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1. Introduction

Embedded systems have been widely used in the mobile computing applications. The

mobility requires high performance under strict power consumption, which leads to a big

challenge for the traditional single-processor architecture. Hardware accelerators provide

an energy efficient solution but lack the flexibility for different applications. Therefore,

the hardware configurable embedded systems become the promising direction in future.

For example, Intel just announced a system on chip (SoC) product, combining the ATOM

processor with a FPGA in one package (Intel Inc., 2011).

The configurability puts more requirements on the hardware design productivity. It worsens

the existing gap between the transistor resources and the design outcomes. To reduce the gap,

design community is seeking a higher abstraction rather than the register transfer level(RTL).

Compared with the manual RTL approach, the C language to RTL (C2RTL) flow provides

magnitudes of improvements in productivity to better meet the new features in modern

SoC designs, such as extensive use of embedded processors, huge silicon capacity, reuse of

behavior IPs, extensive adoption of accelerators and more time-to-market pressure. Recently,

people (Cong et al., 2011) observed a rapid rising demand for the high quality C2RTL tools.

In reality, designers have successfully developed various applications using C2RTL tools

with much shorter design time, such as face detection (Schafer et al., 2010), 3G/4G wireless

communication (Guo & McCain, 2006), digital video broadcasting (Rossler et al., 2009) and so

on. However, the output quality of the C2RTL tools is inferior to that of the human-designed

ones especially for large behavior descriptions. Recently, people proposed more scalable

design architectures including different small modules connected by first-in first-out (FIFO)

channels. It provides a natural way to generate a design hierarchically to solve the complexity

problem.

However, there exist several major challenges of the FIFO-connected architecture in practice.

First of all, the current tools leave the user to determine the FIFO capacity between modules,

which is nontrivial. As shown in Section 2, the FIFO capacity has a great impact on the system

performance and memory resources. Though determining the FIFO capacity via extensive
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2 Will-be-set-by-IN-TECH

RTL-level simulations may work for several modules, the exploration space will become

prohibitive large in the multiple-module case. Therefore, previous RTL-level simulating

method is neither time-efficient nor optimal. Second, the processing rate among modules

may bring a large mismatch, which causes a serious performance degradation. Block level

parallelism should be introduced to solve the mismatches between modules. Finally, the C

program partition is another challenge for the hierarchical design methodology.

This chapter proposed a novel C2RTL framework for configurable embedded systems. It

supports a hierarchical way to implement complex streaming applications. The designers

can determine the FIFO capacity automatically and adopt the block level parallelism. Our

contributions are listed as below: 1) Unlike treating the whole algorithm as one module in the

flatten design, we cut the complex streaming algorithm into modules and connect them with

FIFOs. Experimental results showed that the hierarchical implementation provides up to 10.43

times speedup compared to the flatten design. 2) We formulate the parameters of modules

in streaming applications and design a behavior level simulator to determine the optimal

FIFO capacity very fast. Furthermore, we provide an algorithm to realize the block level

parallelism under certain area requirement. 3) We demonstrate the proposed method in seven

real applications with good results. Compared to the uniform FIFO capacity, our method

can save memory resources by 14.46 times. Furthermore, the algorithm can optimize FIFO

capacity in seconds, while extensive RTL level simulations may need hours. Finally, we show

that proper block level parallelism can provide up to 22.94 times speedup in performance with

reasonable area overheads.

The rest of the chapter is organized as follows. Section 2 describes the motivation of our work.

We present our model framework in Section 3. The algorithm for optimal FIFO size and block

level parallelism is formulated in Section 4 and 5. Section 6 presents experimental results.

Section 7 illustrates the previous work in this domain. Section 8 concludes this paper.

2. Motivation

This section provides the motivation of the proposed hierarchical C2RTL framework for

FIFO-connected streaming applications. We first compare the hierarchical approach with the

flatten one. And then we point out the importance of the research of block level parallelism

and FIFO sizing.

2.1 Hierarchical vs flatten approach

The flatten C2RTL approach automatically transforms the whole C algorithm into a large

module. However, it faces two challenges in practice. 1) The translating time is unacceptable

when the algorithm reaches hundreds of lines. In our experiments, compiling algorithms over

one thousand lines into the hardware description language (HDL) codes may lead to several

days to run or even failed. 2) The synthesized quality for larger algorithms is not so good

as the small ones. Though the user may adjust the code style, unroll the loop or inline the

functions, the effect is usually limited.

Unlike the flatten method, the hierarchical approach splits a large algorithm into several

small ones and synthesizes them separately. Those modules are then connected by FIFOs.
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It provides a flexible architecture as well as small modules with better performance. For

example, we synthesized the JPEG encode algorithm into HDLs using eXCite (Y Exploration

Inc., 2011) directly compared to the proposed solution. The flatten one costs 42’475’202 clock

cycles with a max clock frequency of 69.74MHz to complete one computation, while the

hierarchical method spends 4’070’603 clock cycles with a max clock frequency of 74.2MHz.

It implies a 10.43 times performance speedup and a 7.2% clock frequency enhancement.

2.2 Performance with different block number

Among multiple blocks in a hierarchical design, there exist processing rate mismatches. It

will have a great impact on the system performance. For example, Figure 1 shows the IDCT

module parallelism. It is in the slowest block in the JPEG decoder. The JPEG decoder can

be boosted by duplicating the IDCT module. However, block level parallelism may lead to

nontrivial area overheads. It should be careful to find a balance point between the area and

the performance.
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Fig. 1. System throughput under different parallelism degrees

2.3 Performance with different FIFO capacity

What’s more, determining the FIFO size becomes relevant in the hierarchial method. We

demonstrate the clock cycles of a JPEG encoder under different FIFO sizes in Figure 2. As we

can see, the FIFO size will lead to an over 50% performance difference. It is interesting to see

that the throughput cannot be boosted after a threshold. The threshold varies from several to

hundreds of bits for different applications as described in Section 6. However, it is impractical

to always use large enough FIFOs (several hundreds) due to the area overheads. Furthermore,

designers need to decide the FIFO size in an iterative way when exploring different function

partitions in the architecture level. Considering several FIFOs in a design, the optimal FIFO

sizes may interact with each other. Thus, determining the proper FIFO size accurately and

efficiently is important but complicated. More efficient methods are preferred.

369A Hierarchical C2RTL Framework for Hardware Configurable Embedded Systems

www.intechopen.com



4 Will-be-set-by-IN-TECH

500

520

540

560

580

600

cy
cl
e
s)

x
1
0
0
0
0

400

420

440

460

480

500

0 5 10 15 20 25 30 35 40 45 50 55 60

T
a
ll
(T
o
ta
l
cl
o
ck

0 5 10 15 20 25 30 35 40 45 50 55 60

D12 (FIFO depth between PE1 and PE2)

Fig. 2. Computing cycles under different FIFO sizes

3. Hierarchical C2RTL framework

This section first shows the diagram of the proposed hierarchical C2RTL framework. We then

define four major stages: function partition, parameter extraction, block level parallelism and

FIFO interconnection.

3.1 System diagram

The framework consists of four steps in Figure 3. In Step 1, we partition C codes into

appropriate-size functions. In Step 2, we use C2RTL tools to transform each function into a

hardware process element (PE), which has a FIFO interface. We also extract timing parameters

of each PE to evaluate the partition in Step 1. If a partition violates the timing constraints, a

design iteration will be done. In Step 3, we decide which PEs should be parallelized as well

as the parallelism degree. In Step 4, we connect those PEs with proper sized FIFOs. Given

a large-scale streaming algorithm, the framework will generate the corresponding hardware

module efficiently. The synthesizing time is much shorter than that in the flatten approach.

The hardware module can be encapsulated as an accelerator or a component in other designs.

Its interface supports handshaking, bus, memory or FIFO. We denote several parameters for

the module as below: the number of PEs in the module as N, the module’s throughput as

THall , the clock cycles to finish one computation as Tall , the clock frequency as CLKall and the

design area as Aall .

As C2RTL tools can handle the small-sized C codes synthesis (Step 2) efficiently, four main

problems exist: how to partition the large-scale algorithm into proper-sized functions (Step 1),

what parameters to be extracted from each PE(In Step 2), how to determine the parallelized

PEs and their numbers (Step 3) and how to decide the optimal FIFO size between PEs (Step

4). We will discuss them separately.
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3.2 Function partition

The C code partition greatly impacts the final performance. On one hand, the partition will

affect the speed of the final hardware. For example, a very big function may lead to a very

slow PE. The whole design will be slowed down, since the system’s throughput is decided by

the slowest PE. Therefore, we need to adjust the slowest PE’s partition. The simplest method

is to split it into two modules. In fact, we observe that the ideal and most efficient partition

leads to an identical throughput of each PE. On the other hand, the partition will also affect the
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Fig. 3. Hierarchical C2RTL Flow
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Name Description Examples2

Type Interface type,I or II II
THni/o Throughput of input or output interface 0.0755

tni/o Input or output time in Tn (cycles) 128
Tn Period of PEn (cycles) 848
An Area of PEn (LE) 4957
fn THno/THni/i 1

SoPn(m)1 State of PEn at mth cycle
0:Processing;1:Reading; 2:Writing;3:Reading and writing

1 m means mth cycle.
2 Output of PE2 in the JPEG encode case, as shown in Figre 4

Table 1. The parameter of the nth PE’s input/output interfaces

area. Too fine-grained partitions lead to many independent PEs, which will not only reduce

the resource sharing but also increase the communication costs.

In this design flow, we use a manual partition strategy, because no timing information in C

language makes the automatic partition difficult. In this framework, we introduce an iterative

design flow. Based on the timing parameters1 extracted by the PEs from the C2RTL tools, the

designers can determine the C code partition. However, automatizing this partition flow is an

interesting work which will be addressed in our future work.

3.3 Parameter extraction

We get the PE’s timing information after the C2RTL conversion. In streaming applications,

each PE has a working period Tn, under which the PE will never be stopped by overflows

or underflows of an FIFO. During the period Tn, the PE will read, process, and write data.

We denote the input time as tni and the output time as tno. In summary, we formulate the

parameters of the nth PE interface in Table 1. Based on a large number of PEs converted by

eXCite, we have observed two types of interface parameters. Figure 4 shows the waveform

of the type II. As we can see, tn is less than Tn in this case. In type I, tn equals to Tn, which

indicates the idle time is zero.

2

F23_dat_o:

F23_dat_i:

F23_we:

2o

2i

F23_re:

Fig. 4. Type II case: Output of PE2 in the JPEG encoder

3.4 Block level parallelism

To implement block level parallelism, we denote the nth PE’s parallelism degree as Pn.2 Thus,

Pn=1 means that the design does not parallelize this PE. When Pn > 1, we can implement

block level parallelism using a MUX, a DEMUX, and a simple controller in Figure 5.

1 We will define those parameters in the next section.
2 We assume that no data dependence exists among PEn’s task.
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Figure 6 illustrates the working mechanism of the nth parallelized PE. It shows a case with

two-level block parallelism with tni>tno. In this case, the input and the output of the

parallelized blocks work serially. It means that the PEn2 block must be delayed for tni by

the controller, so as to wait for the PEn1 to load its input data. However, when another work

period Tn starts, the PEn1 can start its work immediately without waiting for the PEn2 .

As we can see, the interface of the new PEn after parallelism remains the same as Table 1.

However, the values of the input and the output parameters should be updated due to the

parallelism. It will be discussed in Section 4.2.

3.5 FIFO interconnection

To deal with the FIFO interconnection, we first define the parameters of a FIFO. They will be

used to analyze the performance in the next section. Figure 7 shows the signals of a FIFO.

F_clk denotes the clock signal of the FIFO F. F_we and F_re denote the enable signals of

writing and reading. F_dat_i and F_dat_o are the input and the output data bus. F_ful and

F_emp indicate the full and empty state, which are active high. Given a FIFO, its parameters

are shown in Table 2. To connect modules with FIFOs, we need to determine D(n−1)n and

W(n−1)n.

;

PE n new

(After parallelism)

Input

signals

Output

signals

PE n

PE n1

PE n2

PE nm

Input

signals
Output

signals

Controller

PE n old

(Before parallelism)

Fig. 5. Realization of block level parallelism

Kprwv"fcvc Rtqeguukpi Qwvrwv

Kprwv"fcvc Rtqeguukpi Qwvrwv

Kprwv"fcvc Rtqeguukpi Qwvrwv

Kprwv"fcvc Rtqeguukpi Qwvrwv

PE n1

PE n2

t

E
v
e
n
t

0 tni 2tni Tn 2Tn2tni+Tn

PE n1

PE n2

Fig. 6. Working mechanism of block level parallelism(Pn ≤ ⌊Tn/tni⌋)
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Name Description Examples2

Fclk(n−1)n Clock frequency (MHz) 50

W(n−1)n Data bus width 16

AFIFO(n−1)n Area: memory resource used (bit) 704

D(n−1)n FIFO depth 44

f(n−1)n(m) 1 Number of data in FIFO at mth cycle

SoF(n−1)n(m)
State of FIFO at mth cycle;
1:Full; -1:Empty; 0:Other state

1 m means mth cycle.
2 This example comes from the FIFO between PE1 and PE2

in the JPEG encode case.

Table 2. The parameter of FIFO between PEn−1 and PEn

4. Algorithm for block level parallelism

This section formulates the block level parallelism problem. After that, we propose an

algorithm to solve the problem for multiple PEs in the system level.

4.1 Block level parallelism formulation

Given a design with N PEs, the throughput constraint THre f and the area constraint Are f
3, we

decide the nth PE’s parallelism degree Pn. That is

MIN.Pn, ∀n ∈ [1, N] (1)

s.t.THall ≥ THre f and
N

∑
n=1

Ân ≤ Are f (2)

where THall denotes the entire throughput and Ân is the PEn’s area after the block level

parallelism. Without losing generality, we assume that the capacity of all FIFOs is infinite

and Are f =∞. We leave the FIFO sizing in the next section.

12_dat_i

12

12 12

12

12

12

12_dat_o 2 23_dat_i

23

23 23

23

23

23

23_dat_o

2

Fig. 7. Circuit diagram of FIFO blocks connecting to PE2

3 This area constraint doesn’t consider the FIFO area.
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4.2 Parameter extraction after block level parallelism

Before determining the parallelism degree of each PE, we first discuss how to extract new

interface parameters for each PE after parallelism. That is to update the following parameters:

T̂Hni/o, Ân, T̂n, f̂n, and ŜoPn, which are calculated based on Pn, THni/o, An, Tn, fn, and SoPn.

First of all, we calculate THni/o. As Figure 8 shows, larger parallelism degree won’t always

increase the throughput. It is limited by the input time tni. Assuming tni>tno and Pn ≤
⌊Tn/tni⌋, we have

T̂Hni/o = Pn ∗ THni/o when Pn ≤ ⌊Tn/tni⌋ (3)

For example, as shown in Figure 6, T̂Hni/o=2*THni/o because Pn=2< ⌊Tn/tni⌋=3. When Pn ≥

Kprwv"fcvc Rtqeguu Qwv

PE n1

PE n2

t

E
v
e
n
t

0 tni 2tniTn

Kprwv"fcvc Rtqeguu Qwv

Kprwv"fcvc Rtqeguu Qwv

Kprwv"fcvc Rtqeguu Qwv

PE n1

PE n2

3tni 4tni

Fig. 8. Working mechanism of block level parallelism(Pn ≥ ⌈Tn/tni⌉)

⌈Tn/tni⌉, we have

T̂Hni/o = Tn/tni ∗ THni/o when Pn ≥ ⌈Tn/tni⌉ (4)

where the throughput is limited by the input time tni. More parallelism degree is useless in

this case. For example, as shown in Figure 8, T̂Hni/o=Tn/tni*THni/o, because Pn=2=⌈Tn/tni⌉.

When tni<tno we have the similar conclusions. In summary, we have

T̂Hni/o =

{
Pn ∗ THni/o Pn < pn

Tn/max{tni, tno} ∗ THni/o others
(5)

where

pn = ⌈Tn/max{tni, tno}⌉ (6)

Second, we can solve Ân, T̂n, and f̂n. Ignoring the area of the controller, we have

Ân = Pn ∗ An (7)

Based on Figure 6 and 8, we conclude

T̂n =

{
Tn + (Pn − 1) ∗ max{tni, tno} Pn ≤ pn

Pn ∗ max{tni, tno} others
(8)
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Equation 5 shows that T̂Hni and T̂Hno change at the same rate. Therefore,

f̂n = T̂Hno/T̂Hni = THni/THni = fn (9)

Furthermore, we calculate ŜoPn. ŜoPn is the combination of each sub-block’s SoP. Therefore

ŜoPn =

{
∑

Pn

i=0 SoPn(m − i ∗ tni) tni ≥ tno

∑
Pn

i=0 SoPn(m − i ∗ (Tn − tno)) tni < tno
(10)

Finally, we can obtain all new parameters of a PE after parallelism. We will use those

parameters to decide the parallelism degree in Section 4.3 and Section 5.

4.3 Block level parallelism degree optimization

To solve the optimization question in Section 4.1, we need to understand the relationship

between THall and T̂Hni/o. When PEn is connected to the chain from PE1 to PE(n−1), we

define the output interface’s throughput of PEn as TH’no. This parameter is different from

T̂Hni/o because it has considered the rate mismatch effects from previous PEs. We have

TH′
no =

⎧
⎨
⎩

T̂Hno TH′
(n−1)o

> T̂Hni

f̂n ∗ TH′
(n−1)o others

(11)

In fact, THall=TH’No. Therefore, we can express THall in the following format

THall = T̂Hbo

N

∏
i=b+1

fi (12)

where b is the index of the slowest PEb. It is the bottleneck of the system.

To do the optimization of parallelism degrees, we purpose an algorithm shown in

Algorithm 1. In the algorithm, the inputs are the number of PE N, the parameters of each

PE ParaG[N], each PE’s maxim parallelism degree by Equation 6, and the design constraint

TH_re f =THre f . ParaG[N] includes THni/o,tni/o,Tn,SoPn shown in Table 14.

The output is each PE’s optimal parallelism degree P[N]. Lines 1 − 7 are to check if the

optimization object is possible. Lines 8 − 14 are the initializing process. Lines 15 − 20 are the

main loop. pTH[N] equals to T̂Hni/o and TH_best denotes the best performance. Function

get_pTH() returns the PE’s T̂Hni/o. Function get_THall() returns TH_now which means the

THall under T̂Hni/o condition. Line 2 sets all the parallelism degree to its maximum value.

After that, we get the fastest THall in Line 4. If the system can never approach the optimizing

target, we will change the target in Line 6. In the main loop, we find the bottleneck in each

step in Line 16 and add more parallelism degree to it. We will update T̂Hni/o in Line 18

and evaluate the system again in Line 19. We end this loop until the design constraints are

satisfied.

4 These parameters are initial ones got by Step 2
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Algorithm 1 Block Level Parallelism Degree Optimization Algorithm

Input: N, ParaG[N], p[N], TH_re f
Output: P[N]
1: for k = 1 → N do
2: pTH[k] = get_pTH(p[k], ParaG[k], p[k]), k = k + 1
3: end for
4: TH_best = get_THall(pTH, ParaG)
5: if TH_best > TH_re f then
6: TH_re f = TH_best
7: end if
8: for k = 1 → N do
9: P[k] = 1, k = k + 1

10: end for
11: for k = 1 → N do
12: pTH[k] = get_pTH(P[k], ParaG[k], p[k]), k = k + 1
13: end for
14: TH_now = get_THall(pTH, ParaG)
15: while TH_now ≥ TH_re f do
16: Bottleneck = get_bottle(pTH, ParaG)
17: P[Bottleneck] + +
18: k = Bottleneck
19: pTH[k] = get_pTH(P[k], ParaG[k], p[k]), k = k + 1
20: TH_now = get_THall(pTH, ParaG)
21: end while

5. Algorithm for FIFO-connected blocks

This section formulates the FIFO interconnecting problem. We then demonstrate that this

problem can be solved by a binary searching algorithm. Finally, we propose an algorithm to

solve the FIFO interconnecting problem of multiple PEs in the system level.

5.1 FIFO interconnection formulation

Given a design consisting of N PEs, we need to determine the depth D(i−1)i of each FIFO5,

which maximizes the entire throughput THall and minimizes the FIFO area of AFIFOall
.

MIN.
N

∑
i=2

D(i−1)i (13)

s.t. THall ≥ THre f and AFIFOall
≤ AFIFOre f

(14)

where THre f and AFIFOre f
can be the user-specified constraints or optimal values of the design.

Without losing generality, we set THre f =(THall)max and AFIFO_re f =∞. We assume that F01

never empties and FN(N+1) never fulls. That is, ∀m, SoF01(m) 
= −1 and SoFN(N+1)(m) 
=

16.

5 We assume that the W(i−1)i is decided by the application.
6 This means that we only consider the operating state of the design instead of the halted state.
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5.2 FIFO capacity optimization

We can conclude a brief relationship between THni/o and Di. For PEn, we define the real

throughput as T̃Hni/o, when connected with Fn−1 of Dn−1 and Fn+1 of Dn+1. Then we set

T̃Hni/o = f (Dn−1, Dn+1) (15)

We know that a small Dn−1 or Dn+1 will cause T̃Hni/o<THni/o. Also, when T̃Hni/o=THni/o,

larger Dn−1 or Dn+1 will not increase performance any more. Therefore, as it is shown in

Figure 2, f (x) is a monotone nondecreasing function with a boundary.

With the fixed relationship between THni/o and Di, we can solve the FIFO capacity

optimization problem by a binary searching algorithm based on the system level simulations.

We describe this method to determine the FIFO capacity for multiple PEs (N > 2) in

Algorithm 2.

Algorithm 2 FIFO Capacity Algorithm for N ≥ 2

Input: N, ParaG[N], Inital_D[N]
Output: D[N]
1: k = 1, n = 1
2: while k < N do
3: D[k] = Initial_D[k]
4: end while
5: TH_obj = get_TH(D, ParaG)
6: TH_new = TH_obj, Upper = D[1], Mid = D[1], Lower = 1
7: while n < N do
8: if TH_new = TH_obj then
9: D[n] = ceil((Mid − Lower)/2)

10: Upper = Mid, Mid = D[n]
11: else
12: D[n] = ceil((Upper − Mid)/2)
13: Lower = Mid, Mid = D[n]
14: end if
15: TH_new = get_TH(D, ParaG)
16: if Upper = Lower then
17: n = n + 1
18: Upper = D[n], Mid = D[n], Lower = 1
19: end if
20: end while

The inputs are the number of PE N, the parameters of each PE ParaG[N] and each FIFO’s

initial capacity Initial_D[N]. ParaG[N] includes THni/o, tni/o, Tn, SoPn shown in Table 17.

Initial_D[n] means the initial searching value of Dn(n+1), which is big enough to ensure

T̃Hni/o=THall . The output is each FIFO’s optimal depth D[N]. Lines 1 − 6 are the initializing

process. Lines 7 − 20 are the main loop. Function get_TH() in line 5 and 15 can return

the entire throughput under different D[N] settings. Variable TH_obj is the searching

object calculated by Initial_D[N]. Initial_D[N] equals to THall and TH_new is the current

throughput calculated based on D[N]. Upper, Mid, and Lower decide the binary searching

range. In each loop, n means that the capacity of Fn(n+1) is processed. We get the searching

7 These parameters are updated by Block Level Parallelism step
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point and the range according to TH_new in lines 8 − 14. We update TH_new in line 15.

The end condition is checked in line 16. When n = N, it means that all FIFOs have their

optimal capacity. As we can see, the most time-consuming part of the algorithm is the getTH()
function. It calls for an entire simulation of the hardware. Therefore, we build a system level

simulator instead of a RTL level one. It can shorten the optimization greatly. The system level

simulator adopts the parameters extracted in Step 2. The C-based system level simulator will

be released on our website soon.

6. Experiments

In this section, we first explain our experimental configurations. Then, we compare the flatten

approach, the hierarchical method without block level parallelism (BLP) and with BLP under

several real benchmarks. After that, we break down the advantages by two aspects: the

block level parallelism and the FIFO sizing. We then show the effectiveness of the proposed

algorithm to optimize the parallel degree. Finally, we demonstrate the advantages from the

FIFO sizing method.

6.1 Experimental configurations

In our experiments, we use a C2RTL tool called eXCite (Y Exploration Inc., 2011). The HDL

files are simulated by Mentor Graphics’ ModelSim to get the timing information. The area and

clock information is obtained by Quartus II from Altera. Cyclone II FPGAs are selected as the

target hardware. We derive seven large streaming applications from the high-level synthesis

benchmark suits CHstone( Hara et al. (2008)). They come from real applications and consist of

programs from the areas of image processing, security, telecommunication and digital signal

processing.

• JPEG encode/decode: JPEG transforms image between JPEG and BMP format.

• AES encryption/decryption: AES (Advanced Encryption Standard) is a symmetric key

crypto system.

• GSM: LPC (Linear Predictive Coding) analysis of GSM (Global System for Mobile

Communications).

• ADPCM: Adaptive Differential Pulse Code Modulation is an algorithm for voice

compression.

• Filter Group: The group includes two FIR filters, a FFT and an IFFT block.

6.2 System optimization for real cases

We show the synthesized results for seven benchmarks and compare the flatten approach,

the hierarchical approach without and with BLP. Table 3 shows the clock cycles saved by the

hierarchical method without and with BLP. The last column in Table 3 shows the BLP vector

for each PE. The ith element in the vector denotes the parallel degree of the PEi. The total

speedup represents the clock cycle reductions from the hierarchical approach with BLP. As we

can see, the hierarchical method without BLP achieves up to 10.43 times speedup compared

with the flatten approach. However, the BLP can provide considerable extra up to another

5 times speedup compared with the hierarchial method without BLP. It should be noted that
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Benchmark
Flatten Hierarchical Hierarchical BLP degree

approach W.O. BLP(speedup) W. BLP(speedup) (P1..Pn)
JPEG encode 42,475,202 4,070,603 (x10.43) 1,850,907 (x22.94) (1,3,1)
JPEG decode 623,090 456,821 (x1.364) 115,622 (x5.389) (1,1,4,1)

Min AES encryption 1,904,802 719,263 (x2.648) 216,393 (x8.803) (4,2,3,2)
Tall AES decryption 2,185,802 867,306 (x2.388) 229,570 (x9.521) (4,2,4,2)

(cycles) GSM 620,802 204,356 (x3.038) 55,306 (x11.22) (4,4,4,1,1,1)
ADPCM 35,691 12,464 (x2.864) 3,762 (x9.487) (4,2,2,2,3)

Filter groups 6,537,416 1,702,406 (x3.84) 511,853 (x12.77) (2,1,1,4,1,2)

BLP: Block level parallelism.

Table 3. System optimization result of minimal clock cycles

Benchmark
Flatten Hierarchical Hierarchical Total

approach W.O. BLP W. BLP Speedup
JPEG encode 69.74 74.2 74.2 x1.064
JPEG decode 71.15 71.3 71.3 x1.002

Max AES encode 71.24 91.06 91.06 x1.278
Clkall AES decode 75.56 87.35 87.35 x1.156
(MHz) GSM 55.73 59.16 59.16 x1.062

ADPCM 53.29 68.32 68.32 x1.282
Filter groupe 93.41 96.69 96.69 x1.035

BLP: Block level parallelism.

Table 4. System optimization result of maximal clock frequency

the BLP will lead to area overheads in some extents. We will discuss those challenges in the

following experiments. Furthermore, Table 4 shows the maximum clock frequency of three

approaches. As we can see, the BLP does not introduce extra delay compared with the pure

hierarchical method.

6.3 Block level parallelism

The previous experimental results show the total advantages from the hierarchial method

with BLP. This section will discuss the performance and the area overheads of BLP alone. We

show the throughput improvement and the area costs in the GSM benchmark in Figure 98.

We list the BLP vector as the horizontal axis. As we can see, parallelizing some PEs will

increase the throughput. For the BLP vector (1, 2, 1, 1, 1, 1), we duplicate the second PE2 by

two. It will improve the performance by 4% with 48% area overheads. The result comes

from the rate mismatch between PEs. It indicates that duplicating single PE may not increase

the throughput effectively and the area overheads may be quite large. Therefore, we should

develop an algorithm to find the optimal BLP vector to boost the performance without

introducing too many overheads. For example, the BLP vector (4, 4, 4, 1, 1, 1) leads to over

4 times performance speedup while with only less than 3 times area overheads.

Furthermore, we evaluate the proposed BLP algorithm with the approach duplicating the

entire hardware. Figure 10 demonstrates that our algorithm can increase the throughput

with less area. It is because the BLP algorithm does not parallelize every PE and can explore

more fine-grained design space. Obviously, the BLP method provides a solution to trade off

8 We observe similar trends in other cases.
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performance with area more flexibly and efficiently. In fact, as the modern FPGA can provide

more and more logic elements, it makes the area not so urgent as the performance, which is

the first-priority metric in most cases.
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Benchmark D12 D23 D34 D45 D56 Tall

JPEG encode
System Level 43 2 - - - 4080201
RTL Level 44 2 - - - 4070603

JPEG decode
System Level 2 33 17 2 - 456964
RTL Level 2 33 18 2 - 456821

AES encryption
System Level 2 2 2 - - 719364
RTL Level 3 2 3 - - 719263

AES decryption
System Level 2 257 2 - - 867407
RTL Level 3 249 3 - - 867306

GSM
System Level 54 2 2 2 2 204554
RTL Level 55 2 2 2 2 204356

ADPCM
System Level 2 2 2 2 2 12464
RTL Level 2 2 2 2 1 12464

Filter group
System Level 2 2 86 2 2 1701896
RTL Level 2 2 87 2 2 1701846

Table 5. Optimal FIFO capacity algorithm experiment result in 7 real cases

6.4 Optimal FIFO capacity

We show the simulated results for real designs with multiple PEs. First of all, we show the

relationship between the FIFO size and the running time Tall . Figure 11 shows the JPEG

encoding case. As we can see, the FIFO size has a great impact on the performance of the

design. In this case, the optimal FIFO capacity should be D12=44, D23=2.
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Fig. 11. FIFO capacity in JPEG encode case

Table 5 lists both the system level simulation results and the RTL level experimental ones on

FIFO size in seven cases. It shows that our approach is accurate enough for those real cases.

Though little mismatch exists, the difference is very small. Compared to the magnitudes of

speedup to determine the FIFO size, our approach is quite promising to be used in architecture

level design space exploration.
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Benchmark

Memory resource used(bit)

SavingsFIFOs with 1 FIFOs with
enough size optimized size

JPEG encode 10,048 2,624 x3.83
JPEG decode 38,776 8,376 x4.63
AES encode 92,160 67,968 x1.36

AES decode2 92,160 75,808 x1.22
GSM 36,028 8,602 x4.19

ADPCM 54,040 3,736 x14.46
Filter groupe 114,400 76,736 x1.49

1 We set each FIFO depth as 128.
2 In this case we set each FIFO depth as 256.

Table 6. Area saved

The memory resource savings by well designing FIFO are listed in Table 6. Compared to

the large enough design strategy, the memory savings are significant. Moreover, compared

to the method using RTL level simulator to decide FIFO capacity, our work is extremely time

efficient. Considering a hardware with N FIFO to design, each FIFO size is fixed using a binary

searching algorithm. It will request log2(p) times simulations with the initial FIFO depth

value D(n−1)n = p. Assuming that the average time cost by ModelSim RTL level simulation is

C, the entire exploration time is N ∗ log2(p) ∗ C. Considering the FilerGroup case with N = 5,

p = 128 and C = 170 seconds, which are typical values on a normal PC, we have to wait

100 minutes to find the optimal FIFO size. However, our system level solution can finish the

exploration in seconds.

7. Related works

Many C2RTL tools (Gokhale et al., 2000; Lhairech-Lebreton et al., 2010; Mencer, 2006;

Villarreal et al., 2010) are focusing on streaming applications. They create design

architectures including different modules connected by first-in first-out (FIFO) channels.

There are some other tools focusing on general purpose applications. For example,

Catapult C (Mentor Graphics, 2011) takes different timing and area constraints to generate

Pareto-optimal solutions from common C algorithms. However, little control on the

architecture leads to suboptimal results. As (Agarwal, 2009) has shown, FIFO-connected

architecture can generate much faster and smaller results in streaming applications.

Among C2RTL tools for streaming applications, GAUT (Lhairech-Lebreton et al., 2010)

transforms C functions into pipelined modules consisting of processing units, memory units

and communication units. Global asynchronous local synchronous interconnections are

adopted to connect different modules with multiple clocks. ROCCC (Villarreal et al., 2010)

can create efficient pipelined circuits from C to be re-used in other modules or system

codes. Impulse C (Gokhale et al., 2000) provides a C language extension to define parallel

processes and communication channels among modules. ASC (Mencer, 2006) provides a

design environment for users to optimize systems from algorithm level to gate level, all within

the same C++ program. However, previous works keep how to determine the FIFO capacity

efficiently unsolved. Most recently, (Li et al., 2012) presented a hierarchical C2RTL framework

with analytical formulas to determine the FIFO capacity. However, block level parallelism
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is not supported and their FIFO sizing method is limited to PEs with certain input/output

interfaces.

During the hierarchical C2RTL flow, a key step is to partition a large C program into several

functions. Plenty of works have been done in this field. Many C-based high level synthesis

tools, such as SPARK (Gupta et al., 2004), eXcite (Y Exploration Inc., 2011), Cyber (NEC Inc.,

2011) and CCAP (Nishimura et al., 2006), can partition the input code into several functions.

Each function has a corresponding hardware module. However, it leads to a nontrivial

datapath area overhead because it eliminates the resource sharing among modules. On the

contrary, function inline technique can reduce the datapath area via resource sharing. The fast

increasing complexity of the controller makes the method inefficient. Appropriate function

clustering (Okada et al., 2002) in a sub module provides a more elegant way to solve the

partition problem. But it is hard to find a proper clustering rule. For example, too many

functions in one cluster will also lead to a prohibitive complexity in controllers. In practise,

architects often help the partition program to divide the C algorithms manually.

Similar to the hierarchical C2RTL, multiple FIFO-connected processing elements (PE) are

used to process audio and video streams in the mobile embedded devices. Researchers had

investigated on the input streaming rates to make sure that the FIFO between PEs will not

overflow, while the real-time processing requirements are met. On-chip traffic analysis of

the SoC architecture (Lahiri et al., 2001) had been explored. However, their simulation-based

approaches suffer from a long executing time and fail in exploring large design space. A

mathematical framework of rate analysis for streaming applications have been proposed in

reference (Cruz, 1995). Based on the network calculus, reference (Maxiaguine et al., 2004)

extended the service curves to show how to shape an input stream to meet buffer constraints.

Furthermore, reference (Liu et al., 2006) discussed the generalized rate analysis for multimedia

processing platforms. However, all of them adopts a more complicated behavior model for

PE streams, which is not necessary in the hierarchical C2RTL framework.

8. Conclusion

Improving the booming design methodology of C2RTL to make it more widely used is the

goal of many researchers. Our work of the framework does have achieved the improvement.

We first propose a hierarchical C2RTL design flow to increase the performance of a traditional

flatten one. Moreover, we propose a method to increase throughput by making block

level parallelism and an algorithm to decide the degree. Finally, we develop an heuristic

algorithm to find the optimal FIFO capacity in a multiple-module design. Experimental results

show that hierarchical approach can improve performance by up to 10.43 times speedup,

and block level parallelism can make extra 4 times speedup with 194% area overhead.

What’s more, it determines the optimal FIFO capacity accurately and fast. The future work

includes automatical C code partition in the hierarchical C2RTL framework and adopting our

optimizing algorithm in more complex architectures with feedback and branches.
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