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Using Electron Beam Generated  
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2University of Technology, Warsaw, 
Poland 

1. Introduction  

The municipal and industrial activities of man lead to environment degradation. The 
pollutants are emitted to the atmosphere with off-gases from industry, power stations, 
residential heating systems and vehicles. Organic pollutants, mainly volatile organic 
compounds (VOCs), which are emitted into atmosphere cause stratospheric ozone layer 
depletion, ground level photochemical ozone formation, and toxic or carcinogenic human 
health effects, contribute to the global greenhouse effect, accumulate and persist in 
environment. Regulation on organic pollutants emission into atmosphere has been enforced in 
many countries. Electron beam (EB) generated nonthermal plasma technology is one of the 
most promising technologies which has been successfully demonstrated on industrial scale 
coal fired power plants to remove SO2 and NOx from waste off-gases; Meanwhile EB 
technology has been tested in pilot scale to remove dioxins and Polycyclic aromatic 
hydrocarbons (PAHs) from off-gases generated from solid waste incinerators and coal fired 
power plants, good results were obtained. It is a very promising technology to treat multiple 
pollutants including SO2, NOx and organic pollutants simultaneously from industrial off-gases. 
The principle of EB process to decompose pollutants is following. When the energy of the 
fast electrons is absorbed in the carrier gas, it causes ionization and excitation processes of 
the nitrogen, oxygen or water molecules in the carrier gas. Primary species and secondary 
electrons are formed, and the latter are thermalized within 1 ns in air at 1 bar pressure. 
These primary species such as ions, radicals or other oxidizing species and the thermalized 
secondary electrons react with pollutants by a series of reactions to cause pollutants 
decomposition.  
Organic pollutants treatment using EB technology has been studied intensively in recent  
30 years mainly in laboratory scale. However less work has been done to review this 
technology development on organic pollutants treatment. This chapter aims a 
comprehensive description of organic pollutants treatment using EB generated nonthermal 
plasma technology. General description of EB generated nonthermal plasma technology will 
be given in section 2, organic pollutants treatment from air and its recent development  
will be overviewed in sections 3 & 4, and general mechanism of organic pollutants 
decomposition in air will be discussed in section 5.  
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2. Electron beam (EB) generated nonthermal plasma technology 

2.1 History 

Wet flue gas desulphurisation (FGD) and selective catalytic reduction (SCR) can be applied 

for flue gas treatment and SO2 and NOx emission control. VOCs are usually adsorbed on 

active carbon, but this process is rarely used for lean hydrocarbon concentrations up to now. 

All these technologies are complex chemcial processes and waste, like wastewater, gypsum 

and used catalyses, are generated(Srivastava et al., 2001). 

EB technology is among the most promising advanced technologies of new generation. This 

is a dry-scrubbing process of simultaneous SO2 and NOx removal, where no waste except 

the by-product is generated. EB technology for air treatment was first used by Japanese 

scientists in 1970-1971 to study SO2 removal using an electron from linear accelerator (2-12 

MeV, 1.2kW). A dose of 50 kGy at 100°C led the conversion of SO2 to an aerosl of sulphuric 

acid droplets, which were easily removed (Machi, 1983). In 1981, Slater (1981) used EB 

technology to study the decomposition of low concentrations of vinyl chloride(VC) in 

different base gas (air, nitrogen, and argon).  

2.2 EB accelerator 

In physics and chemistry, plasma is a state of matter similar to gas in which a certain portion 

of particles are ionised. Nonthermal plasma means only a small fraction (for example 1%) of 

the gas molecules are ionized. The most common method for plasma generation is by 

applying an electric field to a neutral gas. Electrons emitted from electron beam accelerators 

can ionize gas mixture and generate nonthermal plasma. 

More than 1000 accelerators haven been used in the field of radiation chemistry and 

radiation processing (Zimek, 1995). The reduction of SO2 and NOx pollutants from flue 

gases, emitted during fuel combustion in electrical power and heat production, is one of the 

radiation process which were successfully demostrated in industrail scale in electric power 

station (EPS) Pomorzany, Szczecin, Poland (Chmielewski et al, 2004a) . A basic principle of 

an accelerator is that the electric field acts on electrons as charged particles and give them 

energy equal to the voltage difference accross the acceleration gap. The accelerator types are 

mainly determined by the method by which electron field is generated. There are three type 

accelerators used in air pollutants treatment: transformer accelerator, UHF accelerator and 

linear microwave accelerator (Zimek, 2005). High power accelerators have been developed 

to meet specific demands of environmental application and high throughput processes to 

increses the capacity and reduce unit cost of operation. Table 1 lists accelerators for radiation 

processing (Zimek, 2005). 

 

Accelerator type Direct DC UHF  

100-200 MHz 

Linear  

1.3-5.8GHz 

Beam current < 1.5A < 100mA < 100 Ma 

Energy range 0.1-5 MeV 0.3-10 MeV 2-10MeV 

Beam power 400kW 700 kW 150kW 

Efficiency 60-80% 25-50% 10-20% 

Table 1. Accelerator for radiation processing (recent development) 
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2.3 Terminology 

In radiation application in environmental protection, there are three terms to be mentioned, 

dose, G-value and removal efficiency (Re) or decomposition efficiency(De). 

In radiation process, it is very important to consider energy consumption for decomposition 

of pollutants, how much energy (unit: kJ) is consumed/absorbed to decompose amount of 

pollutants in the base gas (unit: kg). Energy absorbed by per amount of gas is defined as a 

term of dose, unit is kGy. 1 kGy = 1 kJ/ kg 

G-value is defined as the number of molecules of product formed, or of starting material 

changed, for every 100 eV of energy absorbed. The G value is related to the ionic yield  

(M / N) by the expression (Willis and Boyd, 1976): 

G (molecules / 100 eV ) = (M / N) × (100 / W) 

Where W ( measured in electronvolts) is the mean energy required to from an ion pair in the 
material being irradiated. G value of 1 molecule /100 eV is equal to a radiation chemical 
yield of 0.1036 μmol. J-1. 
Removal efficiency (Re) or decomposition efficiency (De) of organic pollutants is defined as 
below: 

Re = (C0 –Ci) /C0 

where C0 is initial concentration of organic pollutants, unit: ppm (v/v); 
Ci is concentration of organic pollutants at i kGy absorbed dose, unit: ppm (v/v). 

3. EB treatment organic pollutants 

There are two systems applied to study organic pollutants in laboratory scale by using EB 

generated nonthermal plasma - flow system and batch system. Flow system contains one 

step: preparation and irradiation of the gas mixture which contains organic pollutants are 

carried out in on-line system. Batch system contains two steps: first step is to prepare gas 

mixture which contains organic pollutants into a sealed container, the second step is to put 

this sealed container under electron beam accelerator for irradiation. 

3.1 Aliphatic organic pollutants degradation in flow system under EB-irradiation  
3.1.1 Concentration of aliphatic organic pollutants vs. dose 

There have been some previous studies of chlorinate hydrocarbons’ decomposition in 

plasma reactors. Slater(1981) studied the decomposition of low concentrations of vinyl 

chloride(VC) in air, nitrogen, and argon in an electron beam generated plasma reactor. It 

was found that VC can be effectively removed by electron-beam irradiation at 

concentrations 3-500 ppm from room-temperature host-gas streams of argon, nitrogen and 

air. And at low dose the specific energy required falled in the range 2.5< G < 10 molecules 

removed per 100 eV. HCl was one of main products.  

Vitale et al.(1997a) studied decomposition low concentration of ethyl chloride (EC) and 
vinyl chloride(VC) in atmospheric air streams by an electron beam generated plasma 
reactor. The gas was prepared by mixing dry air with standard VC (3925ppm VC in air) or 
EC (3717ppm EC in air). The gas entered the reactor at atmospheric pressure and ambient 
temperature. The electrons entered the front of the reactor, and VOC contaminated gas 
entered the rear of the reactor. The VOC contaminated gas thus flowed counter-current to 

www.intechopen.com



Organic Pollutants Ten Years After  
the Stockholm Convention – Environmental and Analytical Update 

 

434 

the electron beam. A Hewlett-Packard 5890 gas chromatograph and a HP-5971-A mass 
spectrometer were used to analyze VOCs concentration. The energy requirements for 90% 
decomposition of VC and EC were reported as a function of inlet concentration. VC requires 
less energy for decomposition than EC.  
Similar experiments were carried out to decompose 1,1-dichloroethane (1,1-DCA), 1,1-
dichloroethylene (1,1-DCE),1,1,1-trichloroethane (1,1,1-TCA), trichloroethylene (TCE) using EB 
by the same research group (Vitale et al., 1996, 1997b–d). It was found that decomposition 
efficiency of chlorinated compounds was : TCE > 1,1-DCE > 1,1-DCA, 1,1,1-TCA.  
Won et al. (2002) studied the decomposition of perchloroethylene (PCE), trichloroethylene 

(TCE), dichloroethylene (DCE) in dry air. An electron accelerator of ELV type, with electron 

energy 0.7 MeV, maximum beam current 35 mA, maximum power 25 kW was used for 

irradiation. Over 80% TCE was decomposed at 20 kGy dose at initial concentration below 

2000 ppm. The order of decomposition efficiency of these compounds was: TCE > PCE > 

DCE. Hirota et al. (2004) studied dichloromethane decomposition under EB irradiation and 

found that it was very difficult to treat dichloromethane. 
For non-chlorinated organic compounds, 20 VOCs divided into five groups were 
investigated by Hirota et al.(2004), among them, 13 VOCs were alipahtic organic 
compounds. The order of decomposition VOCs in air was: cyclohexadiene > cyclohexane > 
benzene (group I); trans-hexane > 1-hexane (group II); heptane > hexane > pentane (group 
IV); and trichloroethylene > methanol >> acetone > CH2Cl2 (group V). Organic substances 
with long carbon chains readily succumbed to electron-beam treatment.  

3.1.2 Different base gas mixtures influence on the decomposition efficiency of 
aliphatic organic pollutants 

Won et al. (2002) studied TCE decomposition in different gas mixtures and found that the 
order of decomposition efficiency of TCE in different gas mixtures was: oxygen >air > H2 > He. 

3.1.3 Water concentration 

In order to clarify OH radical influence on the chlorinated hydrocarbons (Cl-HC) 

decomposition, Won et al. (2002) tested TCE and PCE decomposition of air mixtures with 

different water vapor concentrations, and found that the decomposition efficiency of TCE and 

PCE increased less than 10% in the presence of water vapor compared with that in the dry air. 

3.1.4 Irradiation products 

The irradiation products of DCE, TCE and PCE in dry air under EB-irradiation were 
investigated by Won et al. (2002) and it was found that CO and CO2 were the irradiation 
products. For PCE, CO2 formation was above 40% at 15 kGy absorbed dose. Vitale et al 
(1997a) also reported that CO, CO2 and HCl as main irradiation products when they studied 
ethyl chloride and vinyl chloride decomposition in air. Prager et al. (1995) studied DCE, TCE 
and PCE degradation in dry or humidified synthetic air, they identified HCl, CO, 
chloromethanes, chloroacetyl chloride and phosgene as main products.  

3.2 Aliphatic organic pollutants degradation in batch system under EB-irradiation 
3.2.1 Concentration of aliphatic organic pollutants vs. dose 

Chloroethylene can be effectively decomposed by EB irradiation in the order of PCE > TCE 
> trans-DCE > cis-DCE (Hakoda et al., 1998a, 1998b, 1999, 2000, 2001; Hashimoto et al., 
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2000). Sun et al. (2001, 2003) and Sun and Chmielewski (2004) studied 1,1-DCE, cis-DCE, 
trans-DCE decomposition under EB irradiation and found that the order of decomposition 
DCEs in air was 1,1-DCE > trans-DCE > cis-DCE. Decomposition efficiency of 
chloroethylene increases with the absorbed dose increase. The initial concentration of 
chlorinated ethylene was in below 2000 ppm and the water concentration in the air mixture 
was 200–300 ppm. Son et al. (2010a) studied decomposition of butane in EB irradiation in 
batch system, it was found that removal efficiencies of butane were 40% at 2.5 kGy and 66% 
at 10 kGy, when the initial concentration of butane was 60 ppm.  

3.2.2 Different base gas mixtures influence on the decomposition efficiency of 
aliphatic organic pollutants 

Different base gases influencing on the decomposition efficiency of butane were studied 
(Son et al, 2010a), it was found that decomposition efficiency of butane was extremely low 
when the background gas was He, in contrast to the efficiencies with background gases of 
N2 and air. Decomposition efficiencies of butane was 23% in He, 63% in N2 and 70% in air at 
10 kGy absorbed dose.  

3.2.3 Water concentration 

Water influence on the TCE decomposition and irradiation products of TCE under EB-
irradiation were studied by Hakoda et al. (2000). It was found that when water concentration 
was below 1000 ppm, there was no big difference between process efficiency for dry and 
humid air for TCE decomposition and dichloroacetyl chloride, carbon monoxide, carbon 
dioxide, phosgene and small amount of chloroform irradiation products’ formation.  
This result agrees well with that water vapor effect on the TCE decomposition under EB-
irradiation in a flow system (Won et al., 2002). Sun et al. (2001) made a computer simulation 
of 1,1-DCE decomposition in air in a batch system and found that a reaction pathway of OH 
radical contributes less than 10% for 1,1-DCE decomposition. When water vapor 
concentration increased to 2.5%, yield of gaseous products decreased, that means the aerosol 
products are possibly formed (Hakoda et al., 2000). 

3.2.4 Ozone 
Hakoda et al. (1999, 2000, 2001) investigated O3 influence on the trans-DCE, cis-DCE and 
TCE decomposition by using EB-irradiation, it was found that O3 enhanced decomposition 
of trans-DCE only, cis-DCE and TCE were not affected. 

3.2.5 Irradiation products 
From environmental protection point of view, it is very important to identify by-products 
formation from Cl–HC degradation. Radiolytic products of trans-DCE, cis-DCE, TCE, PCE 
under EB-irradiation were reported by Hakoda et al. (1999, 2000, 2001). Chloroacetyl 
chloride and dichloroacetyl chloride were the main organic products for DCE (trans and cis) 
and TCE degradation; CO and CO2 were inorganic products and their formations were 
below 25% based on carbon balance. Chmielewski et al. (2004b), Sun et al. (2003) and Sun & 
Chmielewski (2004) studied cis-DCE and trans-DCE degradation under EB-irradiation. 
Chloroacetyl chloride was not observed as degradation products, but it was a degradation 
product for 1,1-DCE (Sun et al., 2001). Son et al. (2010a) studied butane decomposition 
under EB irradiation and identified CO2, acetaldehyde, acetone, 2,3-butandione, 2-butanone, 
and 2-butanedinitrile as degradation products of butane.  
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3.3 Aromatic organic pollutants degradation in flow system under EB-irradiation  

In this section, besides aromatic chlorinated hydrocarbons degradation, decomposition of 
some nonchlorinated aromatic organic compounds will be discussed, too. 

3.3.1 Concentration of aromatic organic pollutants vs. dose 

Xylene and chlorobenzene decompositions in a flow system under EB-irradiation (Hirota et 
al. 2000, 2002) were studied, it was found that decomposition efficiency of xylene was higher 
than that of chlorobenzene, and about 50% chlorobenzene was decomposed at an absorbed 
dose of about 10 kGy at the initial concentration of chlorobenzene being 10–40 ppm. Kim 
(2002) studied decomposition of benzene and toluene, it was found that the decomposition 
efficiency of toluene was higher than benzene, and about 80% benzene was decomposed at 
16 kGy when the initial concentration of benzene was smaller than or equal to 130 ppm. Han 
et al. (2003) studied toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene 
decomposition in air. The order of the decomposition efficiency of selected VOCs from high 
to low was : toluene > ethylbenzene > benzene; p-xylene> m-xylene > o-xylene. About 44.7 
% toluene and 43.2% ethylbenzene was decomposed at 10 kGy, while 85% chlorobenzene 
was decomposed. The decomposition efficiency of ethylbenzene and toluene was 
significantly increased about 50% with the addition of chlorobenzene comparing without 
chlorobenzene addition.  

3.3.2 NH3 influence on the decomposition efficiency of aromatic organic pollutants 

Effect of ammonia on the decomposition of PAHs was observed when an electron beam 
process was applied to treat multiple pollutants (SO2, NOx , PAHs) with NH3 addition from 
industrial off-gases emitted from EPS, Kawęczyn, Poland (Chmielewski et al., 2002). NH3 
addition enhanced PAHs removal efficiency. Hirota et al. (2000) studied chlorobenzene 
decomposition in air mixture, it was found that addition of NH3 enhanced the 
dechlorination of chlorobenzene. About 65% of chlorine in reacted chlorobenzene was 
dissociated from carbon with electron beam at doses of 4 and 8 kGy. Ammonia addition 
enhanced the dechlorination to 80%.  

3.3.3 Water concentration 

Effect of water vapor on the decomposition of toluene was investigated by Kim (2002). It 
was found that the water vapor injection leads to 15–20% removal efficiency increase for 
toluene compared to the process without water injection. Water influences decomposition of 
toluene higher than TCE and PCE, OH radical plays an important role for aromatic 
hydrocarbon decomposition. 

3.3.4 Irradiation products 

Degradation products of chlorobenzene and xylene in an air mixture were studied by Hirota et 
al. (2000, 2002). The gaseous products of xylene degradation were identified to be formic, 
acetic, propionic, and butyric acids and/or the corresponding esters with CO and CO2. 
Approximately 30% of the reacted xylene was the gaseous products at a dose of 8 kGy. 
Organic and inorganic chlorine presence in gaseous, aerosols and residues were investigated 
by same authors for chlorobenzene degradation. Inorganic chlorine was mainly presented in 
gaseous products, while organic chlorine was presented in aerosols and residues aerosols and 
residues. Some aerosol products were formed from chlorobenzene degradation, and 3% of the 
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aerosol products were identified to be carboxylic acids or esters (Hirota et al., 2000). Aerosols, 
benzaldehyde, dipropyl 1,2-benzenedicarboxylic acid, nitromethane were reported as toluene 
main degradation products in dry air under EB irradiation; while methyl chloride, dipropyl 
1,2-benzenedicarboxylic acid, toluene, nitromethane were reported as main degradation 
products of ethylbenzene/chlorobenzene mixture in dry air. Trace amount of acetone, hexane, 
benzene was also observed (Han et al., 2003).  

3.4 Aromatic organic pollutants degradation in batch system under EB-irradiation  
3.4.1 Concentration of aromatic organic pollutants vs. dose 

Decomposition of aromatic organic compounds in a batch system vs. dose under EB-
irradiation was studied by Hirota et al. (2002, 2004), Ostapczuk et al.(1999), Sun et al. (2008) 
and Hashimoto et al. (2000). Decomposition efficiency of these compounds increase with the 
absorbed dose increase, 4-chlorotoluene (4-CTO) decomposition as an example was 
presented in Fig. 1 . The order of decomposition efficiency of these compounds was: xylene 
>chlorobenzene > benzene > hexane > cyclohexane. For 4-chlorotolunene (4-CTO) and 1,4-
dichlorobenzene (1,4-DCB), no apparent decomposition efficiency of these two compounds 
was observed (Fig.2).  
 

 

Fig. 1. 4-Chlorotoluene decomposition in air mixture in an electron beam generated non-
thermal reactor. 

 

Fig. 2. Decomposition efficiency comparison between 4-chlorotoluene and 1,4-
dichlorobenzene. 
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The decomposition efficiency of chlorinated aliphatic hydrocarbons using EB irradiation is 
more efficient than that of chlorinated aromatic hydrocarbons. 25.0 kGy is sufficient to 
remove over 97% 1,1-DCE and 98.0% trans-DCE at initial concentration of  
1,1-dichloroethylene (DCE) and trans-dichloroethylene being 903.8 ppm and 342.0 ppm, 
respectively; while 60% 1,4-dichlorobenzene (DCB) at intial concentration being 90ppm was 
removed at 57.9 kGy. This result is comparable with decomposition of chlorobenzene. 
Hakoda et al. (1998b) and Hashimoto et al. (2000) studied degradation of chlorobenzene/air 
using EB irradiation in batch system, it was found that 40% chlorobenzene was removed 
under EB-irradiation at 37.7 kGy dose (calculated by N2O gas dosimeter) for  
initial concentration of chlorobenzene being 102 ppm. Sun et al. (2007a) studied  
1-chloronaphathalene and found that over 80% 1-chloronapthalene was removed at 57.9 
kGy under EB-irradiation for low initial concentration of 1-chloronaphthalene (12~30 
mg/m3) in air mixture. Energy consumption for decomposition 1,4-dichlorobenzene was 
lower than that of 1-chloronaphthalene. Therefore, the observed order in easily 
decomposition chlorinated hydrocarbons is: 1,1-DCE > trans-DCE > cis-DCE >1,4-DCB > 
1-chloronaphthalene. Based on this work and other’s work, we learn that: For chlorinated 
aliphatic hydrocarbons, the more chlorinated compounds is, the more it is easy to be 
decomposed. 
Aliphatic hydrocarbons is more easily decomposed than aromatic hydrocarbons. For 

aromatic hydrocarbons, compounds with less benzene ring are easily to be decomposed. 

3.4.2 Different base gas mixtures influence on the decomposition efficiency of 
aromatic organic pollutants 

Toluene decomposition at different background gases in a batch system was studied by Kim 
(2002). The order of decomposition efficiency of toluene in different background gases is: N2 
> air >O2 >He. This order is different from the order for TCE decomposition in a flow 
system (Won et al., 2002). 
We studied 1,4-dichlorobenzene (1,4-DCB) decomposition in different base gas mixtures at 
the initial concentration of 1,4-DCB being 50 ppm, the similar phenomenon was observed 
(Sun et al, 2006). The decomposition efficiency of 1,4-DCB in nitrogen is higher than that in 
air and much more higher than in 1.027% NO-N2 mixture( N2 as balance gas) (Fig.3) , this 
phenomenon agrees well with toluene decomposition in different gases (Kim, 2002).  

3.4.3 Water concentration 

Effect of water vapor on the decomposition of aromatic compounds in a batch system under 
EB-irradiation was investigated by Kim (2002). Four percent water vapor injection leads to 
5–10% increase of VOC removal efficiency for both toluene and benzene, and effect of water 
vapor influence on the decomposition of toluene under EB irradiation in a flow system is 
higher than that in a batch system. 

3.4.4 Irradiation products 

Benzaldehyde and phenol were reported as products when Ostapczuk et al. (1999) studied 

styrene decomposition in air under EB irradiation, the removal efficiency of styrene was 

ranged from 83-95%. The humidity in air mixture was ranged from 0.3% to 1.6%. In order to 

obtain information of by-products produced from toluene destruction, we carried out 

experiment at higher inlet concentration of toluene at higher absorbed dose. More than 97% 
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toluene was removed from gas phase at 53.6 kGy absorbed dose when inlet concentration of 

toluene was 151.9 ppm. A GC-MS spectrum of toluene/air mixture after EB-irradiation is 

presented in figure 4. A trace amount of benzaldehyde was eluted at retention time 7.735 

min in figure 4 and was identified by our carefully comparing mass spectrum of this 

compound with a reference mass spectrum of benzaldehyde provided by Wiley library 

(figures 5a & 5b). Trace amount acetone was also found in our experimental condition (Sun 

et al., 2009a).   

 

 

Fig. 3. 1,4-Dichlorobenzene decomposition in different gas mixture 
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Fig. 4. A GC-MS spectrum of toluene/air mixture after EB-irradiation (inlet concentration of 
toluene was 151.9 ppm, dose was 53.6 kGy).  

Benzaldehyde as by-product of degradation of toluene was also reported(Han et al., 2003; 

Kim et al., 2005). Trace amount of acetone was found based on Han et al.’s work (2003). 

Besides these, Aerosols and benzene were reported as by-products in both works (Han et al., 
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2003; Kim et al., 2005). Han et al.(2003) also identified dipropyl 1,2-benzenedicarboxylic 

acid, nitromethane and trace amount of hexane as by-products of degradation of toluene.  

For degradition of 4-chlorotoluene in air mixture, chlorobenzene (C6H5Cl, retention time 

was 4.910 min) and 4-chlorobenzaldehyde (ClC6H4CHO, retention time was 12.502 min) 

were identified as by-products. A GC-MS spectrum of 4-chlorotoluene/air mixture after EB-

irradiation was presented in figure 6, a compound eluted at retention time 7.590 min of the 

GC-MS spectrum was identified as 4-chlorotoluene (Sun et al., 2008). 

 

 

Fig. 5a. A mass spectrum of by-product which eluted at 7.735 min retention time 

 

 

Fig. 5b. A mass spectrum of the compound which eluted at 7.735 min retention time and its 

reference mass spectrum of benzaldehyde 
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Fig. 6. A GC-MS spectrum of 4-chlorotoluene/air mixture after EB-irradiation  

3.5 PAHs and Dioxin removal from waste off-gas under EB-irradiation 

Dioxins reduction from waste incinerator was studied using EB technology in Japan (Hirota 
et al., 2003) and in Germany (Paur et al., 1998). Hirota et al. (2003) studied reduction the 
emission of polychlorinated dibenzo- p-dioxins (PCDD) and polychlorinated dibenzofurans 
(PCDF) in a flue gas of 1000 m3N/h from the municipal solid waste incinerator (MSWI), 
located at Takohama Clean Center which treats 450 t (150 t * 3 furnaces) of solid waste in 1 
day, at a temperature of 200 °C. they found that more than 90% PCDD/Fs was removed at 
14 kGy when initial concentration of PCDD was in the range of 0.22-0.88 ng-TEQ/m3N and 
PCDF in the range of 0.35-12.4 ng-TEQ/m3N. Paul et al. (1998) also reported that over 90% 
PCDD was removed at 12 kGy dose for inital concentration of PCDD being 21-110 ng/m3N 
(AGATE-M plant, Germany). 
16 kinds of toxic PAHs were investigated under electron beam irradiation in the pilot plant in 
Electric Power Station Kawęczyn, Poland (Chmielewski, et al., 2003). The investigation was 
carried out under the following experimental conditions: flue gas flow rate 5000 Nm3/h; 
humidity 4.5%; inlet concentrations of SO2 and NOx that were emitted from the power station 
were 192 and 106 ppm, respectively; ammonia addition was 2.75 Nm3/h; alcohol addition was 
600 l/h, the absorbed dose was 8 kGy. The results was presented in Fig.7. It was found that 
under these experimental conditions the concentrations of naphthalene (NL, C10H8), 
acenaphthene (AC, C12H10), fluorene (C13H10), phenanthrene (C14H10), anthracene (C14H10) were 
decreased, while the concentrations of acenaphthylene (C12H8), fluoranthene (C16H10), pyrene 
(C16H10), benzo(a)anthracene (C18H12), chrysene (C18H12), benzo(b þ k)fluoranthene (C20H12), 
benzo(e)pyrene (C20H12), benzo(a)pyrene (C20H12), perylene (C20H12), dibenzo(a; 
h)anthracene+indeno(1,2,3-cd) pyrene (C22H14), benzo(g; h; l)perylene (C22H12) were increased. 
Removal efficiencies of SO2 and NOx were 61.6% and 70.9%, respectively. The concentration of 
hydrocarbons of small aromatic ring (PAHs, like naphthalene (C10H8), acenaphthene (C12H10), 
fluorene (C13H10), anthracene (C14H10)) was reduced, while the concentration of fluoranthene 
was increased remarkably after irradiation.  
Similar experiments were carried out in EPS Kawęczyn with ammonia presence but without 
alcohol addition (Chmielewski et al, 2002; Ostapczuk et al, 2008a). It was found that removal 
efficiency of PAHs ranges from 40% up to 98%. 
Callén et al. (2007) studied PAH removal from lignite-combustion flue gas from Bulgarian 

Maritza-East thermal power plant (TPP) and obtained that PAHs concentration after EB 
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irradiation resulted in ~ 10 fold decrease in studied PAHs emissions. The removal efficiency 

of PAH removal at the dose of 4 kGy was 85% (weight/weight). High PAH removal 

efficiency was obtained especially for 2 and 3 rings PAH, this result was similar to that 

obtained in our previous work (Chmielewski et al., 2003).  
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Fig. 7. EB irradiation influence on PAHs removal. 

The concentration of PAHs in by-product was also examined. It was relatively low, varied 
from few up to 12 μg per kg of fertilizer for the experimental work carried out in EPS 
Kawęczyn, Poland. Less than 3% of PAH were removed in adsorption on the by-product 
surface (Ostapczuk, et al., 2008a). The study in Maritza-East TPP allowed PAH assessment 
in solid by-products obtained from EB lignite-combustion flue gas. The determined PAH 
content was reasonable, ~ 60 microg/kg and was lower than PAHs background in Bulgarian 
soils. These results demonstrated the insignificant role of adsorption for PAHs removal 
(Callén et al., 2007). 
Naphthalene (NL) and acenaphthene (AC) decomposition in gas mixture was studied in lab 
scale experiment (Ostapczuk, et al., 2008b). It was found that NL was more easily 
decomposed than AC, G-values for these two compounds were 1.66 and 3.72 mol/100 eV 
for NL and AC at the dose of 1 kGy , respectively. Humidity influencing on NL and AC 
decomposition was studied. About 26% and 50% NL were decomposed at 1 kGy dose in dry 
air (90 vol% N2; 10 vol% O2 and 160 ppmv NO) and in humid air (84 vol% N2; 10 vol% O2 
and 6 vol% H2O), respectively. NL concentration in both mixtures was on the level of 10–11 
ppmv. For AC, about 45% (in O2) and 82% AC (in humid O2, 94% O2 + 6% H2O) were 
decomposed at 1 kGy dose for the initial concentration of AC being 160 ppm. Two-ringed 
naphthol and nitronaphthalene; one-ringed 2,6-dietylbenzoquinone, indane, 1,2- and 1,4-
dimetoxybenzenes and carbon oxides were identified as by-products of NL decomposition.  
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4. A novel hybrid EB-catalyst technology to treat organic pollutants 

Electron beam (EB) irradiation is one of the most promising technologies for purification of 
dilute pollutants, mostly VOCs , with high flow-rate gas stream released from industrial off-
gases. Under EB irradiation, VOCs are oxidized into irradiation by-products as well as CO2 
and CO. However, some of these irradiation by-products have adverse effect on 
environment and human beings.  
A new technology which combines EB and catalyst together to treat aromatic VOCs, e.g., 
toluene (Kim et al., 2004, 2005; Jeon et al., 2008) styrene(Kim, 2005) , o-Xylene (Hakoda et al., 
2008a, 2008b) and ethylbenzene (Son, et al, 2010b) was developed in the aim of enhancing 
higher oxidation efficiencies of VOCs into CO2. Removal efficiency of toluene , styrene and 
ethylbenzene increased by 10%, 20%, and 20% in an EB-catalyst hybrid system in 
comparison with that achieved in catalyst-only method at approximately 10 kGy absorbed 
dose (Kim, et al, 2005). Removal efficiency of ethylbenzene in the EB-catalyst hybrid was 
30% higher than that of EB-only treatment. Ethylbenzene was decomposed more easily than 
toluene by EB irradiation. The G-values for ethylbenzene increased with initial 
concentration and reactor type: the G-values vary in the range of 7.5-10.9 (EB-only) and 12.9-
25.7 (EB-catalyst hybrid) by reactor type at the initial concentration of ethylbenzene being 
2800 ppm. Son et al. (2008) and Jeon et al. (2008) also studied different catalysts (Pt, Pd , Cu 
and Mn) and humidity influence on removal efficiency of toluene using EB-catalyst hybrid 
system. It was found that removal efficiency of toluene was increased by 36.9% , 35.3% and 
22% in the presence of Pt, Pd , Mn and Cu catalysts comparing with EB only for initial 
concentration of toluene being 1500 ppm, the selectivity to CO2 with Pt and Pd coupling 
were relatively higher than those of Cu and Mn. Especially the CO2 selectivity of EB–Pt 
coupling was significantly high at a relatively low absorbed dose. The catalytic activity for 
EB–catalyst coupling system was in the order of Pt, Pd, Mn and Cu. There was no significant 
difference of removal efficiency of toluene among 0.1, 0.5 and 1.0 wt% loading of catalyst. 
No significant water effect was observed in EB-catalyst hybrid system (Son et al, 2008).  
Other type of catalysts such as TiO2 (Hakoda, et al., 2008a) was used to study xylene 

decomposition under EB irradiation in lab scale experimental work. It was found that 

removal efficiency of xylene and CO2 formation were increased with the presence of TiO2 

catalyst, the similar phenomenon was observed when Kim studied toluene decomposition 

using Pt as catalyst (Kim et al., 2005).  

Hakoda, et al.(2008b) also studied xylene decomposition using MnO2 (an O3 decomposition 
catalyst), γ-Al2O3 was selected as a base material of the catalyst. The combination process at 
temperatures of about 100ºC using MnO2 placed downstream enhanced the oxidation of the 
by-products of xylene into CO2 by active oxygen produced from the O3 decomposition when 
the MnO2 bed was placed downstream of an irradiation space. Furthermore, EB-irradiated 
γ-Al2O3 surface was found to be active, and the oxidation of organics was enhanced by 
primary electrons. The combination process using γ-Al2O3 reduced dose to 33% of a single 
EB process to obtain the same conversion of xylene to CO2. 
Ighigeanu (et al., 2008) studied VOCs (Toluene, hexane + toluene mixture diluted in air) 
decomposition by using combination of three different technologies (EB, microwave (MW) 
and catalysts): (EB + MW+ catalyst); (MW + catalyst) and (EB+catalyst). They found that 
decomposition efficiency (De) and oxidation efficiency (Eo) of toluene increased 
significantly for the (EB+MW+catalyst) treatment as compared with (MW + catalyst) and 
(EB + catalyst) treatments, at initial concentration of toluene being in the range of 180 ppm – 

www.intechopen.com



Organic Pollutants Ten Years After  
the Stockholm Convention – Environmental and Analytical Update 

 

444 

523 ppm; and CO2 and CO concentrations after treatment were higher for the 
(EB+MW+catalyst) treatment than for (MW+catalyst) and (EB+catalyst) treatments. De and 
Eo of toluene were, respectively, as follows: 59.5% and 82.2% for the (MW + catalysis), 77.2% 
and 87.1% for the (EB + catalyst) and 92.8% and 90.5% for the( EB + MW + catalyst). For air 
mixture contained toluene and hexane, removal efficiency of toluene and hexane in (EB + 
MW + catalyst) system was higher than that in (MW + catalyst) system or in (EB + catalyst) 
system, about 88.5% toluene and 87.8% hexane were decomposed for initial toluene and 
hexane concentration being 250 ppm, respectively. 

5. Mechanism of organic pollutants degradation by using EB technology  

In order to obtain high decomposition efficiency of organic pollutants and less toxic by-
products, it is very important to understand mechanism of organic pollutants degradation 
under EB irradiation. In this section, we will discuss mechanism of two groups (chlorinated 
and nonchlorinated) organic pollutants. General mechanism of organic pollutants 
decomposition in gas phase under EB irradiation is illustrated in Fig. 8. 
 

EB 
 
 

Base gas 
 
 

e, ions, radicals etc. 
Pollutants                                       CO2, other by-products 

Fig. 8. General mechanism of organic pollutants decomposition under EB irradiation 

5.1 Chlorinated organic compounds (Cl-HC)  
5.1.1 General mechanism of chlorinated aliphatic hydrocarbon decomposition in air 
mixture 

Computer simulations of chlorinated aliphatic hydrocabons‘decomposition in air mixture 

were carried out and discussed in details (Nichipor et al., 2000, 2002, 2003, 2008; Sun et al., 

2001, 2007b, 2009b) . The general mechanism of aliphatic hydrocarbon decomposition in an 

air mixture is described below:  

When fast electrons from electron beams are absorbed in the carrier gas, they cause 

ionization and excitation processes of the nitrogen, H2O and oxygen molecules in the carrier 

gas. Primary species and secondary electrons are formed. The secondary electrons are 

thermalized fast within 1 ns in air at 1 atmosphere .  

The G-values (molecules/100 eV) of main primary species are simplified as follows 

(Mätzing, 1989): 

 4.43N2 → 0.29N2* + 0.885N(2D) + 0.295N(2P) + 1.87N + 2.27N2+ + 0.69N+ + 2.96e  (1) 

 5.377O2 → 0.077O2* + 2.25O(1D) + 2.8O + 0.18O* + 2.07O2+ + 1.23O+ + 3.3e    (2) 

 7.33H2O → 0.51H2 + 0.46O(3P) + 4.25OH + 4.15H + 1.99H2O+ + 0.01H2+ + 0.57OH+   
 + 0.67H+ + 0.06O+ + 3.3e  (3)  
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Where G-values of molecules decomposed are listed in the left side of the arrows, and G-

values of species formed from the pure k type molecules that absorb an energy of 100 eV are 

listed in the right side of the arrows. These primary species and thermalized secondary 

electrons cause Cl-HC decomposition. Based on our and others published work , we know 

that several type reactions cause Cl-HC degradation. 

Positive ions charge transfer and particle dissociation reactions 

It is well known that : when air component and molecule are ionized and excited, a large 

amount of N2+, O2+ , N+, O+, H3O+( if water concentration is high) are formed, and their 

ionization potential energy (IE) is higher than that of Cl-HC (see Table 2). The positive 

charge transfer reaction, positive ion cluster reaction, or particle dissociation reaction occur 

(Spanel, et al., 1999a, 1999b). 

 

Molecule IE(eV) EA(eV) PA(kJ.mol-1) 

N2 15.58  493.8 

O2 12.07 0.45 421 

H2O 12.62  691 

NO 9.26 0.03 531.8 

O3 12.53 2.10 625.5 

CCl4 11.47 0.80  

CHCl3 11.37 0.62 650.6 

CH2ClCH2Cl 11.07   

CHCl2CH3 11.04   

C2H3Cl 9.99   

1,1-C2H2Cl2 9.81 0.1  

cis-C2H2Cl2 9.65   

trans- C2H2Cl2 9.64   

C2HCl3 9.46 0.40  

C2Cl4 9.32 0.64  

1,4-dichlorobenzene 8.92   

Table 2. Ionization energy (IE,eV) , electron affinity(EA, eV) and proton affinity(PA, kJ.mol-1) 

data. 

In general, the H3O+ reactions with the aliphatic chloride more varies in their rate 

constants and products, and in some reactions H3O+.M ions (M=Cl-HC) are formed. The 

NO+ reaction with the aliphatic compounds is generally slow association reactions and 

form NO+.M ions (for e.g., NO+ + CHClCCl2 = NO+.CHClCCl2). The O2+ reactions are fast 

mainly proceeding via nondissociative charge transfer reactions to produce the cations M+ 

only (for e.g., C2HCl3 + O2+ = C2HCl3+ + O2), but in some of these reactions minority 

dissociative charge transfer reactions take place to eliminate Cl/HCl and leave 

hydrocarbon ion ( for e.g., CH2ClCH2Cl + O2+ = C2H3Cl+(95%)+HCl+O2; and CH2ClCH2Cl 

+ O2+ = C2H4Cl+(5%)+Cl+O2).  

From the calculation results of dichloroethylene (Sun et al., 2001, 2007b), trichloroethylene 

(Nichipor et al, 2008) and tetrachloroethylene (Sun et al, 2009b), we learn that positive 

charge transfer reactions contributing to chlorinated ethylenes decomposition less than 

10%  
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Secondary electron attachment, Cl dissociated reaction and negative ions charge transfer 
reactions  
Reaction pathway of secondary electron attachment, Cl dissociative reactions followed by 

peroxyl radical reactions is the main reaction pathway which causes Cl-HC decomposition. 

The rate constants of electron and Cl with Cl-HC , and the products of these reactions are 

listed in table 3, respectively (Atkinson, R., 1987a). 

For chlorinated methane, the products formed by Cl with CH3Cl, CH2Cl2, CHCl3, reactions 

are: CH2Cl, CHCl2, CCl3 , and HCl; for chlorinated methane CCl4, CCl3 and Cl2 are formed.  

If we assume CH2Cl, CHCl2, CCl3 as radical R, generalized mechanism of peroxyl radical 

reactions could be written as follows: 

 R+ O2 = RO2  (4) 

 RO2+ RO2 = 2 RO + O2   (5) 

 RO = products   (6) 

This is a main reaction pathway for Cl-HC decomposition (Bryukov et al., 2002;). 

For chlorinated aliphatic ethylene, the mechanism of its degradation in air mixture can be 

generalized as follows: 

 e + C2X3Cl = Cl- + •C2X3  (Szamrej, et al., 1996; )  (7) 

 X2CCX2 (X=H, Cl, at least 1 Cl inside)  (8) 

                   X2CCX2 + Cl → (Cl)X2CCX2  (Cl adds to heavily chlorinated carbon side) (9) 

 (Cl)X2CCX2 + O2 → (Cl)X2CCX2(O2)  (10) 

 2(Cl)X2CCX2(O) + O2 (11) 

 (Cl)X2CCX2(O) → (Cl)X2CCXO + Cl (if one X = Cl)   (12) 

 or (Cl)X2CCX2(O) → CX2Cl + COX2  (13) 

 

Molecule Electron [cm3.s-1] Cl [cm3.s-1] 

CH3Cl 6.1 × 10-11,         Cl- + CH3 4.78× 10-13,   CH2Cl+ HCl 

CH2Cl2 1.6 × 10-10,         Cl- + CH2Cl 3.5× 10-13,     CHCl2+ HCl 

CHCl3 4.9 × 10-9,           Cl- + CHCl2 1.2× 10-13,     CCl3+ HCl 

CCl4 1 × 10-7,              Cl- + CCl3 1.4× 10-10,     CCl3+ Cl2 

C2H3Cl (1~8) × 10-10,      Cl- + C2H3 1.27× 10-10,    CH2ClCHCl 

C2H2Cl2 1 × 10-9,              Cl- + C2H2Cl 1.4× 10-10,      CH2ClCCl2 

C2HCl3 (0.29~1) × 10-8,  Cl- + C2HCl2 9.3× 10-12,      CCl3CHCl 

C2Cl4 1 × 10-7,              Cl- + C2Cl3 (4~6)× 10-11,  C2Cl5 

C2H5Cl (2~7) × 10-13,      Cl- + C2H5 6.8 × 10-12,     CH3CHCl + HCl 

Table 3. Rate constants and products for the reactions of electron, Cl with chlorinated 
aliphatic compounds. 
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The decomposition efficiency of Cl-HC mainly depends on the rate constants of secondary 
electron attachment, and Cl addition reaction followed by peroxyl radical reactions (Knox et 
al., 1966, 1969; Thűner et al., 1999). This decomposition pathway has been confirmed 
experimentally (Hirota et al., 2002). 
O2- cause Cl-HC decomposition, O2- + M = O2 + M- (M= Cl-HC)  (14) 
O atom, OH radical , and other radical reactions with Cl-HC 
Other decomposition pathways for chlorinated aliphatic hydrocarbons are: O atom 
decomposition pathway (Sanhueza et al., 1974a, 1974b; Teruel, et al., 2001), OH radical 
decomposition pathway (Atkinson, R., 1987b; Howard, et al., 1976; Liu et al., 1989; Chandra 
et al., 1999; Chang et al., 1977) and other species decomposition pathway, such as O3 and 
NO3. The rate constants of O and OH with Cl-HC , and the products of these reactions are 
listed in table 4, respectively (http://kinetics.nist.gov/kinetics/index.jsp). By-products of 
irradiation vary with reactants. 
 

Molecule O [cm3.s-1] OH [cm3.s-1] 

CH3Cl 1.18 × 10-16,       OH + CH2Cl 4.2 × 10-14,      CH2Cl+ H2O 

CH2Cl2 6.48 × 10-16,       OH + CHCl2 1.4 × 10-13,      CHCl2+ H2O 

CHCl3 1.02 × 10-15,       OH + CCl3 1.0 × 10-13,      CCl3+ H2O 

CCl4 1.89 × 10-16,       ClO + CCl3 < 4 × 10-16,      CCl3+ HOCl 

C2H3Cl 5.96 × 10-13,        products 8.06 × 10-12,     CHClCH2OH 

1,1-C2H2Cl2 9.8 × 10-13,          products 8.10 × 10-12,     CH2OHCCl2 

C2HCl3 1.4 × 10-13,          products 2.2 × 10-12,       products 

C2Cl4 1.9 × 10-13,          products 1.7 × 10-13,       products 

C2H5Cl 1.12×10-15,  OH+ other products 6.42×10-13,H2O + other products 

Table 4. Rate constants and products for the reactions of O, OH with chlorinated aliphatic 
compounds 

The mechanism of decomposition of chlorinated aliphatic hydrocarbons under EB 
irradiation could be described as follows: Cl- dissociative secondary electron attachment 
followed by peroxyl radicals reaction is a main path for Cl-HC decomposition, positive and 
negative charge transfer reactions with Cl-HC, O atoms and other radicals reactions with Cl-
HC cause Cl-HC degradation too.  

5.1.2 General mechanism of chlorinated aromatic hydrocarbons (Cl-AH) 
decomposition under EB-irradiation 

Similar to the mechanism of chlorinated alipathic hydrocarbons under EB-irradiation, the 
mechanism of chlorinated aromatic hydrocarbons go through secondary electron 
attachment and positive charge transfer reactions at the beginning stage of irradiation. At 
the late stage of irradiation, radical reactions play very important role for chlorinated 
aromatic hydrocarbon decomposition. Because rate constants of Cl radicals with chlorinated 

aromatic hydrocarbons (usually 1.0 × 10-15 ~ 1.0 × 10-16 ) (Shi & Bernhard, 1997) are much 

smaller than those of OH radicals ( 1.0 × 10-12 ~1.0 × 10-13 ), Cl radical addition reaction 
followed by peroxyl radical reaction pathway is not so important for chlorinated aromatic 
hydrocarbon decomposition in air mixture; on the contrary, OH radical reaction pathway is 
more important for chlorinated aromatic hydrocarbon decomposition in low or high 
humidity air mixture (Sun et al., 2007c). 
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Some positive charge transfer reactions, such as N2+, cause benzene ring cleavage of 

chlorinated aromatic hydrocarbons. Aliphatic byproducts are formed. Hirota et al.(2000) and 

Han et al. (2003) observed some aliphatic organic compounds formed from chlorobenzene 

decomposition in air mixture under EB-irradiation. 

The generalized chemical reactions could be written as follows: 

 Cl-AH + M+ = M + (Cl-AH)+ (M+ = N2+, O2+ , N+, O+, NO+, H3O+ ect.)     (15)  

 (Cl-AH)+ = products (including ring cleavege reactions) (16) 

 (Cl-AH)+ + (radicals / neutral) = products          (17) 

  e + (Cl-AH) = Cl- + (AH)               (18) 

 OH + (Cl-AH) = products        (19) 

 Cl + (Cl-AH) = products                 (20) 

 (AH). + (Radicals , neutral or M+ ) = products      (21) 

5.2 Nonchlorinated organic compounds 

For nonchlorinated aromatic organic compounds, VOCs decomposition mainly go through: 

• Positive ions‘ charge transfer reactions: 

 M+ + RH (RH=VOC) = M + RH+               (22) 

Because RH has lower ionisation energy (IE) ( for eg., IE benzene = 9.24 eV; IEPAHs < 10 eV) than 

most primary positive ions (IE > 11 eV), such as N2+, O2+ formed from radiolysis of base gas, 

part of VOC will be decomposed by rapid charge transfer reactions. 

• Radical-neutral particles reactions 
OH radicals play very important role for VOC decomposition, especially when water 

concentration is above 1%. OH radicals react with VOC in two ways: 

OH radicals addition to the aromatic ring or H atom abstraction (e.g. toluene) 

 OH + C6H5CH3 = R1 (OH radical addition)            (23) 

 C6H5CH3 + OH = R2 + H2O (H atom abstraction)          (24) 

Radicals (R1, R2) formed above go through very complex reactions: O2 addition, O atom 

release, aromatic-CHO (-dehydes), -OH compounds formed or ring cleavage products: 

 R + O2 = RO2                        (25) 

 2RO2 = 2RO +O2                       (26) 

 RO2 + NO = RO + NO2    (27) 

 RO + O2 = HO2 + products (aromatic –CHO, -OH)     (28) 

 RO→ aliphatic products    (29) 
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6. Conclusion  

Electron beam technology to treat organic compounds has been studied for many years. 

Based on experiments of lab scale in batch system and flow system and experiments of pilot 

scale, it was shown that aliphatic organic compounds (C≤4) are easily to be decomposed by 

electron beam technology, the enegy necessary to decompose aliphatic hydrocarbons in the 

order of lower to higher: chlorinated unsaturated hydrocarbons, chlorinated saturated 

hydrocarbons, hydrocarbons. For aromatic hydrocarbons decomposition in gas phase, 

energy is much higher than that used to decompose aliphatic hydrocarbons. About 70% 

aromatic VOCs are decomposed at 20 kGy absorbed dose for most single ring aromatic 

hydrocabons. 

Organic compounds in gas mixture can be decomposed by EB-irradiation, and the 
decomposition efficiency of organic pollutants increases with the absorbed dose. For 
chlorinated aliphatic hydrocarbons, the decomposition efficiency of unsaturated (with 
double C=C bond) hydrocarbons is higher than that of saturated hydrocarbons, and the 
decomposition efficiency of chlorinated compounds with higher numbers of chlorine groups 
is higher than observed for the compounds with lower number of chlorine groups. 
Decomposition efficiency of chlorinated aromatic hydrocarbons is lower than chlorinated 
unsaturated (with double C = C bonds) aliphatic hydrocarbons. 
Different matrix gas and some additives influence the organic pollutants decomposition. For 
chlorinated aliphatic hydrocarbons, the decomposition efficiency of Cl–HC in oxygen or air 
is higher thanthat observed in nitrogen;  and for chlorinated aromatic hydrocarbons (such as 
1,4-DCB) the decomposition efficiency of Cl–HC in nitrogen is higher than that in air. The 
reason for this can be explained by their different decomposition mechanisms. Water vapor 
injection and NH3 addition increase decomposition efficiency of organic pollutants.  
Removal efficiency of organic pollutants in hybrid system (EB + catalyst) is higher than that 

in EB or catalyst system only. 

Mechanism of organic pollutants decomposition is composed of following steps. At the 
early stage of EB irradiation, secondary electrons interact with the base gas mixture 
components and positive and negative charge transfer reactions play important roles for 
organic pollutants decomposition. At the latter stage of EB-irradiation, radical reactions play 
important roles for organic pollutants decomposition. 
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