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Quantum Mechanics on Surfaces

Bjørn Jensen
Departement of Micro and Nano Systems Technology

Vestfold University College
Norway

1. Introduction

Quantum theory in curved spaces has received much attention over the years. It has been
applied in the study of black holes and large scales structures in the universe as well as
in the study of the Casimir effect, e.g. However, transferring our existing formulations of
quantum theory to curved spaces is not straightforward and any approach will be hampered
with a number of issues (1). Nanostructures provide an experimental arena which potentially
can provide direct evidence for the interplay between geometry and quantum theory. The
ability to manufacture micro- and nanosized surfaces has open up new vistas which should
be utilized in order to get a firmer grip on the quantum theory of particles living on these
curved structures.
In the following a brief account of the most widely accepted formulation (the
’standard’ formulation) of Shrödinger theory on surfaces and linear structures in ordinary
three-dimensional Euclidean space is given. We then apply this framework to derive a
quantum theory on the catenoid in three-dimensional Euclidean space. This will highlight
some important features connected with the interplay between quantum theory and geometry.
Then follows a partial framework for an alternative formulation of Shrödinger theory
on a surface in which we utilize the unique conformal properties of two-dimensional
surfaces. Even though most work connected with quantum theory on structures embedded
in three-dimensional Euclidean space so far have been concerned with surfaces, wire
structures are also of great obvious interest. Next we therefore point to the possible
importance of employing ideas from supersymmetric quantum mechanics in order to
enhance our understanding of these structures. Workers in the field of quantum mechanics
on lower-dimensional structures in flat space have mainly concerned themselves with
Shrödinger theory. In the remaining part of this brief account we will concern ourselves
with Dirac theory on surfaces in three-dimensional Euclidean space. We look at differences
between the first and second order formulations, and device the proper framework for
formulating Dirac theory on surfaces and linear structures in a way which makes contact
with the standard formulation of Shrödinger theory on these structures. We then explore
different issues, including the question of whether it is ’sufficient’ to employ an intrinsically
defined quantum theory in a surface compared to the standard approach in the context of
Dirac theory. This issue should be of particular relevance when formulating effective theories
for charge carriers in graphene. No effort has been made to provide an exhaustive list of
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2 Quantum Mechanics III

references. Those references which are cited, and the references they contain, are those which
have been of particular importance for this author.

2. Dimensional reduction

Quantum mechanics has come to age. We can claim that its basic formulation, either in the
form of the canonical quantization procedure or in terms of the Dirac quantization program, is
well understood in the sense that its formulation is transparent, even though its consequences
continue to surprise and baffle us all. However, this claim is only true as long as the theory
is formulated in an Euclidean space which is charted with Cartesian coordinates. It was
early recognized in the Dirac quantization programe that problems generally arise when
non-Euclidean coordinates are used (2). This is a signal that the interplay between quantum
theory and geometry is a deep and fundamental one. This interplay took center stage in
physics when it was shown that black holes radiate (3). Curved spacetime geometries are not
of immediate importance for quantum theory in the laboratory setting, but curved surfaces
and linear structures are. The Casimir effect (4) is a well known example which proves
this. Aspects of the challenges met in quantum theory in ’exotic’ space-times might therefore
also appear in more everyday settings. The coordinate challenge in the Dirac quantization
program (e.g.) definitely does since curved surfaces in ordinary space can generally not be
completely charted with Cartesian coordinates. The most generally accepted adaption of the
canonical quantization procedure to curved surfaces and linear structures was developed in
(5–7). What follows is a brief account of this adaptation. We will not systematically discuss the
Dirac quantization procedure and possible adaptations of it to lower dimensional structures
in space in this exposition, but we will briefly comment on an important aspect of the latter in
Section 4.
Consider a smooth two dimensional static surface S in ordinary three dimensional space.
We follow the parametrization in (6) and chart the three dimensional embedding space with
coordinates Xi. We write the metric as (6; 8)

ds2 = −dt2 + Gij(Xi)dXidX j + (dX3)2 =

= −dt2 + Gab(xa)dxadxb + (dx3)2 , (1)

where Gab(xa) is the metric in the surface S defined by coordinates xa. We assume that we
can define a normal vector field �N everywhere on S . The coordinate direction x3 is assumed
to be along �N in the immediate vicinity of S . Our conventions will be such that indices at the
beginning of the alphabet will refer to the coordinates in the surface xa, while indices in the
middle of the alphabet refer to the global coordinates Xi. It follows that (8)

Gab(Xi) = gab(xa)− 2Kab(xa)x3 + Kk
a(xa)gkm(xa)Km

b(xa)(x3)2 (2)

G(Xi) = detGab(Xi) = g(xa)(1 − 8M(xa)x3 + (2K(xa) + 8M(xa)2)(x3)2 + ...) (3)
√

G(Xi) ≡
√

g(xa)ξ(Xi) , ξ(Xi) = 1 − 4M(xa)x3 + K(xa)(x3)2 + ... (4)

where gab(xa) is the induced metric in the surface, g(xa) = detgab(xa) and Ki
j(xa) is the

extrinsic curvature tensor associated with S . K = detKi
j and M(xa) ≡ Gij(Xi)Kij(Xi) is the

mean curvature in S .
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Quantum Mechanics on Surfaces 3

Central to the approach developed in (5–7) is the assumption of the presence of forces which
constrain the particle to S . It is assumed that these forces act everywhere normal to S and that
they can be derived from a potential Vλ(X3). λ is a parameter which measures the strength
of the potential. The Schrödinger equation describing an electrically neutral particle in the
embedding space within this framework is then given by (we use units such that c ≡ h̄ ≡ 1)

i∂tψ = − 1

2m
Gij∇i(∇jψ) + Vλ(X3) . (5)

m denotes the particle mass. In order to derive a quantum theory in S we need to dimensionally
reduce the Schrödinger equation. We therefore decompose the covariant derivative in a
coordinate gauge invariant manner as a sum of one part which acts along the surface(||), and
one part which acts normal to the surface (⊥)

∇i = ∇||i +∇⊥i . (6)

The purely kinetic term in the Schrödinger equation can then be written

Gij∇i∇jψ ≡ (∇2
|| +∇2

⊥)ψ = (∂a∂aψ + Gab
Γ

c
ab∂cψ) + (∂3∂3ψ + Gab

Γ
3

ab∂3)ψ . (7)

In the last relation we have used the coordinate gauge Eq.(1). Γ
i

jk represents the Christoffel
symbols of the second kind. We will assume that the wave function is normalizable in the
three dimensional embedding space, such that the norm is given by

N =
∫

d3X
√

G|ψ|2 =
∫

d3x
√

g|χ|2 . (8)

Probability conservation requires that ψ(Xi) = ξ(xi)−1/2χ(xi). We use this relation to
compute the kinetic term and rewrite the Schrödinger equation in terms of χ. Clearly,

lim
x3→0

∇2
||ψ = ∇2

||χ . (9)

We also find that

lim
x3→0

∇2
⊥ψ = lim

x3→0

1√
G

∂3(
√

G∂3ψ) = lim
x3→0

ξ−1∂3(ξ∂3(ξ
−1/2χ)) ≡ ∂2

3χ − V0χ . (10)

Using these relations we find in the limit x3 → 0 that the Schrödinger equation becomes

i∂tχ = − 1

2m
∇2

||χ − 1

2m
∂2

3χ + V0χ + Vλχ , (11)

where V0 is given by (6)

V0 = − 1

2m
(M2 − K) . (12)

We see that an effective potential has emerged depending on scalars characterizing the
extrinsic curvature of S . V0 is clearly non-positive on any surface. If χ is separable into one
part which is independent of x3 and one part which only depends on this coordinate we have
effectively deduced a quantum theory in the surface S . This program can also be adapted to
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4 Quantum Mechanics III

linear structures by continuing the dimensional reduction procedure above. The result is (6)

− h̄2

2m
∂2

xψ − h̄2

8m
κ2(x)ψ = Eψ . (13)

x is the coordinate along the structure, and κ(x) is its local curvature. We will later return to
this result in Section 5.

3. The catenoid

Let us apply the dimensional reduction approach above to a concrete surface. We will
in particular consider the catenoid surface (9). This is a classical minimal surface. It can
conceivably be realized in a bilayer of honeycomb lattices with radially arranged dislocations
or in bilayer graphene (10). We choose the following parametrization for the catenoid
x = R cosh(z/R) cos φ, y = R cosh(z/R) sin φ and z = z, with φ ∈ [0, 2π] where x, y, z
represents the canonical Cartesian coordinates in ordinary three-dimensional space (Fig. 1).
The local radius ρ = R cosh(z/R) and the metric is thus given by

gρρ =
ρ2

ρ2 − R2
, gφφ = ρ2. (14)

x

y

r

r sin 

r cos 

z

Fig. 1. A two-dimensional section (catenoid) of a three dimensional worm hole geometry
with its axis along z and the throat radius R.
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Quantum Mechanics on Surfaces 5

It is interesting to note that slices of a wormhole geometry is geometrically equivalent to a
catenoid. In cylindrical coordinates (z, r, φ) a two-dimensional section of a wormhole is given
by (11)

z(r) = ±b0 ln

[

r

b0
+

√

r2

b2
0

− 1

]

, (15)

with l = ±
√

r2 − b2
0. The spatial part of the wormhole geometry is given by the following

expression (11)
ds2 = dl2 + (b2

0 + l2)(dθ2 + sin2 θdφ2) , (16)

where l ∈ [−∞,+∞], θ ∈ [0, π] and φ ∈ [0, 2π]. b0 is the shape function of the wormhole [in
general b = b(l) and for l = 0, b = b(0) = b0 = const. represents the radius of the throat of
the wormhole]. Here l is a radial coordinate measuring proper radial distance; θ and φ are
the spherical polar coordinates. Here we will consider the slice θ = π/2 which represents an
equatorial section of the wormhole geometry (at constant coordinate time). For this particular
slice we thus get the following line element

ds2 = dl2 + (b2
0 + l2)dφ2, (17)

which is precisely equivalent to the line element on a catenoid (since l2 = r2 − b2
0)

ds2 =
r2

r2 − b2
0

dr2 + r2dφ2. (18)

Note that if we consider any other section of the three dimensional wormhole, say for θ = θ0,
the line element will change to

ds2 =
r2

r2 − b2
0

dr2 + a2r2dφ2 , (19)

where a2 = sin2 θ0, and (obviously) a2 ∈ [0, 1]. For the catenoid this will only mean a
rescaling of the radius of the catenoid at the throat (the circle with least local radius) from
R to aR. The line element Eq.(19) corresponds to a catenoid with x = aR cosh(z/aR) cos φ,
y = aR cosh(z/aR) sin φ and z = z. Thus all θ-sections of the physical wormhole at constant
time coordinates represent a catenoid with radius aR. The catenoid with the biggest radius
corresponds to the equatorial section θ = π

2 and the one with zero radius to the section θ = π.
Returning to the catenoid and focusing on the (z, φ) coordinates (instead of (ρ, φ)), the line
element is given by

ds2 = cosh2(z/R)dz2 + R2 cosh2(z/R)dφ2, (20)

with the principal curvatures given by

κ1 =
1

R
sech2(z/R), κ2 = − 1

R
sech2(z/R). (21)

This implies that the mean curvature M = (κ1 + κ2)/2 = 0 (meaning that the surface
is a minimal surface) and the Gaussian curvature K = κ1κ2 = −(1/R2)sech4(z/R). The
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6 Quantum Mechanics III

corresponding curvature induced potential on a catenoid is then given by

V(z) = − h̄2

2m0
(H2 − K) = − h̄2

2m0R2
sech4(z/R). (22)

Note that for a2 ≪ 1 the potential becomes very deep at the origin. The corresponding
Schrödinger equation is given by

− h̄2

2m0R cosh2(z/R)

[

R
∂2ψ

∂z2
+

1

R

∂2ψ

∂φ2

]

− h̄2

2m0R2
sech4(z/R)ψ = Eψ, (23)

or simplifying

− R
∂2ψ

∂z2
− 1

R

∂2ψ

∂φ2
− sech2(z/R)

R
ψ =

2m0R

h̄2
cosh2(z/R)Eψ. (24)

Using the cylindrical symmetry along the z-axis we set ψ = eimz
Φ. We thus get the following

equation for Φ

Φzz −
m2

R2
Φ +

sech2(z/R)

R2
Φ +

2m0E cosh2(z/R)

h̄2
Φ = 0. (25)

Defining a dimensionless length ζ = z/R and energy ǫ = 2m0ER2/h̄2 we get the following
effective Schrödinger equation

− Φζζ + V(ζ)Φ(ζ) = 0, (26)

where the potential now reads

V(ζ) = [m2 − ǫ cosh2(ζ)]− sech2(ζ). (27)

This potential for m 	= 0 bears some similarity to the corresponding geometric potential for the
physical wormhole (12). Note that in the ground state (ǫ = 0, also called a critically bound state
(13)) V(ζ) becomes the reflectionless Bargmann’s potential (14) and the Schrödinger equation
becomes the hypergeometric equation with the ground state wavefunction (the ’Goldstone
mode’) given by Φ(ζ) = sech(ζ). This result is remarkable since this implies that the catenoid
surface enables complete transmission across it for a quantum particle. This does not seem
to be the case for the physical wormhole geometry (12). For non-zero values on ǫ the above
potential is an inverted double well potential shown in Fig. 2.
Let us consider Eq.’s(26-27) in some more detail. We see in particular that

lim
ζ→±∞

|V| → ∞ . (28)

This behavior of the potential at infinity is strange since the geometry on the catenoid in these
regions approaches the usual Euclidean one. This feature can be traced to the coordinates
used since the proper length per unit in the ζ direction diverges when ζ → ±∞. This can be
remedied by introducing another set of coordinates on the catenoid.

194 Some Applications of Quantum Mechanics
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- 2 - 1

0.5

- 0.5

- 1

1 2

- 1.5

V(  )

Fig. 2. The inverted double well potential V(ζ) with m = ±1 and ǫ = 0.1.

Quantum theory in curved spaces is generally a challenge since the theory is not generally
covariant. Classical quantum theory is not even Lorentz invariant. This puts a severe
constraint on the coordinate system in which one wishes to describe the physics in order to
be able to extract the physical content of the theory. This challenge was even central in the
early days of general relativity theory itself in connection with the physical interpretation
of the Schwartzshild metric, e.g. Just like as in general relativity theory one is usually
safe concerning the physical interpretation, as well as the definitions of physical quantities,
when the manifold in question is asymptotically Minkowski (Euclidean). In such asymptotic
regions we expect on physical grounds to rederive the usual flat space physical results. The
asymptotic properties thus in some sense anchor the curved region and its physics to reality,
as we know it. The catenoid is in this sense an asymptotic Euclidean object, thus making this
manifold a space anchored to ’reality’.
The catenoid surface can in some sense be perceived as a deformation of the plane.
Considering briefly the two-dimensional Schrödinger equation in the plane in polar
coordinates we get the Bessel equation. Clearly, the boundary condition at the origin is
suspect here. However, in our case we can as a first approximation consider a deformation
of the plane in a region around the origin. In the deformed region the Schrödinger equation
will generally be very complicated but the solutions of it must nevertheless be matched to
the Bessel functions which survive sufficiently far from the deformed region. This reasoning
goes ad verbum through also on the catenoid even though we here, in addition to curvature
corrections, also have a topology change when compared to the plane since not any closed
curve on the catenoid surface is null homotopic. Hence, we should seek coordinates on the
catenoid such that the Schrödinger equation gives rise to the Bessel equation in the asymptotic
region on the catenoid. The coordinates should thus in particular result in a metric which is
reminiscent of polar coordinates at infinity. It is possible to find such coordinates if one covers
the entire catenoid manifold with two coordinate patches. One patch covers the region ζ > 0,

195Quantum Mechanics on Surfaces
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8 Quantum Mechanics III

the other ζ < 0. In the upper part we choose the new radially directed coordinate as

η+ = eζ − 1 ; ζ > 0 . (29)

In the lower part we correspondingly choose

η− = −(e−ζ − 1) ; ζ < 0 . (30)

Clearly η+ = η− at ζ = 0. The invariant line-element can then be written as

ds2 =
((η± ± 1)2 + 1)2

4(η± ± 1)4
(dη±)2 +

1

4
(
(η± ± 1)2 + 1

η± ± 1
)2dφ2 . (31)

In the limit η± → ±∞ the metric can be written as

ds2 =
1

4
(dη±)2 +

1

4
(η±)2dφ2 . (32)

Hence, the asymptotic form of this metric is very similar to the Euclidean metric expressed in
ordinary polar coordinates. Indeed, they are exactly the same something which is easily seen
by a simple rescaling of the radial coordinates. These new coordinates should therefore be
well suited to explore the physical states of a quantum particle on the catenoid.
Let us now consider the Schrödinger equation (26). In terms of the new coordinates we have
in particular that

∂2
ζ Φ = (η± ± 1)∂±((η± ± 1)∂±Φ) , (33)

cosh u = ±1

2
(
(η± ± 1)2 + 1

η± ± 1
) . (34)

This gives rise to identical expressions for the Schrödinger equation in the two coordinate
patches. In the upper patch the equation is explicitly given by

∂2
+Φ +

1

(η+ + 1)
∂+Φ +

[

ǫ

4
− (m2 − ǫ/2)

(η+ + 1)2
+

1

4
(

ǫ

(η+ + 1)4
+

16

((η+ + 1)2 + 1)2
)

]

Φ = 0 .(35)

Clearly, letting η+ → ∞ we easily get the Bessel equation, which is well behaved at infinity.
The stationary Schrödinger equation, and assuming a well defined energy E eigenvalue
problem, is formally given by

(−∇2 + V)Ψ = EΨ . (36)

Hence, we have that

V − E = −
[

ǫ

4
− (m2 − ǫ/2)

(η+ + 1)2
+

1

4

(

ǫ

(η+ + 1)4
+

16

((η+ + 1)2 + 1)2

) ]

. (37)

In the asymptotic region we find that

lim
η+→∞

V = E − 1

4
ǫ > 0 . (38)

196 Some Applications of Quantum Mechanics
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Quantum Mechanics on Surfaces 9

We have plotted the potential for m = 0 and ǫ = 2 in Fig. 3. Note that in this s-channel the
potential becomes negative sufficiently close to the origin.

3

2

1

-1

0.4 0.8

m= 0

V(    )

Fig. 3. The potential V(η+) with m = 0 and ǫ = 2.

Clearly, the constant part of the potential can be renormalized to zero without any physical
consequences. Hence, the renormalized potential Vr can be taken to be

Vr − E = −
[

− (m2 − ǫ/2)

(η+ + 1)2
+

1

4

(

ǫ

(η+ + 1)4
+

16

((η+ + 1)2 + 1)2

) ]

. (39)

4. Conformal deformations

The framework derived in (5–7) has become a standard one for analyzing quantum mechanics
on surfaces and one-dimensional structures. The resulting theory is a theory framed in curved
spaces. As such it is often difficult to deal with both from a purely computational perspective
as well as also from an interpretational perspective. On the computational side the kinetic
part of the Schrödinger equation will very often be highly complicated function of the metric
tensor. This will typically give rise to complicating second order derivative terms which mix
the spatial coordinates. The often lack of an ’asymptotically’ flat region of a given surface
(e.g.) often gives rise to all sorts of interpretational issues which also often appear in quantum
theories in curved spaces (1). Our treatment of the catenoid above highlight this issue in
particular. Here we sketch a framework which might be of utility in resolving some of these
issues. We emphasize that it is a sketch which is presented, and not a complete and polished
framework.
We entertain the following idea. It is well known that every open, connected and smooth
surface in three-dimensional Euclidean space is conformally flat. Physically we can picture
this as it is always possible to deform S in such a way that the local geometry, all the time
expressed in the same coordinates, has a conformally flat form all the way to the point when S
has become a two-dimensional plane P. We call such a process a conformal deformation of S. The

197Quantum Mechanics on Surfaces
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10 Quantum Mechanics III

Schrödinger equation is not invariant under conformal transformations. Hence, is it possible
in general to re-express the quantum theory on a given surface S on the two-dimensional plane
P using conformal techniques in such a way as to bypass (some of) the issues mentioned above
which arises in the more physically motivated dimensional reduction framework? We show
that it is possible to reformulate the two-dimensional quantum theory on S in the plane such
that it can be looked upon as standard free two-dimensional Schrödinger theory coupled to
an external potential. The wave-function on P couples to a new potential VP which exhibits a
vector field �W and a scalar field W, both of a purely geometric origin on S

VP = − h̄2

2m
(�W · ∇P + W) . (40)

∇P denotes the metric compatible connection on P. Hence, certain computational issues is
bypassed by this approach since the theory is formulated in a flat space which in Cartesian
coordinates will give rise to a ’trivial’ kinetic operator. The formulation will also be easier to
interpret both because of the non-existing intrinsic curvature in the plane and its vanishing
extrinsic curvature, and because VP can be treated as a completely external potential not
associated with the space P in which the theory is formulated. This might enhance our
understanding of the physical picture on S.
We consider a smooth two-dimensional surface S in ordinary three-dimensional Euclidean
space. In the present work we will focus on open surfaces. We will briefly deal with compact
surfaces at the end of this section. We will repeat some of the mathematical technicalities from
section 2 in order to fix the needed notation. We assume that we can define a normal vector
field �N everywhere on S. We will choose coordinates in the embedding space in such a way
that one coordinate basis vector is always parallel to �N in the vicinity of S. We will denote the
associated coordinate by x3 in the following and the coordinates on S by x1, x2. We denote
the metric tensor induced on S by GSab such that the indices refer to the coordinates in S. In
the dimensional reduction approach it is assumed that the quantum particle is constrained
to S by a constraining potential VSλ where λ is a measure of the strength of the potential. It
is assumed that the constraining forces always act along �N. In order to derive a theory on S
we decompose the connection ∇ in the three-dimensional Euclidean space into a component
acting solely in the surface ∇S and a component ∇⊥ acting along the normal vector

∇ = ∇S +∇⊥ . (41)

The potential VSλ can be thought of as an infinite well potential such that S is sandwiched
between two potential ’walls’ (6). In the limit when the width ∆x3 of the potential well goes
to zero, when the particle is literally forced to follow the surface S, we get (6)

lim
∆x3→0

∇2
⊥ = ∂2

3 − VS(x1, x2) . (42)

In these calculations coordinates are chosen such that G3i = 0 , G33 = 1 , ; i 	= 3. The
Schrödinger equation can then be written as

i∂tχS = − h̄2

2m
∇2

SχS − h̄2

2m
∂2

3χS + VSχS + VSλχS . (43)

198 Some Applications of Quantum Mechanics
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Quantum Mechanics on Surfaces 11

If this equation is separable we are left with a theory in the surface S. The theory in S carries
with it a ’memory’ of the three-dimensional embedding space through the potential VS.
Any two-dimensional metric can locally be written in a conformally Euclidean form. This
means explicitly that there exists a coordinate transformation, a conformal diffeomorphism D :
(x1, x2) → (X1, X2) such that

ds2
S = GSijdxidxj

≡ ω2(X1, X2)((dX1)2 + (dX2)2) ≡ ω2ds2
P ≡ GPijdXidX j . (44)

Here ds2
S and ds2

P are the metrics on S and P respectively, and ω2(X1, X2) is a positive definite
scalar function. We will be concerned with the situation when the metric ds2

S on S undergoes
a point wise conformal transformation T such that

T : ds2
S → Ω

2(X1, X2)ds2
S ≡ ds2

P . (45)

Ω
2(X1, X2) is a positive definite function. In the case when none of the coordinates are

periodic this represents deformations of S to a plane. We will primely assume this picture
in the following. Physically we will picture the transformation T as either an adiabatic or
an instantaneous one in order not to perturb the quantum system out of the quantum state it
exhibits on S. For definiteness assume here an instantaneous process such that Ω = ω−1.
The normal vector field �N is assumed normal to the surface during the complete deformation
process. Hence, the system of coordinates defined by (X1, X2, x3) does therefore represent
comoving isothermal coordinates. We also assume that the external confining potential Vλ

always has a form such that the resulting force acting on the particle is along �N. We will
furthermore assume that the particle never escapes the surface; we will assume conservation
of probability during the deformation process, i.e. This implies in particular that the integral
of the probability density on S must equal the same integral over the plane. If we denote the
wave-function on P by χP it follows that

∫

S
dS

√

GS|χS|2 =
∫

S
dS

√

GP|χP|2 , (46)

where GS = det(GSij), GP = det(GPij). Since T : GP = Ω
4GS, it follows that

χS = ΩχP . (47)

Hence, the wave-function must transform with conformal weight equal unity under the
restricted class of conformal transformations which we deal with in this work. There
exist previous studies in the literature of the properties of the Schrödinger equation under
conformal transformations. Interestingly, these have to our knowledge only been concerned
with space-time or space conformal transformations and not conformal transformations
restricted to (hyper-) surfaces.
Two metric compatible connections ∇S and ∇P on two conformally related metrics ds2

S and
ds2

P are related by

∇Piωb = ∇Siωj − Ck
ijωk (48)

199Quantum Mechanics on Surfaces
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12 Quantum Mechanics III

where ωk is some one-form, and

Ck
ij = 2δk

(i∇Pj) ln Ω − GPijGP
kl∇Pl ln Ω . (49)

It follows that
∇2

S = Ω
2(∇2

P + GP
ijCc

ij∇Pc) (50)

and

∇2
S(χS) = ∇2

S(ΩχP) = Ω
2(Ω∇2

PχP + Vi∇PiχP + VχP) , (51)

where

Vi = 2GP
ji∇PjΩ + GP

jkCi
jkΩ , (52)

V ≡ ∇2
PΩ + GP

ijCk
ij∇PkΩ . (53)

The extrinsic curvature of S is K
j
Si = ∇Si N

j. It follows that

KSij = KPij + C3
ij N3 . (54)

Identify P with the two-dimensional Euclidean plane. We then have that

KPij ≡ 0 ⇒
{

KS = det(KSij) = det(C3
ij)

MS = tr(KSij) = −tr(C3
ij)

(55)

where
C3

ij = (δ3
i∇Pj + δ3

j∇Pi) ln Ω . (56)

The (C3
ij)-matrix is explicitly given by

(Ca
bc) =

⎛

⎝

0 0 C3
13

0 0 C3
23

C3
31 C3

32 0

⎞

⎠ . (57)

Hence
KS = 0 , MS = 0 . (58)

We note that this also implies that G
ij
PC3

ij∇P3 = 0 since G
ij
P is diagonal. We then get the highly

non-trivial result that the potential VS transforms to zero under conformal deformations to P.
Consequently, the Schrödinger equation on P reads

i∂tχP = − h̄2

2m
Ω

2∇2
PχP − h̄2

2m
∂2

3χP − h̄2

2m
(�W · ∇P + W)χP + VPλχP , (59)

where
Wi ≡ Ω

−1Vi , W ≡ Ω
−1V . (60)

We assume that we can separate the motion orthogonal to the surface from the motion in
the surface. We will also assume stationary states such that the time-dependent part of the
wave-equation can be written as a simple exponential ∼ e−iEt where we identify E with the
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total energy of the states. Hence, Eq. (59) can be decomposed into

− h̄2

2m
∇2

||χP +
1

Ω2
(E − κ2 + VP)χP = 0 , (61)

− h̄2

2m
∂2

3χPχP + VPλχP = κ2χP (62)

where we have defined VP ≡ − h̄2

2m (�W · ∇P +W) and introduced a separation constant κ. This
constant can naturally be identified with the momentum in the direction perpendicular to the
surface.
Clearly, the set of equations above can be interpreted as describing a particle interacting with
two potentials. Equation (61) is in general simpler than Eq. (43). Even though Eq. (61) like Eq.
(43) in addition to the second order kinetic terms also exhibits first order differential operator
terms contained in the VP-potential it will not contain differential operator cross terms as Eq.
(43) in general will exhibit. Furthermore, note that the potentials W and �W are functions of
Ω. Since Ω does not describe P we can interpret these terms as external potentials which are
applied to P in very much the same fashion as VPλ.
In the analysis above we have for simplicity assumed that P is identified with the
two-dimensional plane. Clearly, P must not by necessity be identified with the plane in
order to have a target manifold P with vanishing intrinsic curvature. One natural example
which is also of practical importance is the straight tube. Clearly, when P is a curved
surface (with non-vanishing extrinsic curvature, but with vanishing intrinsic curvature) the
effective geometric potential on P will become more complicated compared to the exact planar
situation. This is easily seen from the transformation property of VS under a conformal
deformation. From the expression for KSij in terms of KPij and Ck

ij it follows that the
transformed of the potential VS will exhibit products between the extrinsic curvature tensor
on P and C3

ij-terms. Hence, changing the topology of S away from the planar one (every
closed curve is null homotopic) will alter the induced potential on S in a fundamental way.
Let us summarize. In (5–7) a physically motivated framework for dealing with quantum
mechanics on surfaces and linear structures in ordinary three dimensional Euclidean space
were developed. Here we have attempted to reformulate this framework for quantum
mechanics on surfaces into a framework on the two-dimensional plane. On the plane a
quantum particle is shown to interact with an external potential VP in addition to the external
potential VPλ which constrains the particle to the plane. Clearly, the conformal formulation
presented in this work represents a priori a simplification computation wise. It also represents
an interesting tool in the analysis of quantum mechanics on a given surface. The form of
the geometric potential on the plane provides an immediate physical insight. Considering
momentum eigen-states it follows that states with opposite sign interacts differently with the
geometry since �W · ∇P ⇒ −�W · ∇P when ∇P ⇒ −∇P. Hence, a non-trivial geometry on S
might lift a degeneracy which is present on the plane provided �W 	= 0. An analogy to the
motion of an electrically charged particle moving on the plane with a magnetic field piercing
the plane is immediate. Hence, the class of surfaces defined by �W 	= 0 is thus interesting to
consider further in order to build a general physical picture of quantum dynamics on surfaces.
The tentative framework presented here might furthermore also help shed light on a
fundamental problem connected with the understanding of quantum mechanics on surfaces
following Dirac’s quantization prescription (2). It is well known that the Dirac quantization
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scheme does not produce an unique expression for the induced quantum geometric potential
VS (15–17). It is claimed that this result is not related to improper choice of coordinates, but
emerges solely due to operator ordering issues (15). Interestingly, considering a plane P it
follows that no geometric potential of the kind stemming from the dimensional reduction
approach will get induced. The coupling to the external potential VP should not imply any
operator ordering issues of the kind reported in (15). An unique theory should consequently
ensue. However, the quantum theory on P is conformally related to a quantum theory on a
certain surface S where the very same quantization procedure will not give rise to a unique
theory. This apparent ’contradiction’ between the ’P−’ and the ’S−pictures’ of the theory
might thus hold a key for resolving the disturbing discrepancy in the quantum formulation of
classical mechanics on surfaces following from Dirac’s prescription.

5. Supersymmetric quantum mechanics

Let us turn to one-dimensional structures living in ordinary three-dimensional Euclidean
space. On such strutures the effective theory stemming from the dimensional reduction
approach is given by Eq. (13). Ideas from supersymmetry was incorporated into
one-dimensional quantum mechanics by E. Witten in (18). This approach leads to a natural
notion of isospectral deformations, deformations of the potential in the Schrödinger equation
such that that the energy spectrum is identically preserved. It would be interesting to apply
this approach to our subject. This should mean that we can set out with a particular linear
configuration in space which is described by the local curvature of the structure κ(x) (x
denotes some coordinate along the structure). From this it should then be possible to generate
another potential appearing in the Schrödinger equation which in our context must be related
to another curvature configuration κ̂(x); to another linear structure in space, i.e. This line of
approach, as the one in the previous section, has not been pursued in the previous literature. It
seems to represent a promising approach in the work of getting a deeper understanding of the
relation between quantum physics and geometry. Let us initiate this study by some relatively
straightforward considerations. We will assume that the reader has a basic understanding of
supersymmetric quantum mechanics. The recent book (19) represents a nice introduction to
the subject. We will follow the notation in that book in the following.
Isospectral deformations in supersymmetric quantum mechanics are connected to the
problem of generating another superpotential Ŵ(x), which gives rise to a new partner
potential V̂+(x), from a given superpotential W(x) and partner potential V+(x) such that

V̂+(x) = Ŵ2 + Ŵ ′ = V+(x) = W2 + W ′ . (63)

′ indicates differentiation with respect to the space variable. From the knowledge of Ŵ(x) a
new physical potential V̂−(x) can be constructed

V̂−(x) = Ŵ2 − Ŵ ′ , (64)

which give rise to the same spectrum as the initial one generated by V−(x). In the literature
the only type of deformation that has been studied so far has the form (19)

W(x) → Ŵ(x) = W(x) + f (x) . (65)
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f (x) is some function to be determined from the condition Eq. (63). Finding the explicit
expression for f (x) is straightforward. Inserting Eq. (65) into Eq. (63) we get

d

dx
f (x) + 2W(x) f (x) + f 2(x) = 0 . (66)

This is the Riccati equation. Further making the substitution f (x) = 1/y(x) we get

d

dx
y(x)− 2W(x)y(x) = 1 . (67)

This equation is easily integrated and we find

f (x; λ) =
e−

∫

2W(x)dx

λ −
∫

e−
∫

2W(x)dxdx
. (68)

λ is an integration constant. We note that letting λ → ∞ ⇒ f (x; λ) → 0 results in the
identity deformation Ŵ(x) = W(x). The result Eq. (68) has been taken in the literature as
an expression for the most general deformation of W(x) stemming from Eq. (63) when a
deformation scheme of the kind in Eq. (65) is employed (19). Let us now identify the physical
potential V− with the potential in Eq. (13)

V−(x) = − h̄2

8m
κ2(x) . (69)

This gives the following equation for the superpotential

Fig. 4. The effecetive potential V̂−(x) on the circle with λ = 0.5.

− dW

dx
+ W2 + κ2 = 0 . (70)
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This is also a Riccati equation. It can be connected to ordinary second order differential
equations by the substitution

W =
1

U(x)

dU(x)

dx
. (71)

In terms of U(x) Eq.(70) reads

d2U

dx2
+ κ2(x)U = 0 . (72)

Let us consider the circle which is well understood in quantum theory. We can set κ2 = 1
without loss of generality. We then easily get

U = A0 sin(ωx) + B0 cos(ωx) (73)

where ω is some constant. Let us for simplicity set A0 = 0 and ω = 1. Then we get

W = − tan(x) . (74)

We are then in position to compute the deformed physical potential V̂−(x). We find that

V̂−(x) = Ŵ2 − Ŵ ′ =

= (− tan(x) +
1

λ cos2(x)− 1)
)2 − (− 1

cos2(x)
+

2 cos(x) sin(x)

(λ cos2(x)− 1)2
) . (75)

This potential is graphed in Fig. (4) with λ = 0.5. The potential exhibits singularities. It is not
strictly non-positive but can also take positive values. When this happens the corresponding
curvature κ̂ appears to be imaginary. This last feature is clearly unphysical. However, we
have only probed a particular solution of a vast solution space and physically acceptable
deformations might very well exist. A more systematic study of the circle is left for future
research.
Another configuration which is natural to study, and which also is easily tractable by
analytical means, is a straight line which has a bent part somewhere along it. A model for
such a structure is captured by a curvature function given by

κ2 = 1 − tanh2(x) . (76)

κ2 is graphed in Fig. (5). This gives rise to U-functions given by

U(x) = C1P1
2 (
√

5−1)(tanh(x)) + C2Q 1
2 (
√

5−1)(tanh(x)) (77)

where the P- and Q-functions denote the Legendre functions. The deformed superpotential
can formally be written

Ŵ =
1

U(x)

dU(x)

dx
+

1

λU2 − 1
. (78)

From this expression we can deduce an infinite family of new linear structures as we did
above. However, the study of this deformation is also left for the future. It is hoped that
the relative easy one apparently can derive new physically realizable linear structures from
known ones as demonstrated here will inspire more studies along these lines.
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Fig. 5. The curvature κ2 = 1 − tanh2(x).

6. The Dirac equation

Let us turn to the Dirac equation. We start our discussion by considering the Dirac equation
in a (3+1)-dimensional curved space-time. We apply a curved space-time formalism from the
very outset in order to clearly exhibit general computational details which are not readily
available elsewhere, but which are of fundamental importance in the discussion of the Dirac
equation on general surfaces in three dimensional Euclidean space. Due to the spinor
structure the Dirac equation is most easily formulated relative to a local vier-bein field. The
massive equation relative to a given viel-bein field eA

a (capital latin letters denote viel-bein
components while lower capital latin letters denote coordinate indices) is in general given by
(1)

(γA(∂A − ΓA) + m)Ψ ≡ (γADA + m)Ψ = 0 . (79)

Ψ represents the Dirac spinor field, and m represents the rest mass of the particle. The
γA-matrices obey locally the Clifford algebra {γA, γB} = 2ηAB with ηAB = diag(−1, 1, 1, 1) =
eA

aeBa. The matrix valued spin connection ΓA is explicitly given by

Γi = −1

4
γAγBeA

j(∂ieBj − eB
k
Γkji) . (80)

ΓλνA represents the Christoffel symbols of the second kind. The current jA ≡ ΨγA
Ψ, where

Ψ = Ψ
†γ0 († signifies Hermitian conjugation), is covariantly conserved ∇A jA = 0. The Dirac

field is normalized with respect to the canonical integration measure. When ei
AΓi = 0 we

define Da = ∇a. We are primarily interested in the second order form of the Dirac equation
in order to make a direct comparison with Schrödinger theory on a two-dimensional surface
S, or on a linear structure. However, let us begin with the first order formulation of the Dirac
equation.
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18 Quantum Mechanics III

We may compute the Dirac equation in our coordinate system X relative to an orthonormal
tetrade frame so that

ω0 = dt (81)

ω1 = G1/2
11 dx1 (82)

ω2 = G1/2
22 dx2 (83)

ω3 = dx3 . (84)

The beins may therefore be read off from the knowledge of the metric. Hence, under a
change of coordinates from x to X probability conservation requires that the Dirac spinor
ψ(X) → ψ(X)ξ−1/2 as for the Schrödinger field. We assume for simplicity that the surface has
vanishing intrinsic curvature. We parametrize the surface by Cartesian coordinates. It is then
easy to show that

Γ3 = 0 (85)

Γi =
i

2
ǫijKiiσj · I (86)

where i = 1, 2 is summed and I is the identity for 4 spinor indices. We are now in a position
to construct the covariant derivative explicitly. Since Γ3 = 0 one sees that this is unnecessary
however; there will be no contribution from the spin connection to the geometrical terms. We
may therefore proceed to separate the Dirac equation into parallel and perpendicular parts.
We have

(γADA + m)(ψ(X)ξ−1/2) = 0 (87)

where A = 0, ..., 3. Pulling ξ through the derivative we have

(γADA +
1

2
γ3TrK + m + O(x3)3)ψ(X) = 0 . (88)

We shall assume that the equation is separable and write

ψ(x) = φ⊥(x3)φ||(x1, x2, t)ψ̂ (89)

where ψ̂ is a constant, four-component spinor. For later convenience we shall also define
ψ⊥ = φ⊥ψ̂, ψ|| = φ||ψ̂, and A0 = A0

⊥(x3) + A0
||(x1, x2, t) and m = m + ∆m(x3). We then easily

see that

φ−1
|| (γ0D

||
0 + γiDi +

1

2
γ3TrK + m)φ||ψ̂ =

−φ−1
⊥ (γ0(−ieA⊥

0 ) + γ3∂3 + ∆m(x3) + ...O(x3))φ⊥ψ̂ . (90)

The usual argument for the separation of these equations is that the left-hand side is only a
function of x1, x2, t while the right-hand side is only a function of x3; thus both sides must
be equal to some separation constant k. However, this is not quite correct owing to the terms
...O(x3)3 which contain the curvature Kij, which is a function of x1, x2. However, we are
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assuming that the excursion into x3 are small owing to the physics of the problem; thus we
shall for the time being adopt the standard procedure and neglect these higher-order terms.
To eliminate x3 from the problem we identify A⊥

0 with a squeezing potential A⊥
0 = λ

e x3, so
that nontrivial solutions, given by the vanishing of the determinant of the operator on the
right-hand side of Eq.(90), are characterized by

φ⊥(x3) ∼ exp(−(
λ

2
(x3)2 + kx3)−

∫

dx3m(x3)) . (91)

The first term in the exponential falls off like a Gaussian function, i.e., a δ function in the limit
of infinite λ. The presence of a nonzero separation constant spoils this falloff by introducing a
straightforward exponential decay with characteristic length k−1. The mass parameter m(x3),
which is initially at least linear in x3, will also give rise to a Gaussian falloff. Thus increasing
the coupling of this parameter will also have the desired effect of squeezing the system. The
residual Dirac equation in the surface S is thus

(γADA +
1

2
γ3TrK + (m − k))ψ|| = 0 . (92)

We have managed to derive a theory in a surface but with a number of assumptions and
approximations. Let us next turn to the second order form of the Dirac equation.
We derive the second order form of the Dirac equation by ’squaring’ the first order Dirac
equation (20)

(γBDB − m)(γADA + m)Ψ = 0 (93)

⇒ (γBγADBDA − m2)Ψ = 0 . (94)

Utilizing the algebraic identity

γBγA =
1

2
({γB, γA}+ [γB, γA]) , (95)

and the fundamental Clifford algebra, we can write the second order Dirac equation as

((ηBA +
1

2
[γB, γA])DBDA − m2)Ψ = 0 . (96)

Note that it is not possible to extract a term corresponding to the antisymmetric part above
in a purely bosonic scalar theory like the Schrödinger theory. The antisymmetric part can be
written as

1

2
[γB, γA]DBDA =

1

4
[γB, γA][DB, DA] . (97)

The commutator between the connection components is per definition proportional to the
components of the Riemannian curvature tensor RABCD

[DB, DA] =
1

8
RBACD[γ

C, γD] . (98)

Relative to the local viel-bein it is furthermore always straightforward to locally decompose
the kinetic operator D2 = ηABDBDA into a tangential surface component D2

||, an normal
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component D2
⊥ as well as a time component. Since

1

8
[γB, γA]RBACD[γ

C, γD] =
1

2
RBACDγAγBγCγD (99)

the squared Dirac equation can thus be written as

(−D2
t + D2

|| + D2
⊥ +

1

8
RABCDγAγBγCγD − m2)Ψ = 0 . (100)

In the dimensional reduction approach (6) one introduces a set of coordinates adapted to the
lower dimensional structure S such that the normal field to the surface is always parallel to
the tangent vector field to one of the coordinates. D2

⊥ will act in this direction. If one assumes
that the dynamic equation in question is separable in parts depending on the coordinates
in the surface and the perpendicular coordinate respectively one derives a theory which is
living solely in the surface. The corresponding result in Schrödinger theory exhibits a scalar
potential which depends on the Gaussian and mean curvatures.
Since we are considering a theory which is living in a space with vanishing intrinsic curvature
it follows that Eq. (100) reduces to Schrödinger theory by triviality if we neglect any spin-orbit
interactions stemming from the presence of the position dependent spin connection. This
conclusion stands out in sharp contrast to the conclusions drawn from our elaborations of the
first order form of the Dirac equation. Does this conclusion hold if we follow the intrinsically
(2+1)-dimensional approach in which one defines the theory in the surface without taking
the embedding space into account? This approach is employed in most current treatments of
graphene, e.g. Let us explore this issue.
The standard theory for the charge carriers in graphene in the intrinsically (2+1)-dimensional
approach is formulated in a three dimensional Minkowski space with the dynamic equation
equal the standard three dimensional Dirac equation. We choose the 4 × 4-representation
of the γA-matrices because the alternative 2 × 2-representation, which is available in
(2+1)-dimensions, breaks parity invariance (8). In order to adapt this formulation to curved
space we simply make the theory generally covariant in the usual fashion. Then the second
order formulation is again Eq. (100) but with no D2

⊥-term. The resulting theory will be valid at
low energies and in principle on large molecules. In the case of graphene it is well known that
a U(1)-gauge field which couples to the Dirac spinor is induced on curved surfaces due to the
intrinsic curvature (se (21) e.g.). We neglect this field in the following. However, we cannot
discard the intrinsic curvature tensor contribution as we could in the dimensional reduction
approach. Working in (2+1)-dimensions and taking the symmetries of the curvature tensor
into account it follows from some algebraic manipulations that

RABCDγAγBγCγD = −2R , (101)

where R is the Ricci curvature scalar in the static surface. In two-dimensional surfaces the Ricci
scalar equals twice the Gaussian extrinsic curvature R = 2K. Clearly, this Ricci contribution
will add to the effective geometrically induced potential in a surface formed from graphene.
Inserting the relation Eq. (101) into Eq. (100) we rederive the classical Lichnerowicz formula
for the Dirac operator (22).
Let us make a direct comparison with Schrödinger theory by looking at the low energy limit
of the intrinsic massive Dirac theory. We neglect all the spin-connection terms. Without these
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terms the Dirac equation reduces to

(−∂2
t +∇2

|| −
1

2
K − m2)ψ = 0 , (102)

where ψ is assumed to be a definite spin-state, and ∇|| is the usual covariant derivative
acting on a scalar function. We assume energy-eigenstates and denote the total energy of the
particle by E. The equation above then takes the following form to first order in a standard
1/m-expansion (reinstating h̄)

Ecψ ≡ (E − m)ψ = (− h̄2

2m
∇2

|| +
h̄2

2m
K)ψ . (103)

This is the Schrödinger equation corresponding to the second order Dirac equation, and Ec is
the classical energy measure. An effective potential VD has emerged. It is given by (reinstating
h̄)

VD =
h̄2

2m
K . (104)

Comparing VD and VS we see a huge formal difference. Schrödinger theory predicts a
negative, or an attractive, potential on any curved surface. However, the sign of K is not
restricted. Hence, contrary to Schrödinger theory, intrinsic second order Dirac theory predicts
both attractive as well as repulsive geometrically induced quantum potentials depending on
the surface in question.
In (23) it was pointed out that on a carbon nanotube the winding states in the angular direction
will give rise to an effective mass. It is straightforward to see how this will work in our case.
Consider first the massless Dirac theory with m = 0. This theory does not have a natural
low energy limit and the relation between the Dirac and the Schrödinger approaches becomes
highly problematic in general. However, assume a perfectly straight carbon nanotube with
an intrinsic geometry given by ds2 = dz2 + R2dθ2, where −∞ ≤ z ≤ +∞ and θ ∈ [0, 2π〉.
Assuming momentum eigen-states in the angular direction ψ ∼ einθ (where n represents
integers) Eq. (102) (with m = 0) becomes

(−∂2
t + ∂2

z −
1

2
K − (

n

R
)2)ψ = 0 , |n| ∈ 0, 1, 2, 3, ... . (105)

Clearly, the last term in Eq. (105) can be identified as a mass parameter so that

m =
|n|
R

. (106)

Since R is on the nanoscale, 1/m so defined (n 	= 0) is an effective parameter which can be
used in the series expansion leading to Eq. (103). Of course, this scheme can also be employed
in the dimensional reduction scheme. The effective theory then becomes

Ecψ = (− 1

2m
∂2

z +
1

2mR2
(n2 − 1))ψ . (107)

Here m is the ordinary rest mass of the particle. These results can be utilized as tools to
discriminate between the dimensional reduction scheme and the intrinsic Dirac approach. Let
us pursue this topic a little bit further.
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Assume that the ends of a straight carbon nanotube is welded to two metal slabs (20). Let us
for simplicity neglect the physics at the welding areas such that we can assume a free Dirac
theory in the metal and the welding areas. Since K = 0 on the tube the Dirac theory implies
that a current with all the electrons in the lowest winding state n = 0 can be transmitted
from one of the metal pieces and through the tube without backscattering (reflection). This
is not the case according to the dimensional reduction approach. The n = 0 states will
form bound states implying a net reduction in the net current in the tube. Clearly, when
n = ±1 the dimensional reduction approach also implies a vanishing net potential. However,
the dominant transmission channel should correspond to the lowest lying winding mode
n = 0 due to the relatively large mass scale in the system. Hence, to leading order the two
formulations will imply different currents through a straight carbon nanotube connecting
two metal slabs. This argument is a very simple one, but the conclusion is robust. In
particular, even though one cannot neglect the physics in the welding areas in general (24) the
relative difference between the dimensional reduction and the intrinsic Dirac approaches can
nevertheless be deduced since the effective potential on the tube in the dimensional reduction
picture scales as 1/R2. Hence, making the very reasonable assumption that the physics in the
welding areas is the same for tubes with differing radii the presence of a geometry induced
potential can be extracted. Clearly, for a tube with a large radius R → ∞ the effective potential
will vanish while it blows up as R → 0. The intrinsic Dirac theory will not exhibit a similar
scaling behavior in any state. Furthermore, note that the effective potential in Eq. (107)
changes sign at n2 = 1. Hence, for |n| ≥ 2 the effective potential becomes repulsive. If
real, these differences should be readily observable experimentally.
Of course, the discussion above is not confined to graphene. It should be valid for any surface.
As another application let us briefly consider the rolled up nanotubes (RUNTs) discussed in
(25). RUNTs are generally made of bi- or multilayer thin films of various materials. A flat thin
film might, due to the relaxation of the elastic stresses, curl up and form a RUNT described by
an Archimedes spiral. Physically it has the same symmetries as the straight carbon nanotubes
considered above, but instead of curling up to form a closed cylinder the film curls to form a
structure similar to a book scroll. In (25) the charge carriers were described as an exact two
dimensional electron gas within the dimensional reduction framework. Clearly, the Gaussian
curvature on the Archimedes spiral vanishes, but not the mean curvature. It was shown in
(25) that the non-vanishing mean curvature will result in a number of atomic-like bound states
in the spiral surface. The number of bound states equals the number of windings of the spiral.
How does this relate to an an intrinsic Dirac theory description? In thin films we are not
dealing with massless theory so that m 	= 0 in Eq. (102). We are therefore not dependent
upon either a doped material, nor a periodic structure in order to deduce a low energy limit
as on the fullerenes. We can thus employ Eq. (103) directly. Hence, no geometric potential
will appear on the RUNT, and consequently no bound states, since K = 0. Just as with the
straight carbon nanotube above, measuring for the existence or non-existence of bound states
on rolled up nanotubes could prove a veritable tool for discriminating between the different
descriptions of quantum mechanics on surfaces.
Even though much work have been done on the quantum mechanics on many different
surfaces a complete analytical analysis of quantum mechanics on the simple torus is still
missing, even though this surface is an important one. Next we will therefore provide some
basic equations as a start for such an analysis.
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We will assume the following parametrization of the torus

x = (c + a cos v) cos u , (108)

y = (c + a cos v) sin u , (109)

z = a sin v , (110)

where u, v ∈ [0, 2π〉. a signifies the ’small’ radius and c the ’big’ radius of the torus such
that c > a. The coordinates are depicted in Fig. (6). The geometry on the torus can then be
expressed as

ds2 = (c + a cos v)2du2 + a2dv2 ≡ A2du2 + a2dv2 . (111)

The extrinsic curvature is explicitly given by

Fig. 6. The torus. The letters denote the angular coordinates.

K =
cos v

a(c + a cos v)
. (112)

Let us consider stationary quantum energy eigenstates on the torus. Due to the
non-dependence of the u-coordinate in the metric we also consider momentum eigenstates in
the u-direction. We call these states winding states when this momentum is non-zero. Hence,
we assume that the wave-function is on the form

Φ ∼ e−iEteimu A−1/2W(v) , m ∈ {0,±1,±2, ....} (113)

where W is a function to be determined by the wave-equation. With this ansatz the
wave-equation reduces, quite remarkably, to the simple form

(− ∂2

∂v2
+ Ve(v)− E2)W(v) = 0 , (114)
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where the effective potential Ve is given by

Ve(v) = −(
1

4
(∂v A)2 + a2m2)A−2 +

1

2
A−1∂2

v A

=
−a2

(c + a cos v)2
((

sin v

2
)2 − m2)− a cos v

2(c + a cos v)
− cos v

2a(c + a cos v)
. (115)

A plot of the effective potential is provided in Fig. (7). If the contribution from the extrinsic
curvature is discarded in the expression for the effective potential it still has the same
qualitative form as in Fig. (7).

Fig. 7. The effective potential Ve with m = ±1 in the interval u ∈ [0, 4π]. It has the same
qualitative features irrespective of the parameter values. Negative energy states seemingly
exist only for states with m ∈ {0,±1,±2}.

Let us finally make a brief comment on Dirac theory on linear structures. Clearly, neglecting
the spin-connection the extrinsically defined theory will reproduce Schrödinger theory as in
the case of surfaces. Considering an intrinsically defined theory the second order formulation
in Eq. (100) is again valid. However, now the Riemann curvature tensor is trivially identically
zero when we consider static linear structures since the geometry will be time independent.
This means that intrinsically defined fermions on static linear structures will not experience
a spin induced potential. However, note that if the structure exhibits a time dependent
geometry this is no longer true. This is easily seen already on the algebraic level since now the
right hand side of Eq. (101) is non-zero with changed overall sign

RABCDγAγBγCγD = 2R . (116)

This sign flip is induced by the Clifford algebra. Explorations of the implications of this change
of sign is left for future work.
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7. Conclusion

In this brief account of quantum mechanics on surfaces we introduced the reader to
the dimensional reduction approach which is currently the most widely accepted method
to construct quantum theories on surfaces and linear structures embedded in ordinary
three-dimensional Euclidean space. We generalized this framework to accommodate Dirac
theory. We studied quantum theory on explicit geometries; the catenoid in Schrödinger theory
and the cylinder in Dirac theory. In addition we presented novel approaches to the study of
the interplay between quantum physics and geometry in the form of a conformal approach to
defining quantum theory on a surface and by applying ideas from supersymmetric quantum
mechanics. Both of these approaches need further elaboration and refinements, but it is the
hope of this author that this material might inspire other workers in the field to pursue these
new avenues.
This account of quantum mechanics on surfaces also makes an effort to put our subject at the
center stage of current physics research. Quantum theory on surfaces might in particular be
important in order to get a complete understanding of graphene. We have shown that there
is a major discrepancy between the formulation of Dirac theory on surfaces depending on
whether one employs an extrinsic or an intrinsic approach. One immediate consequence is
that the intrinsic theory implies a new effective scalar potential proportional to the Gaussian
curvature in the surface, while the extrinsic approach implies the usual potential stemming
from the dimensional reduction approach (6). The new potential emerges due to the Clifford
algebra and will thus not be present in any scalar theory defined on surfaces. We also looked at
the low energy limit of the intrinsic Dirac theory and derived an effective potential VD which
corresponds to the effective potential stemming from the Schrödinger (or the Dirac) theory in
the extrinsic approach (VS). Clearly, while VS is strictly non-positive the potential stemming
from the low energy intrinsic Dirac theory VD can carry any sign depending on the surface in
question. Graphene is described by the massless Dirac equation near the Dirac points. Hence,
near these points the charge carriers might respond very differently to the graphene surface
geometry than one would expect from Schrödinger theory. This insight might be of great
importance in the modeling of the charge carriers on graphene with consequent experimental
and technical implications. We considered one particular technical implication for a system
composed of a carbon nanotube bridging two metal slabs. We also considered a particular
rolled up nanotube in the same vain with qualitatively the same conclusions as with the
carbon tube. We emphasize that we have ignored the effect of the spin-connection. This will
induce spin-orbit couplings which will add motion dependent potentials. The effect of these
can be very pronounced (26). Clearly, much more work needs to be done in this field, but it is
work which apparently has potential to further advance recent discoveries in physics.
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