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1. Introduction 

Articular chondrocytes live in an unusual and constantly changing physicochemical 
environment.  Due to the structure of the extracellular matrix, adult cartilage is avascular, 
relatively hypoxic and acidic compared to other tissues (Wilkins et al., 2000). In this 
challenging environment the maintenance and regulation of extracellular matrix by 
chondrocytes is dependent on signals received through this milieu (Lai et al., 2002).  In joint 
disease, such as osteoarthritis, the extracellular environment is altered and the cellular 
physiology of the chondrocyte will change to reflect this, leading to alterations in its key role 
of regulating matrix turnover and hence contributing to the pathophysiology of joint disease 
(Goldring 2006).  
This chapter will discuss the challenges to the chondrocyte and how cellular physiology is 
affected in both health and disease. We will discuss how the structure of the matrix confers 
its biomechanical properties to cartilage and how this translates to physiological sensing by 
the cartilage during static and dynamic loading with particular emphasis on effects on 
membrane transporters and cell signalling pathways. We will also consider how other 
features of cartilage in the adult influence the chondrocyte, such as oxygen tension, 
osmolarity and pH.  Finally we will consider the changes that occur in osteoarthritis and 
how these translate to alterations in cellular physiology and hence matrix integrity, the loss 
of the which is the key feature of osteoarthritis, and how these events may be new targets 
for treatment of this condition.  

2. Structure of articular cartilage 

Articular cartilage is a highly specialised tissue that provides a resilient, smooth, almost 
frictionless surface for joints to function efficiently and pain-free (Morris et al., 2002).  In the 
adult, articular cartilage is avascular and predominately composed of extracellular matrix 
with a low density of resident cells, articular chondrocytes, which are responsible for the 
maintenance of the matrix in the healthy joint (Palmer & Bertone, 1994). Chondrocytes are 
embedded within a structurally organised matrix consisting of water, collagens, 
proteoglycans, glycosaminoglycans and non-collagenous proteins (Huber et al., 2000).  The 
biochemical composition and structural alignment of these components within cartilage is 
responsible for the mechanical properties of this tissue and the cellular responses of the 
chondrocyte (Jeffery et al., 1991; Kuettner et al., 1991).   
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2.1 Articular chondrocytes and zonal organisation 
Articular cartilage is organised to allow its main role to occur, that is, providing a smooth 
almost frictionless surface for pain-free mobility but also as a biomaterial that can also 
withstand compressive and shear forces.  As well as the actual biochemical content of 
articular cartilage, the biomechanical properties rely on the structural organisation of the 
extracellular matrix and the cells embedded within them. The structure and organisation of 
articular cartilage not only varies with depth from the articular surface (divided into zones) 
but also the location within the joint (for example, weightbearing versus non-weightbearing 
surfaces).   
Articular chondrocytes occupy 2-5% of the tissue volume and are sometimes considered 

relatively inactive metabolically due to an absence of a vascular supply but are responsible 

for maintaining the integrity of the extracellular matrix and can respond to mechanical 

stimuli, growth factors and cytokines.   Articular cartilage has four distinct histological and 

biochemical zones (I-IV): superficial (tangential), intermediate (transitional), deep (radial) 

and calcified.   The superficial zone is the thinnest along the articular surface and merges 

with the perichondrium at the articular margin.  Type II collagen in the superficial zone is 

orientated tangentially to the articular surface to provide resistance to tensile forces. 

Proteoglycan composition in this zone acts as a non-selective barrier to diffusion of oxygen 

and water and a selective barrier to the diffusion of nutrients and hormones. This is largely 

due to the large amount of negatively charged anionic groups on the sulphated side chains 

on proteoglycans which allows smaller, non-ionic molecules through the matrix more 

readily than larger charged molecules.  The pericellular matrix in the chondron (the 

chondrocyte and its pericellular microenvironment) consists of high levels of collagen type 

VI and aggregating proteoglycans and defines the physiochemical environment of the 

chondrocyte (Wang et al, 2008) and biochemical or mechanical signals perceived by the 

chondrocyte are therefore influenced by the structural and functional composition of the 

chondron (Guilak et al., 2006).    Proteoglycans in the pericellular zone are thought to have a 

role in binding the chondrocyte to the matrix rather that the direct biomechanical role seen 

in the interterritorial matrix.  Within the matrix surrounding the chondrocytes (territorial 

matrix) are thin type II and VI collagen fibrils, organised in a “basket-weave”  formation and 

these fibrils extend out in a parallel arrangement to bind with larger type II collagen fibrils 

in the interterritorial matrix.  In the intermediate zone the chondron structure is more 

typical. In this zone the collagen fibrils appears more widely spaced and their orientation is 

more random and there are increased amounts of proteoglycan compared to the superficial 

zone. In the deep zone the chondrocytes start to align themselves in columns 

perpendicularly to the joint surface along with thicker collagen fibrils. The collagen fibrils 

are orientated radially between these chondrocytic columns.   The abundant proteoglycan 

within the interterritorial matrix with higher amounts of keratin sulphate side chains 

increases the permeability of the matrix in the deep zone and may be important in allowing 

diffusion of nutrients to the deeper layers of cartilage.  Between the deep and calcified 

zones, there is a demarcation consisting of mineral associated with matrix vesicles within 

the interterritorial matrix and this is known as the tidemark. 

2.2 The extracellular matrix 
The extracellular matrix is a mechanically resilient structure comprising of collagens, 
proteoglycans and other non-collagenous proteins (Wilkins et al., 2000).  Hydrated 
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proteoglycans confer resistance to compression and are constrained by the collagen fibrillar 
meshwork (thought of as a “string-and-balloon” model).  Proteoglycans, with highly 
sulphated glycosaminoglycan (GAG) side chains and fixed negative charges, attract free 
cations and osmotically obliged water, leading to a hydrated matrix of raised osmolarity and 
lowered pH. Avascularity of matrix means that movement of hormones, cytokines, nutrients 
and metabolites occurs over relatively large distances along steep gradients. The low partial 
pressures of oxygen denote that cells undergo predominately anaerobic glycolysis and must 
endure high concentrations of lactic acid. Added to these challenges, normal mechanical 
loading causes profound fluctuations in the physiochemical environment.  

2.2.1 Collagen 
There are a number of collagen types recognised in articular cartilage, but type II collagen is 
the primary collagen of articular cartilage, comprising 80-90% of the total collagen content 
(Becerra et al., 2010).  Type II collagen acts primarily to provide tensile stiffness in cartilage 
(Kaab et al., 1998). Other collagens are formed due to different gene expression, translational 
splicing and post-translational modification and many have important regulatory and 
structural roles and may be associated with type II collagen (e.g. functional binding) or other 
components of the matrix (for example binding and interactions with proteoglycans and the 
chondrocyte).  
Collagen fibrils extend out from the pericellular envelope into the territorial matrix (Morris et 
al., 2002). Further collagen fibrils extend out into the interterritorial matrix, intimately involved 
with proteoglycans.  Numerous contacts are present between the plasma membrane, collagens 
and proteoglycans through the extracellular matrix. Pericellular matrix contains little or no 
fibrillar collagen but type VI collagen microfibrils that interact with hyaluronic acid (HA), 
small proteoglycans and cell surface molecules. Type IX collagen is found throughout cartilage 
matrix and type XI collagen is mainly localised to the territorial matrix interacting with type II 
collagen, adding to tensile strength.  Type IX collagen appears to localise with type II collagen 
fibrils in particular regions and covalent cross-linking may alter size and stability and hence 
mechanical properties of the type II collagen fibrils.   

2.2.2 Proteoglycans 
Proteoglycans and glycosaminoglycans contribute compressive stiffness to articular 

cartilage (Hardingham & Forsang, 1992). There are a number of different types of these 

macromolecules present throughout cartilage and they can also function as regulatory 

proteins and binding sites for other matrix components.  Aggrecan, one of the most common 

proteoglycans in cartilage, is a high molecular weight proteoglycan (1-2 x 106 kDa) that 

binds HA in the matrix. Proteoglycans and proteoglycan link proteins are present 

throughout the extracellular matrix including the pericellular matrix and have structural 

relationships with collagens.  Proteoglycans act as a selective permeability barrier and the 

structure of the matrix will dampen kinetic responses as diffusion through the matrix is 

slow. As well as contributing important mechanical properties to cartilage, proteoglycans 

are also important modulators of cell signalling and function. 

2.2.3 Glycosaminoglycans 
Glycosaminoglycans contain highly negatively charged polyanionic sulphate groups. It is 
this, as well as the large molecular weight of the proteoglycan aggrecan, that attracts cations, 
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such as Na+ and thereby water into the cartilage matrix and thus increasing tissue osmotic 
pressure (Wilkins et al., 2000). The resistance of the collagen fibrillar network to expansion 
therefore provides cartilage with an ability to resist compressive forces.   The main 
glycosaminoglycans identified in articular cartilage are chondroitin-4-sulphate, chondroitin-
6-sulpate, keratin sulphate and hyaluronic acid (Morris et al., 2002).  
In a typical aggrecan molecule there can be up to 100 chondroitin sulphate side chains 

attached to the core protein (via xyulose-serine bond), each with up to 1000 repeating 

disaccharide units.  Keratan sulphate is a smaller polysaccharide and there are usually 

around 50 keratin sulphate side chains linked to the aggrecan core protein (via a galactose-

N-acetyl-threonine or –serine bond).  Hyaluronic acid (1x104 kDa) is also classified as a 

glycosaminoglycan although it lacks the sulphated groups on its D-glucosamine and D-

glucuronic acid disaccharide chains.  Each HA can bind up to 100 aggrecan proteins. Early 

release of HA of the cell during synthesis may be important in articular cartilage structure 

since the length of HA influences proteoglycan binding and may affect proteoglycan 

aggregation and function (Palmer & Bertone 1994).   

2.2.4 Water and water flow in cartilage 
Water makes up approximately 70% of cartilage weight.  Negatively charged proteoglycans 

attract cations and water follows leading to swelling of proteoglycans, resisting tension and 

shear forces.  Since the macromolecular composition of extracellular matrix of cartilage 

determines matrix hydration and tissue volume it therefore determines the space for 

molecular transport and offers compressive resistance (as water is essentially 

incompressible).  The hydrodynamic processes controlling the water content include 

osmosis, filtration, swelling and diffusion. 

Osmotic flow of water occurs up gradients of osmotic pressure and cartilage can be thought 

of as a gel consisting of cross-linked non-ideal macromolecules (i.e. yield parameters which 

vary nonlinearly with concentration, a feature of a number of biological systems).  It is 

thought that within the proteoglycan network, an ensemble of segments interacting with 

each other may form “pores” through which the flow resistance for water is lowered 

(Comper 1996).   

3. Cellular physiology of articular chondrocytes 

The unusual biochemical structure of articular cartilage results in particular biomechanical 
properties that strongly influence the cellular physiology of the articular chondrocyte (Hall 
et al., 1996a). Due to the presence of fixed, highly negatively-charged polysulphated 
proteoglycans, there is an increase in cation (Na+, K+ and H+) concentration in articular 
cartilage, compared to other tissues (e.g. plasma) leading to cartilage having raised 
osmolality (350-450mOsm.kg-1) compared to synovial fluid (around 300mOsm.kg -1).  Under 
load, the physical and ionic environment of cartilage alters. Dynamic load leads to increased 
hydrostatic pressure causing cartilage deformation/ membrane stretch and fluid flows 
(Urban, 1994). On removal of load the matrix regains its steady-state conformation. If 
loading continues, though, these dynamic components are followed by slower osmotic 
consequences. Under static loading conditions, fluid expression results in changes to the 
extracellular environment, raising fixed negative charge of glycosaminoglycans and hence 
increases osmotic pressure.  These dynamic changes result in direct effects on articular 
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chondrocyte function since not only does the extracellular environment change, intracellular 
cation concentrations fluctuate with load and altered membrane transport activities occur 
due to mechanical deformation of membranes and changes in pressure, osmolarity and pH. 
Additionally, this environment is altered in joint disease such as osteoarthritis since 
biochemical and biomechanical changes occur which will directly influence the chondrocyte. 

3.1 Membrane transport in articular chondrocytes 
Chondrocytes possess many of the membrane transport systems found in other cell types 
(Wilkins et al., 2000). Active membrane transport systems exchange cations whose 
intracellular concentrations fluctuate with load not only to maintain cellular homeostasis but 
these mechanisms can be linked to solute transport and intracellular signalling events and 
mechanotransduction events, important in the articular chondrocyte to maintain cartilage 
integrity through extracellular matrix synthesis.  

3.1.1 Electrophysiology of articular chondrocytes 
The resting membrane potential of articular chondrocytes is thought to be between -15mV 

and -44mV, maintained by Na+/K+ ATPase and is influenced by cyclical pressure (Clarke et 

al., 2010; Funabashi et al., 2010; Hall et al., 1996a).  Potassium channels are integral 

membrane proteins, participating in cell membrane potential and belong to a large 

superfamily including voltage-activated potassium channels (Kv), Ca2+-activated potassium 

channels (KCa) and inward rectifier potassium channels (Kir). Using whole cell-patch clamp 

techniques, a voltage-dependent, Ca2+-independent K+ current with rapid activation and 

very slow inactivation has been described in isolated canine articular chondrocytes (Wilson 

et al., 2004).  ATP-sensitive KATP channels have also been demonstrated in articular cartilage 

(Mobasheri et al., 2007).  KATP channels may couple metabolic events (i.e. intracellular ATP 

levels) to membrane electrical activity and potentially their activity may be may be 

important in low oxygen conditions since hypoxia is known to lead to activation of KATP 

channels in other systems (Miki & Seino, 2005). Additionally, electrophysiological responses 

of chondrocytes from osteoarthritic cartilage appears to differ from healthy cartilage 

(Sanchez & Lopez-Zapata 2010). 

3.1.2 Volume regulation 
The maintenance of cell volume in the face of alterations in the extracellular environment is 
an important cellular function (Hoffmann et al., 2009). Chondrocyte cell volume, as with 
other cell types, is determined by a pump-leak model where a double Donnan equilibrium 
exists between intracellular compartments and the matrix (Wilkins et al., 2000). Exclusion of 
Na+ ions from the cell is maintained by Na+-K+ ATPase and cell volume is maintained by 
altered balance of leaks and pumps to hold cell water constant.   
In articular chondrocytes, hypertonicity leads to regulatory volume increase (RVI) and 
raises intracellular potassium ([K+]i) via  Na+/K+/2Cl- co-transporter (Hall et al., 1996b). 
Na+/H+ exchange (NHE), unlike in other cell systems in the body, does not appear to play a 
role in volume regulation in cartilage due to the lack of Cl- -HCO3- exchange activity which 
is required for RVI.  During RVI, [Na+]i is increased and the Na+/K+ pump is stimulated to 
keep [K+]i:[Na+]i ratio optimal for protein and enzyme function.  Removal of static load in 
cartilage results in cell swelling and the activation of regulatory volume decrease (RVD) 
processes.   Cell swelling following hypotonic challenge leads to RVD in many cells via Cl- -

www.intechopen.com



  
Principles of Osteoarthritis – Its Definition, Character, Derivation and Modality-Related Recognition 

 

572 

dependent K+ transporter, Ca2+-activated K+ (with associated Cl- ions) channel or an 
“osmolyte” channel (e.g. taurine, sorbitol and myo-inositol) (Hoffmann et al., 2009).  In 
chondrocytes, loss of osmolytes appears to occur via “osmolyte” channel and volume 
activated K+ transport may also occur by this route (Hall & Bush 2001). Hypotonic challenge 
also leads to depolarisation via Na+ influx through stretch activated cation channels (SACC) 
(Sanchez et al., 2003). 
In cartilage, cells lysis is  prevented by the ECM (akin to plant cells and cell wall) and thus 
avoiding the effects extremes of hyposmolarity (although static loading in normal joints 
only leads to fluid losses and decrease in cartilage hydration of only around 5% per day and 
these losses are restored when load is removed). However, in osteoarthritis (OA), 
proteoglycans are lost and reduced Na+ and water content affects joint function.  This 
increase in cartilage hydration under load is an early event in OA and could lead to changes 
in chondrocyte volume regulation (Bush & Hall 2005).  Indeed the first changes in 
osteoarthritis are cell swelling suggesting the mechanisms for regulating cell volume are 
either lost or impaired.  

3.1.3 Intracellular pH (pHi) regulation 
The acidic extracellular environment (pH 6.8) promotes inward leak of H+ ions so 

chondrocytes are subjected to chronic acid loading. With low O2 and anaerobic glycolysis as 

the primary source of metabolism resulting in lactate production, additional intracellular 

loading is also encountered. Articular chondrocytes have resting pHi of around 7.1 and a 

relatively high intracellular buffering capacity of around 30mmol.l-1 (pHi) (Wilkins & Hall 

1992).  Intracellular pH (pHi) regulation in chondrocytes predominately occurs through the 

amiloride-sensitive sodium-dependent Na+/H+  exchanger (NHE). As discussed previously 

the extracellular matrix is rich in Na+ but poor in anions and therefore it appears that anion-

dependent pH regulation been sacrificed in favour of SO4- uptake; an essential precursor for 

proteoglycan synthesis.   

Extracellular acidity is an important regulator of cartilage matrix metabolism and activity of 

degradative enzymes.  Changes in extra-and intracellular pH both elicit a bi-modal response 

of matrix synthesis (Wilkins & Hall, 1995).  Small changes in extracellular pH (pHo) quickly 

and significantly (up to 50%) inhibit synthesis rates (particularly below pH 6.9).  It is 

possible, in normal cartilage, that matrix acidification could provide a means of regulating 

proteoglycan synthesis by a negative feedback system such that increased proteoglycan 

content raises H+, thereby inhibiting synthesis.   

There are a number of NHE isoforms characterised but the main “housekeeping” form is 
NHE-1 (Pedersen & Cala, 2004).  Static loading leads to hyperosmolarity and hyperosmosis 
results in increased acid efflux in chondrocytes through the activation of NHE (Yamazaki et 
al., 2000).  Enhanced H+ extrusion under conditions of loading may allow a defence versus 
cellular acidosis and a mechanism whereby effects of this loading can be transduced into 
changes in cartilage turnover.  Hypotonic shock, however, leads to an increase in pHi 
(alkalosis) via the opening of voltage-activated H+ channels (VAHC) (Sanchez & Wilkins, 
2003).  
Serum leads to increased acid extrusion on response to intracellular acidosis.  NHE3 is 
expressed following exposure to serum and cytokines (Tattersall et al., 2003), particularly 
IGF-1 (Tattersall et al., 2008). In contrast to NHE1, NHE3 is inhibited by hypertonicity and 
by PKA pathways but activated by hypotonicity.  Exposure to serum factors occurring in 
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osteoarthritic cartilage (damaged tissue more likely to be exposed to serum factors and IGF-
1 is elevated in arthritic cartilage - van der Kraan & van den Berg, 2000) could therefore 
result in a differential response of NHE1 and 3 to hyperosmotic shock.  Additionally this 
may have consequences for matrix synthesis which are dictated by pH.  In addition to IGF-1, 
EGF has been shown to stimulate proton efflux by increasing activity of NHE involving PI3-
kinase pathway (Lui et al., 2002). 
Despite the chondrocyte already residing in an acidic extracellular matrix, further acidosis 
occurs in joint disease due to hypoxia and production of inflammatory cytokines altering 
blood flow. Since extracellular pH has a potent influence on cellular function (Das et al., 
2010) any effect on the ability of the cell to regulate intracellular pH is likely to result in 
alteration in chondrocyte function, including matrix synthesis. Very low levels of oxygen, 
likely to be experienced in joint disease, reduce the activity of NHE resulting in intracellular 
acidosis in articular chondrocytes (Milner et al., 2006). 

3.1.4 Intracellular calcium regulation 
Intracellular calcium [Ca2+]i in chondrocytes, as in many other cells has numerous 
physiological functions (Berridge et al., 1998).  In articular chondrocytes, [Ca2+]i is 
maintained at low levels (around 80nM) and Ca2+-ATPase and Na+-Ca2+ exchanger appear 
to be the dominant mediators of calcium homeostasis in these cells (Sanchez et al., 2003). 
The maintenance of calcium is a balance between Ca2+ extrusion, influx via membrane 
channels and Ca2+ release from intracellular stores, such as endoplasmic reticulum and 
mitochondria (Duchen, 2004; Sanchez et al., 2006).   
Alterations in intracellular calcium can affect matrix synthesis (Wilkins et al., 2000) and 
calcium signaling has been implicated in mechanotransduction in articular chondrocytes 
(Guilak et al., 1999;). There are a number of studies showing that intracellular calcium in 
chondrocytes can be altered by hydrostatic pressure, osmotic stress and fluid flow (Kerrigan 
& Hall, 2008; Yellowley et al., 2002).  Increased pressure and cell swelling induces a Gd3+-
sensitive [Ca2+]i increase (Wilkins et al., 2003) and it has been shown that intracellular Ca2+ 
levels can also be modulated by pH (Sanchez and Wilkins, 2003).   

3.1.5 Metabolite transport 
Transport of metabolites across the plasma membrane has an important role in maintaining 

chondrocytic biosynthetic output and matrix integrity.  The uptake of sulphate (SO42-) is an 

important step in the synthesis of glycosaminoglycans and appears to occur in articular 

chondrocytes via a carrier-mediated mechanism that is Na+-independent and sensitive to 

transmembrane H+ gradient (stimulated by acidic extracellular pH) (Meredith et al., 2007). 

Probable candidates include SO42- x Cl- and SO42- x OH- exchanger (anion exchanger). Amino 

acid uptake occurs via Na+-dependent (proline, glycine and glutamine) and independent 

(leucine) transporters (Wilkins et al., 2000).   

Inorganic phosphate (Pi) uptake in chondrocytes appears to have both Na+-dependent and –

independent components and shows pH- sensitivity (Solomon et al., 2007). Transport of Pi 

across the cell membrane is an important component of the calcification process, particularly 

in the growth plate and the inappropriate formation of calcium-phosphate (hydroxyapatite) 

crystals in osteoarthritis could involve dysfunction of Pi-transporters. 

Glucose provides energy source and is an essential precursor for glycosaminoglycan 
synthesis. GLUT transporters (e.g. IGF-1 modulated GLUT4) are mainly responsible for 
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glucose uptake (Shikhman et al., 2004; Windhaber et al., 2003) whereas lactic acid transport 
appears via monocarboxylate family of transporters (MCT) including MCT1 
(“housekeeper”) and MCT4 (Meredith et al., 2002). MCT4 appears to be the main isoform in 
articular chondrocytes whose kinetics favour lactate export thereby allowing pyruvate 
conversion back to lactate to assist in NAD+ regeneration and continued glycolysis. 

4. Mechanotransduction in articular cartilage 

The main functions of articular cartilage are concerned with load-bearing (Urban, 1994).  
During normal activity, pressures within cartilage may rise to 100-200 atmospheres (10-20 
MPa) within milliseconds.  The mechanical failure of extracellular matrix is a key event in 
the progression of degenerative joint disease since not only direct loss of function of the 
tissue occurs but detrimental effects on cellular activity and the potential repair process 
ensues. The ability of the chondrocyte to sense and respond appropriately to mechanical 
signals (mechanotransduction) is vital in maintaining cartilage integrity. 

4.1 Mechano-electrochemical properties of cartilage and signal transduction 
Physical environmental factors such as shear stress, fluid flow and electrical field alterations 

are known to be strong biologic factors in regulating cellular activities (Lai et al., 2002; Mow 

et al., 1999).  During loading, a number of changes occur within cartilage, including 

increased hydrostatic pressure, cartilage/chondrocyte cell deformation, fluid flow and 

streaming potentials, changes in chondrocyte cell membrane and fluid loss resulting in 

changes to interstitial fluid osmolality/ionic content (Urban, 2000).  Transducers of 

mechanotransduction  in cells include activation of stretch activated channels allowing 

ingress of external Ca2+, alteration of membrane transporter activity (eg Na+/H+ exchange) 

and activation of mechanosensitive ion channels and transporters such as transient receptor 

potential (TRP) channels and purinergic receptors. The ECM is directly linked to the 

cytoskeleton and nucleus of the cell via integrins. Integrins are central to many 

mechanotransduction pathways since they integrate a number of important  intracellular 

signalling pathways, for example, focal adhesion kinase signaling via integrin-ECM 

(involving G-protein signaling) and other pathways (involving, for example MAPK and PI-3 

kinases) (Loeser, 2002).  

4.1.1 Streaming potential and diffusion potential 
Streaming potentials and diffusion potentials can be used to describe the electrical forces 

generated during ionic species movement and these are thought to be important in 

mechanical signal transduction in cartilage.  The potential induced by convection current 

(mechano-chemical force generated by cation and anion movement) in the presence of a 

pressure gradient gives the streaming potential of cartilage, whereas the potential induced 

by the diffusion in the presence concentration gradient is the diffusion potential and have 

been shown to be important modulators of chondrocyte metabolism (Kim et al., 1995). 

4.1.2 Effects of mechanical load on chondrocyte function and matrix synthesis  
Mechanical load is required to maintain cartilage integrity (Hasler et al., 1999).  Matrix 
proteoglycan is lost from cartilage in immobilised joints and there is variation within a 
normal joint between unloaded and loaded regions.  Regions subjected to load are often 
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thicker and have higher proteoglycan content and therefore likely to be mechanically 
stronger.  Dynamic or cyclic loading stimulates proteoglycan and protein synthesis whereas 
static loading is associated with decreased synthesis and in addition, load-induced solute 
movement can also influence rates at which growth factors or cytokines reach the cells and 
alter cellular metabolism. 
When load is applied there is an increase in hydrostatic pressure, extracellular pH decreases 
and there is an increase in extracellular free cation concentration and osmolality. Alterations 
in the osmotic balance occurs as fluid is expressed to try to restore the hydrostatic 
equilibrium and this increases the concentrations of proteoglycans and hence cations, 
resulting in osmotic consequences. The changes in hydrostatic pressure and osmotic 
alteration lead to cellular deformation and change in volume resulting in changes in [Na+]i, 
[K+]i, pHi and [Ca2+]i due to altered transporter activity and therefore this can result in 
alterations in macromolecular synthesis.   
During loading, cartilage from osteoarthritic joints will deform more than cartilage from 
non-diseased joints, since both the rate and amount of fluid loss are sensitive to 
proteoglycan concentrations. Therefore cartilage from degenerate joints will lose fluid faster 
than healthy cartilage and this is likely to alter the stimulus and hence the response of the 
chondrocyte in diseased tissue. 

4.1.3 Hydrostatic pressure 
During normal walking, articular cartilage cycles between a resting hydrostatic pressure of 

0.2MPa and pressures of 4-5 MPa (2-50atm). It is known that pressures in the 5-50MPa range 

can alter cellular morphology, reduce exocytosis, dissociate cytoskeletal elements, reduce 

protein synthesis and inhibit membrane transport. The timing of the cycles is also important 

– application of cyclical pressures (>0.5Hz) have stimulatory effects on cartilage matrix 

synthesis.  It also appears that isolated chondrocytes are more sensitive to pressure than in 

situ within the matrix and that the cytoskeleton and Golgi apparatus are involved in this 

response. 

Physiological levels of hydrostatic pressure can affect membrane permeability to ions and 

amino acids and thus affect intracellular solute concentrations.   Increase in hydrostatic 

pressure leads to increased rate of synthesis of matrix components and this may be exerted 

via alteration in intracellular pH. Browning et al., (1999) showed that application of 20-

300atm to isolated cells led to NHE stimulation via phosphorylation-dependent processes. 

Additionally, hydrostatic pressure has been shown to inhibit membrane transport pathways 

(such as  Na+/K+-pump, Na+/K+/2Cl- cotransporter) (Hall et al., 1999).  Conformational 

alterations by cell deformation may be responsible for change in membrane transport 

activity as well as changes in their phosphorylation status.  For example, pressure may 

uncouple ATP hydrolysis or alter lipid environment as to retard Na+ binding or constrain 

conformational changes leading to altered activity of the Na+/K+ pump.    Alteration in ion 

channel activity is therefore likely to be intimately linked to matrix synthesis.  

4.1.4 Osmotic sensitivity of chondrocytes 
Static loading leads to fluid expression and increased interstitial fluid osmolarity. The link 
between ECM hydration and chondrocyte metabolism appears to be via volume regulation.  
Cells respond to unequal tonicity by water movement across plasma membrane and this is 
usually rapid leading to cell volume changes within seconds.  The osmometric behaviour of 
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chondrocytes in situ and isolated from matrix appears to be similar although some 
differences in layers occur in situ (Bush & Hall, 2001). Superficial zone chondrocytes appear 
to swell more than middle or deeper zone cells and this may reflect less proteoglycan 
present in this zone. Additionally deeper zone chondrocytes may take longer to respond to 
water changes in cartilage so the response may depend on zone and local osmotic 
environment. Potentially, zone-specific alterations in physico-chemical signals may lead to 
differences in chondrocyte matrix biosynthesis.   
Water can flux through membranes via aquaporins.  Aquaporins (AQP) are water channel 
proteins that allow water to move in the direction of osmotic gradient and may also allow 
small solutes to pass, for example glycerol and urea. A role in cell volume regulation and 
mechanotransduction in chondrocytes has been proposed (Mobasheri et al., 2004). AQP1 
and AQP3 are expressed in cartilage resulting in water permeability and may respond to 
environment changes since changes in aquaporin expression may be important in 
pathology.  
Hyperosmotic stress induces a transient alteration in cellular volume and [Ca2+]i (Erickson et 
al., 2001) but a latency appears to exist between minimum cell volume reached and peak 
Ca2+ levels.  This may be explained by Na+ entering the cell (possibly via voltage-gated 
sodium channels, VGSC, or epithelial sodium channels, ENaC), leading to depolarisation 
and subsequent increase in intracellular calcium levels.  This then results in membrane 
hyperpolarisation and Ca2+ activated K+ channels open causing K+ efflux. Hypotonic shock 
also results in increased intracellular Ca2+ levels (Wilkins et al., 2003). Mechanosensitive 
Ca2+ channels appear to open in response to hypotonicity as well as calcium release from 
intracellular stores. Prolonged increase of intracellular calcium, however, is detrimental to 
the cell so mechanisms such as Na+/Ca2+ exchanger are in operation to regulate this Ca2+ 

rise.   
These stretch-activated ion channels may act as putative mechanical signal transducers since 

they lead to fluctuations in intracellular calcium levels that may affect gene expression. 

Potential mechanosensitive ion channels in chondrocytes could include VGSC, ENaC and 

N/L-type voltage gated calcium channels (VGCC). In epithelial cells, ENaC is linked to the 

actin cytoskeleton and integrin. In osteoarthritic cartilage, ENaC is absent and the lack of 

ENaC means that chondrocytes may have lost the ability to transduce mechanical signals 

effectively.  

4.1.5 Integrins 
Integrins play a key role in the interactions between the cell and the extracellular matrix 

including cell anchorage, growth, differentiation, migration and matrix synthesis and 

degradation (Loeser, 1993).  Integrins are cell surface receptors that recognise and bind to an 

Arg-Gly-Asp sequence on ECM proteins and are heterodimeric (one ǂ and one ǃ subunit) 

transmembrane glycoproteins (Loeser, 2000).   The importance of integrins, as well as being 

cell adhesion molecules, is that they may function as transmitters of information and be able 

to mediate intracellular responses to extracellular stimuli.  The pericellular matrix and 

chondrocytes in the chondron contain collagen types II, VI and IV, aggrecan and fibronectin 

and integrins are known to interact with these proteins found in pericellular matrix.   

Immunoprecipitation and immunofluorescence experiments show co-localisation and 

association of integrin with ENaC and VGCC and therefore integrins may functionally 

activate ion transporters following deformation of the pericellular matrix. 
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Extracellular protein binding to the cell leads to receptor clustering and activates integrin. 
Integrins however, have no inherent kinase activity but will often complex with Shc, Crk, 
paxillin, vinculin, caveolin and/or FAK. Many of these proteins in the complex are activated 
by tyrosine phosphorylation which then leads to activation of other kinases such as Src, 
RhoA, Rac1, Ras, Raf1, Sos, Grb2, MEK kinase and member of the MAP kinase family 
(including ERK1/2, JNK and p38). This then leads to downstream signalling that regulate 
gene expression, for example MAP kinase, that lead to activation of transcription factors 
such as AP-1 and NF-κB. 
The regulation of chondrocyte integrin function is important in the homeostasis of cartilage as 

well as in disease states in which interactions between chondrocytes and their ECM are 

altered.  Factors that modulate chondrocyte ECM synthesis, such as IGF-1 and TGF-ǃ, also 

appear to modulate integrin-mediated attachment of chondrocytes to ECM proteins (Loeser 

1994, 1997).  The effects of IGF-1 and TGF-ǃ on chondrocyte integrin expression and function, 

however, in vivo may depend on the relative levels of each growth factor present and thereby 

providing a means for sophisticated control of cell-matrix interactions in cartilage.  Growth 

factor receptor phosphorylation leads to increased integrin aggregation, possibly via MAP 

kinase activation.  There appears to be co-localisation of IGF-1 receptor and ǃ1 integrin subunit 

in chondrocytes. Cross-talk exists between integrins and growth factors/cytokines and as well 

as integrin activity being affected by growth factors, growth factor activity itself is dependent 

on integrin binding. Therefore a two-way signalling process occurs with integrin occupying a 

central role in this system.  Increased expression of IGF-1 has been noted in osteoarthritic 

cartilage and could act in an autocrine manner to increased ǂ1ǃ1 possibly as part of a repair 

response mediating signals important for cell survival/proliferation. 

Integrins have a central role in cell survival and inhibition of integrin function results in 

apoptosis (Loeser, 2002; Mobasheri et al., 2002).  The Ras-MAPK pathway is important to 

chondrocyte survival and integrins are linked to Ras-MAPK pathway by downstream 

signaling factors including the docking protein Shc.  Interruption of the Ras-MAPK pathway 

produces apoptosis (via increased expression of pro-apoptotic proteins or repression of anti-

apoptotic proteins).  Therefore disruption of the interactions between chondrocytes and the 

ECM (via integrins) may induce apoptotic cell death and may contribute to pathogenesis of 

osteoarthritis.  

4.1.6 Purinergic signaling 
The potential role of purinergic signalling in mechanotransduction in cartilage was 
postulated following the finding that compressive loading of bovine chondrocytes in 
chondrons or in agarose pellets leads to ATP release (Chowdhury & Knight, 2006). ATP is 
an important mediator involved in autocrine/paracrine signalling and it can be released 
following cell damage and as well as being directly involved in signalling via release.  
Chondrocytes have been shown to express P2Y2 receptors (Millward-Sadler et al., 2004) and 
normal chondrocytes release ATP after mechanical stimulation involving calcium signaling.  
Recently, Varani et al., (2008) characterised the expression of P2X1 and P2X3 receptors in 
bovine chondrocytes. Unlike P2Y receptors that are G-protein coupled, P2X receptors are 
membrane ligand-gated ion channels that open in response to binding of extracellular ATP.  
Stimulation of purinergic pathways (via P2X receptors) may be important in the response to 
joint inflammation since ATP further stimulates NO and PGE2 production in chondrocytes 
following IL-1ǃ stimulation.  
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The link between P2 receptors and cell signalling may involve connexin hemichannel 
expression (Knight et al., 2009).  Connexins are membrane proteins that form hemichannels 
and hemichannels are one of the potential ways of releasing ATP (as well as through anion 
channels and via exocytosis of ATP-filled vesicles). Cyclic loading leads to hemichannel 
opening and ATP release in chondrocyte constructs (Garcia & Knight, 2010).  In human 
cartilage, connexion 43 has been found in cells in the superficial region.  The presence of 
these potential mechanosensitive cells primarily in the superficial/middle zones may 
indicate different mechanotransduction pathways than deeper zone cells. Since hypoxia is 
known to regulate connexins 43 dephophosphorylation, translocation and proteosomal 
degradation in other cells the response to mechanical stimulation may be related to the 
oxygen environment of cartilage.   
The primary cilium, a membrane-coated axoneme that projects from the cell surface into the 
extracellular microenvironment could also be involved in chondrocyte 
mechanotransduction. The function of primary cilium in chondrocytes has not established 
but in the study by Knight et al., (2009) approximately 50% of primary cilia had co-
expression of connexin 43. It is postulated that deflection of the cilium may activate ATP 
release via hemichannels and once released, ATP may activate P2 receptors, triggering 
intracellular Ca2+ signalling cascades and mediate effects on proteoglycan and collagen 
synthesis and MMP expression and NO release.   
In osteoarthritic chondrocytes, a reduction in purinergic signalling following mechanical 

stimulation has been reported. This could be due to desensitisation by ATP released into 

synovial fluid (increased ATP levels in synovial fluid are reported in OA patients) or by 

receptor down regulation (since reduction in receptor numbers has been described at the cell 

surface in OA chondrocytes). The changes in ATP-mediated signalling in OA cartilage is of 

importance since ATP is normally chondroprotective against proteoglycan loss. 

4.1.7 Transient receptor potential (TRP) channels 
Transient receptor potential (TRP) channels comprise a superfamily of more than 50 

different ion channels with a preference of Ca2+, playing a role in the transduction of several 

physical stimuli such as temperature, osmotic and mechanical stimuli. TRP channel opening 

induces membrane depolarisation while increasing cytosolic Ca2+ and/or Na+ 

concentrations. Most, but not all TRPC members act as store-operated Ca2+ channels 

whereas TRPV channels may be involved in a nonselective conductance of cations with a 

preference for Ca2+.  Since calcium entry through plasma membrane channels is recognised 

as a cellular signalling event per se, TPR channels provide an ideal candidate to link 

between mechanical stimuli and cellular response. 

In human osteoarthritic chondrocytes, the majority of the investigated TRP genes are 

expressed (Gavenis et al., 2009) and a correlation appears between the degree of 

differentiation of chondrocytes and the expression of various members of the TRP family. 

Their role in cartilage health and disease is, as yet, unknown (Mobasheri &Barrett-Jolley, 

2011).   

5. Oxygen, mitochondria and reactive oxygen species in articular cartilage 

Adult articular cartilage is avascular and hence long diffusion pathways exist for nutrients 
solutes and oxygen to cross.  Synovial fluid has low oxygen tension (6-10%) and articular 
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chondrocytes experience relatively low levels of oxygen, compared to other cell-types, with 
chondrocytes operating at oxygen tensions ranging from 6-10% at the articular surface to 
around 2% in the deep zones (Zhou et al., 2004).  Despite this, articular chondrocytes not 
only survive but regulate extracellular matrix synthesis. Although energy production 
appears to be primarily via a glycolysis in this low oxygen environment, it is being 
recgonised that mitochondria might play an important role in the health and disease of the 
joint through their involvement in reactive oxygen species generation, calcium regulation 
and the intimate role in cell death/survival pathways in cartilage. 

5.1 Cartilage oxygen tension and cell metabolism 
The oxygen tension gradient in cartilage is determined by cell density and distribution, 
cartilage thickness, oxygen tension in synovial fluid, oxygen supply from subchondral 
surface and oxygen consumption rate per cell (Zhou et al., 2004). Articular chondrocytes 
have a characteristic morphology and metabolism depending on their position in cartilage 
and part of this may be due to the oxygen gradients that exist.   Although the majority of 
diffusion of oxygen appears to come from the articular surface facing the synovial fluid, 
there is thought to be a component of diffusion from vessels in the subchondral bone plate 
and therefore extreme levels of hypoxia (i.e. 1% or less) may not exist in situ in cartilage (but 
could do in disease where subchondral bone plate thickening is a feature of osteoarthritis).   
Despite these low oxygen conditions, articular chondrocytes do survive and are able to 

maintain their cartilage phenotype (Grimshaw & Mason, 2000; Pfander & Gelse, 2007). To 

survive low oxygen conditions cells possess highly conserved adaptive mechanisms. The 

most important component is mediated by transcriptional activation involving binding of 

the transcription factor hypoxia-inducible factor-1 (HIF-1). In cartilage, during physiological 

hypoxia, HIF-1ǂ is expressed (Lin et al., 2004) and it appears to act as a survival factor since 

necrotic cartilage occurs in HIF-1 knock-out mice (Gelse et al., 2008).    

Although articular chondrocytes reside in low oxygen levels, they are not unresponsive to 

hypoxia since changes in oxygen tension can have significant effects on matrix synthesis and 

cell growth. Indeed, matrix synthesis by articular chondrocytes may be optimal at lower 

tissue oxygen tensions,  for example at 5% O2, Sox9, type II collagen and aggrecan 

expression is higher than at 21% O2 (Marty-Hartert et al., 2005).  Oxygen diffusion and 

movement through cartilage may occur at differential rates in response to biochemical and 

loading differences in different regions and this could lead to local oxygen gradients within 

pockets of cartilage which could influence cell metabolism as well as differential gene 

expression.   

5.1.1 Articular cartilage metabolism 
Within the hypoxic environment of cartilage, articular chondrocytes predominately undergo 
glycolytic metabolism.  Lactate is the major end-product of this process and this adds to the 
already acidic load experienced by these cells.  ATP is generated by substrate level 
phosphorylation, whereas, apart from superficial layers where relatively higher oxygen 
levels can exist, oxidative phosphorylation appears to be a lesser component of ATP 
production.   
Reduction of oxygen levels in other cells results in an increase in glucose usage and lactate 
production, thereby increasing ATP production - this is commonly known as the Pasteur 
effect. Articular chondrocytes, however, appear to display a negative Pasteur effect where 
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reductions in oxygen levels result in suppression of carbohydrate breakdown (Lee & Urban, 
1997).  This effect appears to be peculiar to articular cartilage since in fibrocartilaginous 
intervertebral disc, glucose uptake and lactate production increases under lowered oxygen 
levels.   

5.1.2 Changes in oxygen tension in joint disease 
Despite increased blood vessel formation in the synovial membrane and neoangiogenesis 
from the underlying bone into the deep zone of osteoarthritic cartilage, the hypoxic 
environment of cartilage appears more pronounced in osteoarthritis.  Synovial fluid from 
osteoarthritic joints contains less oxygen than synovial fluids from healthy joints (Pflander & 
Gelse, 2007).   Reductions in oxygen tension in joint disease could be due to increased 
oxygen usage by the synovial membrane, alterations in blood flow and gas exchange by 
fibrosis in the joint capsule and subchondral bone sclerosis (Svalastoga & Kiaet, 1989).  
Additionally, alterations in diffusion gradients caused by changes in matrix structure, 
altered biomechanical forces through the cartilage and alterations in oxygen consumption in 
inflammation (e.g. reactive oxygen species generation) contribute to the reduction in 
cartilage oxygen levels.   

5.1.3 Hypoxia and HIF-1 in osteoarthritis 
Chronic hypoxia in the osteoarthritic joint is associated with increased levels of HIF-1 in 

both synoviocytes and chondrocytes and related HIF-1 targeted genes, such as VEGF and 

iNOS. Additionally, HIF-1ǂ accumulation can also be increased by other factors such as 

pro-inflammatory cytokines and changes in mechanical loading, as well as hypoxia 

(Pfander & Gelse, 2007). HIF-1ǂ is important for anaerobic energy production and matrix 

synthesis by chondrocytes and appears to have a pivotal role for maintaining 

chondrocytic phenotype.  

As well as the increased synthesis of matrix destructive enzymes, osteoarthritic 

chondrocytes show enhanced gene expression of type II collagen. This latter feature may be 

related to oxygen levels since increased accumulation of type II collagen induced by 1% 

oxygen is accompanied by stabilisation, nuclear translocation and increased activity of HIF-

1ǂ.  The increase in posttranslational modification of type II collagen may contribute to the 

increased synthesis of collagen type II seen during osteoarthritis as an effort to restore 

extracellular matrix. 

5.2 The role of mitochondria in articular chondrocytes 
Mitochondria are extremely important cellular organelles traditionally seen as the source of 
cellular energy production (Duchen, 2004).  Articular chondrocytes contain fewer 
mitochondria compared to other, more metabolically active cell types, and this difference 
may reflect the cellular environment (i.e. hypoxia) and reliance on glycolytic metabolism 
rather than oxidative phosphorylation for energy production. Despite this, mitochondrial 
physiology and function in the chondrocyte is still critical to cellular function and they are 
involved in many important aspects of cell physiology in both health and disease such as 
ROS generation, Ca2+ homeostasis and cell death and survival pathways.  Indeed, 
mitochondrial dysfunction is a key component of a number of diseases, such as diabetes and 
cancer, and the role of the mitochondrion in osteoarthritis is now beginning to be more fully 
appreciated (Terkeltaub et al., 2002). 
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5.2.1 Mitochondria and the chemiosmotic principle of energy production 
Mitochondria contain two membrane systems, an outer and inner mitochondrial membrane 
(Duchen, 2004).  The inner mitochondrial membrane is folded into cristae and it is here that 
the membrane bound enzymes (a series of complexes) of the respiratory chain are located. 
The chemiosmotic principle of energy production involves the oxidation of cellular 
substrates to produce ATP.  The reductants NADH and FADH2, generated from the 
tricarboxylic acid (TCA) cycle, enter the mitochondrial electron transport chain.  NADH is 
oxidised to NAD+ at complex I and FADH2 is oxidised to FAD2+ at complex II to provide 
electrons for ubisemiquinone at complex III. The electron chain complexes catalyse a series 
of redox reactions creating an electrochemical drive to transfer H+ from the mitochondrial 
matrix into the intermembrane space across the inner mitochondrial membrane.  This results 
in a large mitochondrial transmembrane potential of around-150 to -200mV and it is this 
membrane potential that provides the “protonmotive force” to cause H+ influx through F1-F0 
ATP synthase and drive the ATPase “backwards” thus phosphorylating ADP to release 
ATP. The respiratory rate is regulated by this proton gradient which in turn is dependent on 
substrate availability, inhibitors of respiration (for example anoxia) and any mechanism that 
results in the uncoupling of the enzyme complexes.  
In articular chondrocytes, both mitochondrial density and activity appears to be lower than 

other cell types with mitochondrial density significantly reduced in the deep zones 

compared with the upper zones of articular cartilage, likely to reflect oxygen levels in these 

zones. There is also evidence that the cytochrome component of the electron transport chain 

in articular chondrocytes may be incomplete in situ and provides further evidence that ATP 

derived from mitochondrial oxidative phosphorylation is not a major component of energy 

production in cartilage. Interestingly though, following transfer of cells to a relatively 

“oxygen-rich” environment (for example during culturing of cartilage explants or isolated 

cells in ambient conditions), mitochondrial biogenesis occurs (Mignotte et al., 1991).   This 

change within the chondrocyte appears to result in a switch to oxidative phosphorylation. It 

has to be noted, therefore, that these conditions may not represent in vivo conditions of the 

chondrocyte and interpretation of data on cartilage metabolism requires an appreciation of 

these potential changes.   

5.2.2 Mitochondria and reactive oxygen/nitrogen species 
The process of electron transfer along the electron transport chain in mitochondria is not 

completely efficient and electrons may be “lost” during the redox reactions, resulting in the 

transfer of electrons to oxygen and the generation of oxygen radicals (reactive oxygen 

species, ROS). These highly reactive species can result in cellular damage due to lipid 

peroxidation and DNA damage so efficient mechanisms in the mitochondrium (for example 

superoxide dismutase) and cytoplasm (for example catalase) exist to reduce the risk of this 

occurring. In mitochondria of articular chondrocytes, it seems that the main site of ROS 

generation is complex III (Milner et al., 2007).   

As well as being a potential source of cellular damage if left unchecked, reactive oxygen 
species are now thought to be important mediators of cell signalling.  A large number of 
intracellular signalling pathways are regulated by ROS including cytokine receptors, 
receptor tyrosine kinases, receptor serine/threonine kinases and p38 MAPK cascades.  This 
can be through the redox status of component proteins.  Oxidation and reduction of –SH 
groups on amino acids can result in conformational change and alteration in enzyme 
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activity.   ROS may also directly regulate activity of transcription factors through oxidative 
modifications of conserved cysteines. Redox-sensitive transcription factors include NF-kB, 
AP-1, sp-1, c-myb, p53 , egr-1, HIF-1ǂ and c-fos (Lo & Cruz, 1995).    DNA-binding by AP-1 
is also regulated by post-translational modifications which are redox-sensitive and this is 
also seen with GTP-binding protein Ras.   
Nitric oxide appears to have an important role in mitochondrial function (Duchen, 2004).  
Complex IV has a high affinity for NO and at low O2 competes with oxygen to inhibit 
mitochondrial respiration and this may be of relevance in a low oxygen system.  
Mitochondria may also generate NO themselves and a specific NOS has been shown to be 
expressed by the mitochondrium.  It appears that an intricate feedback mechanism 
involving NO, calcium, mitochondrial electron chain activity and ROS levels may exist in 
the mitochondrium that may be of particular importance in low-oxygen environments such 
as cartilage.    
Cellular antioxidant mechanisms exist though, and it is seen as a balance between ROS 
production and removal that determine the difference between physiological and 
pathological ROS levels within the cell.  As with ROS, the balance between physiological 
and pathological NO levels are also likely to be an important factor since high NO levels 
react with ROS resulting in peroxynitrite production and damage to the electron chain - a 
feature present in disease such as osteoarthritis.   

5.2.3 Mitochondria and calcium uptake  
Mitochondrial calcium handling is an important component of cellular calcium homeostasis 

since calcium “overload” is thought to be implicated in a number of pathological states 

including osteoarthritis.  Mitochondrial calcium uptake is driven primarily by the 

electrochemical gradient established by the mitochondrial potential and the relatively low Ca2+ 

concentration (Duchen, 2004).  When cytosolic calcium increases, calcium moves into the 

mitochondrial matrix. Intramitochondrial calcium concentration is kept low under “resting” 

conditions by the Na+/Ca2+ exchanger that results in calcium efflux.  Ca2+ appears to be taken 

up into the matrix through the IMM by a uniporter.  Additionally, voltage-dependent anion 

channels (VDAC) permeant to calcium exist in the outer mitochondrial membrane and may 

affect inner mitochondrial membrane calcium uptake by acting as a fast filter.  The VDAC also 

appears to form part of the mitochondrial membrane permeability pore in initiating apoptosis.   

Calcium microdomains can exist within cells and the proximity of mitochondria to 

endoplasmic reticulum calcium release sites may result in mitochondria experiencing 

relatively high local concentrations, promoting rapid calcium uptake to allow direct transfer 

of calcium between mitochondria and ER (Contreras et al., 2010).  In addition, the proximity 

to the plasma membrane by mitochondria also could allow regulation of calcium influx and 

therefore mitochondrial positioning could be important regulators of signalling pathways 

involving calcium. 

5.2.4 Mitochondria and cell death 
Mitochondria are intimately involved in cell death pathways.  In many cells a reduction in 
mitochondrially derived ATP leads to loss of maintenance of ion gradients and regulation of 
calcium and intracellular osmolarity causing cell swelling and death. Cell swelling is an 
early feature of osteoarthritis and mitochondrial dysfunction is likely to be a significant 
component of cell death in cartilage disease.   
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The opening of a large conductance pore (mPTP) occurs through a conformational change of 
several proteins of the mitochondrial membrane due to a number of conditions such as high 
[Ca2+]m, oxidative stress, ATP depletion, high inorganic phosphate (Pi) and mitochondrial 
depolarisation (Duchen 2004).  This irreversible high conductance opening causes 
mitochondrial swelling, cytochrome c release, caspase activation and apoptotic cell death.  
Apoptotic cell death may be a normal feature of cartilage growth and development, 
particularly in the hypertrophic zone of the growth plate but factors resulting in abnormal 
activation are important causes of cellular death and subsequent loss of cartilage integrity in 
joint disease.   

5.2.5 Mitochondria and osteoarthritis 
Mitochondria are implicated in the pathogenesis of many diseases, including osteoarthritis 
and mitochondrial mediated diseases are often due to hypoxic cell stress or aging – relevant 
factors in joint disease. In diabetes mellitus, defects in the electron chain are described 
(especially Complexes I and IV) and in neuronal injury (ischaemia/reperfusion injury), 
mitochondrial injury leads to impaired intracellular Ca2+ buffering, increased ROS 
generation and promotion of apoptosis via release of cytochrome c.  Additionally, ETC 
complex defects are present in Alzheimer’s, Parkinson’s and Huntingdon’s disease and 
peroxynitrite-mediated nitration of tyrosines in Alzheimer’s disease neurons are due to 
increased NO.   
In osteoarthritis, mitochondrial content increases in number and size and mitochondrial 
swelling has been noted (Terkeltaub et al., 2002). Mitochondrial numbers increase at sites of 
crystal formation and matrix calcification is a feature of osteoarthritis.  It appears that 
calcification is stimulated by NO/peroxynitrite and chondrocyte apoptosis and this is in 
turn is modulated by ATP metabolism.  Mitochondrial energy reserve is required for matrix 
synthesis and crystal suppression and therefore altered mitochondrial energy metabolism 
may lead to crystal formation. 
Mitochondrial dysfunction of the electron chain (particularly complexes II and III) has been 

described in osteoarthritic chondrocytes and this will alter the respiratory state and 

mitochondrial membrane potential of the mitochondrium (Maniero et al., 2003).   A collapse 

of the mitochondrial membrane potential results in mitochondrial swelling, disruption of 

the outer mitochondrial membrane and release of pro-apoptotic factors such as cytochrome 

c, AIF and procaspases from the intermembrane space and hence cell death. 

5.3 Oxidative stress and reactive oxygen/nitrogen species in joint disease 
When ROS levels exceed the cellular defence mechanisms, cellular damage can occur.  This 

is known as oxidative stress.  Increased oxygen consumption by the synovium during 

inflammation and the exposure to inflammatory mediators can lead to increase in ROS and 

RNS generation to levels that can induce cellular damage.  In the inflammed joint 

synoviocytes appear to be the key cell driving this response, as opposed to chondrocytes, 

although it is the effect on the chondrocyte that will lead to compromise in cartilage 

integrity and hence disease (Schneider et al., 2005).  In synoviocytes there are a number of 

sources of ROS generation, as well as mitochondrial derived ROS including xanthine 

oxidoreductase and membrane-bound NADPH oxidase (Henroitin et al., 2003).    

Oxidative stress results in protein, lipid membrane, DNA damage and therefore cell injury 
and death (Finkl 2003).  Lipid peroxyl radical formation can result in lipid bond cross-
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linking and alteration in membrane properties as well as forming products, such as 
aldehydes and saturated hydrocarbons that are toxic to cells. Fragmentation of hyaluronic 
acid is reported following oxidative damage to the glycosidic bonds.  Since hyaluronic acid 
is a key cartilage biomolecule both in structure and cell signalling, alterations to HA 
structure will lead to alterations in cytoskeletal polymerisation, for example and affect cell 
adhesive properties.  Oxidative damage to other extracellular components and ROS-induced 
activation of matrix metalloproteinases can add to the degradative element of these 
molecules and additionally, the action of IL-1 on proteoglycan loss appears to be mediated 
by ROS and NO (Henroitin et al., 2003).  The direct degradation of proteoglycans and 
collagen by ROS is due to upregulation of collagenases and other MMPs as well as 
decreased production of TIMPs. Additionally, NO is implicated in cartilage insensitivity to 
IGF-1 by inhibiting IGF-1 receptor autophosphorylation.   Therefore the use of antioxidant 
therapy has justifiable support in joint disease. 

6. Conclusion  

Our knowledge of the cellular processes occurring in articular chondrocytes has grown 
immensely over recent years but it is the appreciation of the interaction and response of 
these cells to their unusual and challenging environment and how these change in diseases 
such as osteoarthritis that will open up new exciting opportunities for potential therapeutic 
modulation in joint disease.  How the chondrocyte senses and adapts to the dynamic nature 
of the extracellular matrix in health and disease makes us realise the complexity of signals 
involved and the multiplicity of the component parts, such as, for example, the roles of cell 
volume regulation, intracellular pH homeostasis and mitochondrial function on cell 
function in  cartilage.  The challenge for the future then will be to tie all these elements 
together and be able to paint the big picture that reveals the many complex interactions 
occurring within the joint. 

7. List of abbreviations 

AQP Aquaporin 

ATP Adenosine triphosphate 

ECM Extracellular matrix 

ENaC Epithelial sodium channel 

ERK1/2 Extracellular signal-regulated kinase 1/2 

ETC Electron chain transport 

FADH2 Flavin adenine dinucleotide H2

GAG Glycosaminoglycan 

GLUT Glucose transporter 

HA Hyaluronic acid 

HIF-1 Hypoxia-inducible factor-1 

Hz Hertz 

kDa kiloDaltons 

IGF-1 Insulin-like growth factor-1 

IL-1 Interleukin-1 

IMM Inner mitochondrial membrane 
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MAPK Mitogen-activated protein kinase 

MCT Monocarboxylate transporter 

MEK Mitogen-activated protein kinase kinase  

MMP Matrix metalloproteinase 

MPa Megapascals 

mPTP mitochondrial permeability transition pore 

NADH Nicotinamide adenine dinucleotide H 

NHE Na+/H+ exchange 

NO Nitric oxide 

OA Osteoarthritis 

OMM Outer mitochondrial membrane 

PGE2 Prostaglandin E2

PKA Protein kinase A 

TCA Tricarboxylic acid cycle 

TGF-β Transforming growth factor-β 
TRP Transient receptor potential 

VAHC Voltage-activated H+ channel 

VDAC  Voltage-dependent anion channel 

VGCC Voltage-gated calcium channel 

VGSC Voltage-gated sodium channel 
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