on apoptotic neutrophils and their relation with other cell 
populations, there are other ways by which neutrophil may interact with other cell types. 
One example of this is TNF┙ production by M. tuberculosis infected neutrophils that is able 
to activate alveolar macrophages as reflected by an increase in TNF┙ , IL-1┚ and hydrogen 
peroxide production (Sawant & Murray, 2007). Another possible interaction of neutrophils 
is with elements of the adaptive immune response, for example a recent report described 
that neutrophils from patients with active TB have shown increased expression of PDL-1 on 
the cell surface (McNab et al., 2011), a molecule which has been involved in exhaustion of 
CD8+ T cells during chronic viral infections (Barber et al., 2006) and has been associated 
with the inhibition of T cell effectors functions during human tuberculosis (Jurado et al., 
2008). 

A different way of interaction among different cells of the immune system could be through 

ectosomes (Ect) or neutrophil extracellular traps (NETs), which as mentioned before, are 

released by M. tuberculosis infected neutrophils (González-Cano et al. 2010; Ramos-Kichik et 

al., 2009). The effect of these (i.e. Ect and NETs) in vivo in tuberculosis, is still under 

investigation. 

6. Participation of neutrophils in the tissue damage of M. tuberculosis 

infection 

Tuberculosis can be considered as the prototype of chronic infectious diseases in which the 

most important pathogenic factor is the balance between protection and tissue damage 

mediated by the immune response (Rook & Hernandez-Pando, 1996).  Historically the first 

antecedent of tissue damage mediated by the immune response in tuberculosis was 

described by Robert Koch in 1891 and was called Koch phenomenon (Anderson, 1891). Koch 

demonstrated that the intradermal challenge of guinea pigs with whole organisms or 

culture filtrate, four to six weeks after the establishment of infection, resulted in necrosis at 

both the inoculation site and the original tuberculous lesion site. A similar phenomenon 

occurs in persons with active TB, in whom the PPD test site may become necrotic. Koch tried 

to exploit this phenomenon for the treatment of TB and found that subcutaneous injections 

of large quantities of M. tuberculosis culture filtrate (old tuberculin) into TB patients evoked 

necrosis in their tuberculous lesions. In fact, this treatment was shown to have extremely 

severe consequences associated with extensive tissue necrosis and was discontinued 

(Anderson, 1891). Still today, the task for those working in this field is to understand the 

differences between protective immunity and progressive disease, including the Koch 

phenomenon (Rook & Hernandez-Pando, 1996).  

It seems that the severity of the Koch phenomenon depends on the dose of antigen, as lower 
doses induce Th-1 response with high production of IFN┛ and macrophage activation which 
altogether produce the classic delayed type hypersensitivity response. High antigen loads 
produce local necrosis in which a high Th-2 cytokine production like IL-4 has been founded 
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(Hernandez-Pando et al., 1997). Interestingly, besides necrotic tissue with macrophage and 
lymphocytes infiltration there is an increased neutrophils influx (Moreira et al., 2002; Taylor 
et al., 2003; Turner et al., 2000).   

The consistent presence of neutrophils in the necrotic areas could be mediated by IL-17 

(Kolls & Linden, 2004; Miyamoto et al., 2003). In fact, IFN-┛ is able to regulate the IL-17 

response during BCG infection (Cruz et al., 2006), and in IFN-┛ absence in TB granuloma 

there is an increase in neutrophils (Desvignes & Ernst, 2009). Thus, IL-17 could overcome 

the apparent IFN-┛ mediated regulation and participate in immunopathology.  

In recent studies, the overexpression of IL-17 and IL23 has been related with neutrophils 

influx in necrotic pulmonary lesions (Khader & Cooper, 2008). IL-17 induces the production 

of the chemokine MIP-2  which is an efficient neutrophils chemoattractant molecule. 

Indeed, the participation of IL-23, IL-17 and MIP-2  has been recently demonstrated in a 

model of repetitive BCG vaccination in mice infected with low dose aereosols (Cruz et al., 

2010), implying that IL-17, IL-23 and neutrophils are key molecules in the development of 

tissue necrosis during advanced pulmonary tuberculosis, and a potential adverse 

mechanism in specific vaccination schemes such as revaccination with BCG (Cruz et al., 

2010). Thus, neutrophils can be protective during early TB infection, but when exposed to 

excess of IL-23 or IL-17, their function is altered and they become more able to mediate 

tissue damage (Zelante et al., 2007). Indeed, neutrophils are abundant in the sputum and 

bronchoalveolar lavage of patients with active TB (Eum et al., 2010), and rapid accumulation 

of neutrophils that are permissive for bacterial growth is a dominant feature in genetically 

susceptible mice (Eruslanov et al., 2005; Keller et al., 2006).  

The restriction of neutrophil accumulation is dependent on the IFN-┛ receptor dependent 

activity of indoleamine-2, 3-dioxygenase by radio-resistant cells in the lung, which results in 

increased tryptophan catabolic products that apparently inhibit IL-17 producing cells in situ 

(Desvignes & Ernst, 2009). These results support the detrimental role of neutrophils in TB 

pathogenesis.  

Increased neutrophil apoptosis is observed in patients with active tuberculosis (Aleman et 

al., 2002) and mycobacteria is phagocytosed and inactivated by neutrophils, then many of 

these cells rapidly enter apoptosis via an oxygen-dependent pathway (Brown et al., 1987; 

Perskvist et al., 2002,). This is a significant process, which prevents the release of toxic 

compounds from the intracellular compartments. Apoptotic cells are cleared by 

macrophages which in general induce an anti-inflammatory response by the secretion of 

TGF-┚ and other anti-inflammatory cytokines (Fadok et al., 1998; Hernandez-Pando et al., 

2006). The production of these anti-inflammatory mediators suppresses the production of 

significant protective cytokines such as TNF-┙ and IFN-┛ promoting disease progression 

(Hernandez-Pando, 2006). Interestingly, recent reports have showed that phagocytosis of 

apoptotic neutrophils by macrophages can result in a pro-inflammatory activation of 

macrophage including release of TNF-┙ (Persson, et al., 2008), and high intracellular 

expression of heat shock proteins 60 and 72 (Hsp60 and Hsp72) in order to protect the cells 

from damage. HSPs activate immune cells through interaction with several receptors such 

as CD91, LOX-1, CD14, TLR-2 and TLR-4 (Binder et al., 2004). Thus, mycobacteria induce 

apoptosis in neutrophils and these cells also release Hsp72 as a consequence of the stress 
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mediating an early pro-inflammatory stimulation of macrophages during the elimination of 

the bacilli that induced apoptotic cells. Although this event has been related to early 

infection bridging innate with acquired immunity, it is possible that this could also happen 

during advanced infection producing immunopathology, by the combined presence of 

TNF┙ and Th-2 type cytokine which can also produce tissue damage (Hernandez-Pando et 

al., 2004). 

In conclusion, neutrophils are significant cells in the initial protective response of the innate 
immune response against mycobacterial infection, but during the advanced stage of the 
disease these cells can also contribute to the tissue damage characteristic of this chronic 
infectious disease. 

7. Conclusions 

Because neutrophils are the first inflammatory cells to arrive at sites of infection and present 

a diverse collection of antimicrobial molecules, they are associated as one of the first lines of 

defense against all microbes; TB is not an exception, in humans this infection elicits 

apoptosis of neutrophils, ingestion of  these by macrophages triggers a pro-inflammatory 

response, which may or may not control disease progression. 

In recent years the whole role of neutrophils in inflammation and bacterial control has been 
challenged. Remarkable is the work done by Zhang et al., who showed that coactivation of 
Syk kinase and MyD88 adaptor protein pathways by mycobacteria (BCG or M. tuberculosis 
H37Rv) promote previously unsuspected regulatory properties in neutrophils. According 
with their results, in contrast to monocytes and macrophages, murine neutrophils contribute 
poorly to inflammatory responses, and secrete high amounts of the anti-inflammatory 
cytokine IL-10. In a murine model they showed that mycobacteria induced the recruitment 
of neutrophils secreting IL-10. Interestingly, during the acute mycobacterial infection IL-10 
producing neutrophils controlled the inflammatory response of DC, monocytes and 
macrophages in the lung. However, during the chronic phase of infection (high 
mycobacteria load), neutrophil depletion promoted inflammation and decreased of the 
mycobacterial load, these effects could be attributed to a reduce amount of IL-10 and 
increased TNF-┙ produced by lung cells in neutrophil depleted animals, and to increased 
amounts of IL-6 and IL-17, but not IFN-┛. The possible explanation given by the authors for 
these results is the dual role that neutrophils play, having direct antimicrobial activity 
(killing) counterbalanced by anti-inflammatory properties (IL-10 production). Neutrophils, 
at least in mice, are the dominant producers of IL-10 in the lung (Zhang et al., 2009). 

Following this line of research, Redford et al. found similar results, providing evidence that 
IL-10-/- mice showed enhanced control of M. tuberculosis infection with significant reduced 
bacterial load in lungs and spleen, which was maintained over the course of the infection. 
Again, IL-10 seems to regulate the balance of the immune response between pathogen 
clearance and immunopathology. The reduction of bacterial load in the abscence of IL-10 
was preceded by an enhanced cytokine/chemokine production (IFN-┛, CXCL10 (IP-10) and 
IL-17) and an increased of CD4+ T cells in the lung. Because IL-17 has been shown to 
promote influx of Th1 cells into the lungs after vaccination against M. tuberculosis (Khader et 
al., 2007), Redford et al. neutralized IL-17, and found a reduction of M. tuberculosis load in 
the spleen, suggesting this cytokine may affect dissemination of mycobacteria, which in turn 
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may be carried out by neutrophils, since they were also significantly reduced (Redford et al., 
2010).  

Neutrophils have been shown to be the predominant infected phagocytic cells in the 
airways of patients with active pulmonary TB (Eum et al., 2010), and in an experimental 
model neutrophils shuttled live M. bovis BCG to draining lymph nodes after intradermal 
vaccination (Abadie et al, 2005). All together, results from Zhang et al. and Redford et al. 
(Redford et al., 2010; Zhang et al., 2009) confirm a detrimental role for neutrophils in 
tuberculosis, and confirms the negative effect that IL-17 have during M. tuberculosis infection 
in humans as shown by Cruz et al. (Cruz et al.,  2010). 

Neutrophil functions in immunty have been extended thanks to a renewed interest in these 
neglected cells. Besides having huge amounts of cytokines and effector molecules, they can 
also produce extracellular traps and ectosomes. In addition, they actively participate in the 
activation and regulation of both innate and adaptive immune responses (Bratton et al., 
2011; Mantovani et al. 2011, Zhang et al., 2009). These newly identified functions might lead 
to reconsider their role in infectious and non infectious diseases, particularly in tuberculosis, 
which is a major health concern worlwide.  
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