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1. Introduction 

Transforming growth factor- (TGF-) is a pleiotropic cytokine that plays a critical role in 

the maintenance of healthy cartilage [1-4]. Aberrant TGF- signaling has been implicated in 
a number of cartilage-related disorders including gout [5-6], lupus [7-8], rheumatoid 
arthritis [9] and osteoarthritis (OA) [1-3]. Although much progress has been made in 

understanding the molecular mechanism of TGF- action in normal and OA cartilage, this 
knowledge has not translated into  the development of a therapeutic strategy to slow or 
reverse the progression of the disease. In this chapter, we will highlight recent advances in 

understanding the role of TGF- signaling in normal cartilage, the changes that occur in the 

TGF- signaling pathway components in OA and the potential of targeting the TGF- 
signaling pathway as a therapeutic strategy for the treatment of this disease. 

2. TGF- signaling 

Members of the TGF- superfamily, including TGF-s, activins and bone morphogenetic 

proteins (BMPs), are critical for development and homeostasis [10-12]. They regulate diverse 

cellular processes including proliferation, differentiation and migration as well as 

extracellular matrix (ECM) production [11-14]. The three mammalian TGF- isoforms (TGF-

1, -2, -3) share significant sequence (approximately 75% identity) and structural 

similarity [15-19].  However, the phenotypes of TGF- isoform knockout mice do not 

overlap [20] and the isoforms exhibit distinct spatial and temporal expression in 

developing/regenerating tissues and in pathologic responses [21], suggesting distinct 

functions in vivo. 

TGF- is synthesized as a homo-dimeric pro-protein (pro-TGF-) and is processed in the 

trans-Golgi network by furin-like enzymes. Cleavage by furin results in the formation of a 

mature TGF- dimer along with its pro-peptide, known as latency associated peptide (LAP). 

TGF- remains non-covalently associated with LAP and is in an inactive state. In most cases, 

this small latent complex associates with the latent TGF- binding protein (LTBP) which 

forms a disulphide bond with LAP, giving rise to a large latent complex. Once secreted, the 

large latent complex becomes attached to the ECM by covalent cross-linking of LTBP with 

ECM proteins which is catalyzed by a transglutaminase [22-25].  
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TGF- activation involves its dissociation from the latent complex which is necessary for 

TGF-binding to its receptors and for mediating its biological effects [25]. Latent TGF- can 
be activated by physical processes including acidification, alkalization and heat 
denaturation, and biological processes involving proteolysis or protein-protein interactions 
[22, 24-26]. Many serine proteases such as plasmin and thrombin, and several matrix 

metalloproteinases (MMPs) such as MMP-2, -9, -13 and -14 have been implicated in TGF- 
activation [24]. In addition, thrombospondin-1 (TSP-1) has been shown to bind LAP directly 
and is thought to cause a conformational change in LAP that leads to activation of latent 

TGF- [27]. Although the precise mechanisms of TGF-activation in vivo in different tissues 

remain to be determined, it is likely to be a critical step for regulating TGF-bioavailability 
[22, 24-26]. 

TGF- signals through a pair of transmembrane serine/threonine kinases known as the type 

I (TRI, also known as activin receptor-like kinase-5 or ALK5) and type II (TRII) TGF- 

receptors [10-12]. TGF- binds TRII, a constitutively active kinase, which then 

phosphorylates and activates TRI/ALK5 [28-29]. Activated ALK5 phosphorylates 
intracellular Smad2 and Smad3 proteins, which then bind to Smad4 and accumulate in the 
nucleus where they interact with various co-activators, co-repressors and transcription 

factors to regulate gene expression [30-31]. TGF- has also been shown to activate another 

TGF- type I receptor known as ALK1 which phosphorylates Smad-1, -5 and -8 [32-34]. In 

addition, TGF- activates several non-Smad pathways including mitogen-activated protein 
(MAP) kinase pathways (ERK, JNK and p38), Rho-like GTPase  pathways and 
phosphatidylinositol-3-kinase (PI3K)/Akt pathways [35-36]. 

3. Regulation of TGF- signaling 

Intracellular regulation of TGF- signaling involves the interplay of many cytoplasmic 
proteins including FKBP12, TRIP-1, STRAP, TRAP-1, SARA, HSP90 [37] and nuclear 
proteins such as TGIF, c-Ski, SnoN and Evi-1 [31]. The inhibitory Smads or I-Smads, which 
include Smad6 and Smad7, play critical roles in negative feedback regulation of TGF-

/BMP signaling by forming stable complexes with the activated type I receptors thereby 
blocking Smad phosphorylation [38-39]. Smad6 and Smad7 also act as adaptor proteins that 

recruit E3 ubiquitin ligases such as Smurf1 and Smurf2 to the TGF- type I receptors and 
induce their ubiquitination and proteosomal degradation [40].  

Extracellular control of TGF- signaling is orchestrated by many factors including those that 

regulate activation of latent TGF-as described in Section 2. In addition, several ECM 

components such as decorin and biglycan bind TGF- and regulate its bioavailability [41]. 

Other extracellular molecules such as lipoproteins have been shown to sequester TGF- 

ligand into an inactive pool [42]. TGF- co-receptors such as endoglin, betaglycan and 

CD109 are emerging as important factors that regulate many aspects of TGF- signaling in 
health and disease.  
Endoglin (CD105) is a single-pass transmembrane homo-dimeric glycoprotein that is 

expressed mainly in endothelial cells. It binds TGF-1 and TGF-3 with high affinity in the 

presence of TRII but does not bind the TGF-2 isoform [43]. Endoglin has been shown to (i) 

alter TRII and TRI (ALK1 and ALK5) phosphorylation status, (ii) promote TGF-/ALK1 

signaling, (iii) suppress TGF-/ALK5/Smad2/3 signaling and (iv) antagonize TGF--

induced MAP kinase signaling through a -arrestin-2-dependent  mechanism [44-45].  

www.intechopen.com



 
TGF- in Cartilage 

 

499 

Betaglycan, also known as TGF- type III receptor, is a homologue of endoglin and is a more 

ubiquitously expressed transmembrane glycoprotein. It binds all three TGF- isoforms 

(TGF-1, -2, -3) with high affinity and enhances their binding to the signaling receptors, 

especially that of the TGF-2 isoform [43, 46-47]. Betaglycan has been shown to direct 

clathrin-mediated endocytosis of TRII and ALK5 [48], and enhance TGF- signaling via 
Smad and MAP kinase pathways [49-51]. Conversely, betaglycan has also been reported to 

promote -arrestin2-dependent TGF- receptor internalization and down-regulation of TGF-

 signaling [52].  

CD109 is a glycosyl phosphatidylinostol (GPI)-anchored protein and a member of the 2-
macroglobulin/complement family. It is found on activated T-cells and platelets, endothelial 
cells and many human cancer cell lines [53-56]. We have recently identified CD109 as a TGF-

 co-receptor which binds TGF-with high affinity, forms a heteromeric complex with the 

TGF- signaling receptors and inhibits Smad2/3 signaling in different cell types [57-58]. 

Recent results indicate that CD109 inhibits TGF- signaling by promoting TGF- receptor 
internalization and degradation in a Smad7/Smurf2-dependent manner [57, 59]. Taken 

together, these studies demonstrate that the TGF- co-receptors endoglin, betaglycan and 

CD109 play critical roles in regulating TGF- signaling. 

4. TGF- and cartilage 

Articular cartilage is an avascular tissue that receives its nutrients from  synovial fluid, a 
thin layer of fluid surrounding the cartilage. The only cell type found in cartilage is the 
chondrocyte which are embedded in an extensive ECM made of mainly collagens and 
proteoglycans [60]. Type II collagen is the main collagen found in articular cartilage and is 
important for providing tensile strength [61-62]. Aggrecan is the main proteoglycan of 
articular cartilage and provides structural support by retaining water in the matrix [63]. 
Articular cartilage is commonly divided into four distinct zones, namely the superficial 
zone, middle zone, deep zone and calcified cartilage [60]. The zones differ in collagen 
organization, proteoglycan content and chondrocyte morphologies [60].  

TGF- plays a number of roles in the development, growth and maintenance of articular 

cartilage. During cartilage development, TGF- stimulates chondrogenic condensation [64-

65], chondroprogenitor cell proliferation and chondrocyte differentiation [66-67]. TGF- also 

inhibits terminal differentiation or “hypertrophy” of chondrocytes thereby blocking 

endochondral bone formation [68-69] and allowing formation of articular cartilage at the 

end of the long bones [70]. The maintenance of mature articular cartilage is dependent on 

the action of TGF- which not only stimulates production of ECM proteins such as type II 

collagen and aggrecan, but also blocks degradation of ECM proteins by increasing 

production of protease inhibitors such as tissue inhibitor of metalloproteases (TIMPs) [69, 

71]. TGF- also counteracts the catabolic effects of interleukin (IL)-1 and tumor necrosis 

factor (TNF)- on cartilage[69, 71].  

The potent anabolic effects of TGF-β on articular cartilage in vivo in animal models are well 
known. TGF-β injected into the periosteum of rat or mouse femur induces chondrocyte 
differentiation and cartilage formation [72-73]. Local administration of TGF-β into murine 
knee joints stimulated articular cartilage repair [74] and healing of full-thickness cartilage 

defects [75-76]. Conversely, blocking endogenous TGF-β using a soluble form of TRII 
impaired articular cartilage repair in a murine model of experimental OA [77]. In addition, 
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expression of a dominant negative TβRII in cartilage resulted in an OA-like phenotype in 
the mouse [78]. Furthermore, Smad3 knockout mice develop degenerative joint disease 
resembling human OA [70]. In addition, decreased TGF-β expression and Smad2 
phosphorylation are associated with a reduced protective effect during OA progression [79]. 
Evidence for a causal relationship between TGF-β and OA in the human is further 

supported by the identification of asporin (a proteoglycan that sequesters TGF- in the ECM 

and inhibits TGF-β function) as an OA susceptibility gene [80-83].  However, TGF-also has 
been shown to have undesirable effects on cartilage. A number of studies have reported that 
TGF-β treatment of normal murine joints is associated with osteophyte outgrowth, 
inflammation and synovial fibroplasia [84-86]. Thus, normal cartilage function may 

dependent on a narrow range of bioactive TGF- levels, and concentrations above or below 

this level may lead to alterations in TGF- signaling, resulting in abnormal cartilage 
function.  

5. Altered expression and function of TGF- pathway components in 
osteoarthritis 

OA is a chronic degenerative joint disease characterized by articular cartilage degradation, 
subchondral bone alterations and synovial inflammation [87-88]. The cause of OA is 
unknown but risk factors include aging, obesity, abnormal mechanical loading and 
anatomical abnormalities [89]. Subchondral bone alterations contribute to the initiation 
and/or progression of OA by producing catabolic factors that degrade the overlying 
cartilage [90]. Synovial inflammation is thought to be induced by cartilage matrix 
degradation products that are phagocytosed by macrophages of the synovial lining. The 
macrophages, in turn, secrete pro-inflammatory mediators into the synovial fluid that 
diffuse into the cartilage, thereby creating a vicious circle of synovial inflammation and 

cartilage degradation [90]. The current chapter focuses on the role of TGF- signaling in 
articular cartilage homeostasis and its deregulation in OA.  

5.1 TGF- ligands and their activation 

Several studies suggest that TGF- isoform (TGF-1, -2, -3) levels are down-regulated in 

OA cartilage. For example, TGF-1 protein levels were shown to be decreased in human OA 

cartilage [91-92] and TGF-3 levels were shown to be reduced in both spontaneous 

(STR/Ort) and collagenase-induced mouse models of OA [79]. In addition, TGF-1 and 

TGF-2 levels were moderately decreased in rabbit OA cartilage [93]. In constrast, a number 

of studies have demonstrated that TGF- isoform expression is up-regulated in OA 

cartilage.  TGF-1, -2 and -3 levels were found to be increased in human OA [94-96] and 

TGF-1 and -3 levels were elevated in a papain-induced mouse model of OA [77]. 

Furthermore, TGF-2 was increased in a surgically-induced model of early OA in rats [97]. 

One possible explanation for these discrepancies is that TGF- isoform expression may vary 

during the course of OA. For instance, TGF- levels might increase in the early stages of OA 

to counteract the catabolic effects of inflammatory cytokines such as IL-1 or TNF- [98-99]. 

However, with the progressive loss of TGF- receptor expression (see Section 5.2), 

chondrocytes may eventually lose their responsiveness to TGF-, leading to a decrease in 

TGF- levels due to the loss of TGF- auto-induction [100]. Future studies using age-, race- 
and gender- matched normal and OA human articular cartilage and a better characterization 
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of TGF- isoform expression in the different animal models during OA progression will be 
needed to resolve this issue.  

Although TGF- isoform levels are altered in OA, it is not known whether these changes 

represent active TGF- levels. Moreover, accumulating evidence suggests that components 

of the large latent complex may be disrupted in OA. For example, both LTBP-1 and LTBP-2 
were shown to be increased in human OA cartilage [97, 101-102] and in experimental 

models of OA [97, 101]. Although LTBP-1 [103-104] and LTBP-2 [105] knockout mice do not 
display an OA phenotype suggesting that these proteins may not contribute to the OA 

process, LTBP-3 knockout mice develop an OA phenotype and display features resembling 

those of mice with impaired TGF- signaling [106-107]. These results suggest that LTBP-3 

might have a protective effect against OA progression. It is also possible that studies using 
LTBP-1 and LTBP-2 knockout mice in an experimental OA setting may  reveal a role for  

these proteins in OA progression. Interestingly, the levels of TGF-activators are also 
upregulated in human OA and in a variety of animal models of OA. Transglutaminase-2 
(TG-2), the predominant transglutaminase subtype in hypertrophic chondrocytes, are higher 

in knee [108-109] and femoral [110] cartilage in human OA and in experimental OA models 
[97, 101, 111].  Whether the enhanced TG-2 expression in OA correlates with increased TGF-

 activation or LTBP cross-linking to ECM remains to be determined. In addition, TSP-1 
levels are increased in the cartilage in mild and moderate OA, but decreased in severe OA 

[112]. Intra-articular gene transfer of TSP-1 was shown to reduce disease progression in a 
collagen- or anterior cruciate ligament transection-induced OA in rats [113-114]. This is 

consistent with the notion that TSP-1 mediates latent TGF- activation in OA cartilage and 
that the up-regulation of TSP-1 is an adaptive response in an attempt to increase cartilage 
repair.   

5.2 TGF- receptors  
Increasing evidence indicates that TGF- receptor expression levels are altered in OA. TRII 

levels were shown to be decreased in human OA cartilage [92] and in a rabbit OA model 

[93]. In addition, TRII mRNA expression was decreased in cultured human OA 

chondrocytes as compared to normal chondrocytes in vitro [115]. These results suggest that 

loss of TRII during OA might represent an intrinsic defect of human OA chondrocytes. The 

notion that loss of TRII might contribute to the initiation and/or progression of OA is 

supported by a study showing that a truncated, kinase-defective TRII expressed in mouse 

skeletal tissue was associated terminal chondrocyte differentiation and the development of 

OA-like features [78]. A more recent study has shown that conditional expression of 

dominant negative TRII inhibits cartilage formation in mice [116]. Thus, loss of TRII 

expression and/or activity may not only promote an OA-like phenotype but may also 

contribute to OA progression by limiting the ability of cartilage to repair itself. Future 

studies using cartilage-specific knockout of TRII may provide further insight into the role 

of this TGF- receptor in OA pathogenesis. 

Emerging evidence indicates that the expression of TGF-type I receptors is also altered in 

OA. Our group has shown that in addition to the canonical TGF- type I receptor ALK5, 

human chondrocytes also express ALK1 [34].  Both ALK5 and ALK1 are required for TGF--

induced Smad1/5 phosphorylation whereas only ALK5 is essential for TGF--induced 
Smad3 phosphorylation in these cells [34]. We also demonstrated that ALK1 inhibits 
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whereas ALK5 potentiates the expression of type II collagen and PAI-1 in chondrocytes, 
indicating that ALK1 and ALK5 elicit opposite efffects in chondrocytes [34]. More recent 
data suggest that both ALK5 and ALK1 levels are decreased in mouse models of OA, but 
that ALK1 expression decreases to a lesser extent than that of ALK5, suggesting that the 
ratio of ALK1/ALK5 increases during OA [117]. Interestingly, ALK1 has been identified as 
one of the genes upregulated in a mensical tear rat model of OA [101] whereas ALK5 levels 
were dramatically reduced in partial meniscectomy and post-surgery training rat model of 
OA [118]. These two latter studies are consistent with the notion that the ALK1/ALK5 ratio 
increases during OA. In human OA cartilage, ALK1 mRNA expression highly correlates 
with MMP-13 levels whereas ALK5 mRNA levels correlate with aggrecan and collagen type 

II levels [117]. Collectively, these data suggest that alterations in the expression of TGF- 

signaling receptors (TRII and ALK5/ALK1) play an important role in OA pathogenesis 

and that an increase in the TGF-/ALK1 pathway activation relative to that of the TGF-

/ALK5 pathway activation is likely to be a critical event in the OA disease progression.  

5.3 Smads 

Since TGF-receptor levels are altered in OA, it can be anticipated that activities of 

downstream signaling mediators such as Smad2 and Smad3 are also altered. Indeed, Smad2 

phosphorylation levels are reduced in cartilage during OA progression in both 

spontaneous- (STR/Ort) and collagenase-induced mouse models of OA [79] and in cartilage 

of old mice as compared to young mice [119]. Although Smad3 phosphorylation was not 

examined in these models, a recent study has reported decreased Smad3 phosphorylation 

levels in the Smurf-2 transgenic mice which spontaneously develop an OA-like phenotype 

[120]. Together, these studies suggest that OA is associated with reduced TGF-

/ALK5/Smad2/3 signaling. 

The potential importance of Smad3 in OA is further underscored by the finding that Smad3 

knockout mice develop a degenerative joint disease resembling human OA [70] and 

intervertebral disc degeneration [121]. Moreover, several genetic studies in humans suggest 

that mutations in the Smad3 gene may be an important factor in OA. A missense mutation 

in the Smad3 gene was found in a patient with knee OA and was associated with elevated 

serum MMP-2 and MMP-9 levels [122].  A single nucleotide polymorphism (SNP) mapping 

to the Smad3 intron 1 was shown to be involved in risk of both hip and knee OA in 

European populations [123]. Furthermore, several mutations in the Smad3 gene were found 

in individuals that presented early-onset OA [124]. Although the functional significance of 

these mutations in Smad3 remains to be determined, these studies suggest that alteration in 

Smad3 function may play a role in the pathogenesis of OA.  

A shift in the balance of signaling from Smad2/3 towards Smad1/5 is thought to play an 

important role in OA pathogenesis. TGF- signals through both of these pathways in human 
chondrocytes with the Smad1/5 pathway opposing the Smad2/3 pathway [34].  This is 
consistent with the findings in endothelial cells [32-33],  skin fibroblasts [125] and in 
chondrocyte terminal differentiation [126]. Although Smad-1, -5 and -8 expression levels 
and subcellular localization in human OA cartilage did not differ significantly from that of 
normal cartilage, two Smad1 gene splice variants of  unknown significance were reduced in 
OA cartilage [127]. When the reported decrease in ALK5 expression and Smad2/3 signaling 
(see above) in OA cartilage is taken into account, it is possible to envision that a shift in TGF-

 signaling away from the ALK5/Smad2/3 pathway and towards the ALK1/Smad1/5/8 
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pathway may occur, contributing to OA progression. However, whether such a shift is an 
adaptive response without a causal relationship to OA progression cannot be ruled out at 
this time.  

As mentioned above, Smad7/Smurf2-mediated TGF- receptor degradation is an important 

mechanism for the termination of TGF- signaling [38-39]. Although Smad7 expression 
levels in human OA cartilage did not significantly differ from that of normal cartilage [128] 
it did show an age-related increased expression in murine cartilage [119] suggesting that age 
might be an important factor to consider when comparing Smad7 expression levels in OA 
versus normal cartilage. In addition, Smurf2 is increased in human OA cartilage as 
compared to normal cartilage [129] and Smurf2-transgenic mice spontaneously develop an 

OA-like phenotype [129]. Because Smad7 and Smurf-2 work in concert to promote TGF- 
receptor degradation, these data suggest that increased Smad7/Smurf2 action resulting in 

decreased TGF- receptor levels might be involved in OA pathogenesis. 

5.4 MAP kinases  

In addition to the Smad pathway, TGF- also activates several non-Smad pathways 

including MAPK kinase (ERK, p38, JNK) pathways, Rho-like GTPase signaling pathways 

and PI3K/Akt pathways [35-36]. TGF--activated kinase-1 (TAK1), a MAP3 kinase activated 

by TGF- and other pathways, plays a critical role in cartilage development and function 

[130]. TGF- signaling via TAK-1 stimulates type II collagen synthesis in chondrocytes in a 

Smad3-independent manner [131]. On the other hand, activation of MAPK kinase activity 

by cytokines such as IL-1 or TNF- decreases Smad3/4 DNA binding and ECM production 

in chondrocytes [132]. In addition, activating transcription factor (ATF)-2 works 

synergistically with Smad3 to mediate TGF-s inhibition of chondrocyte maturation [133]. 

These studies suggest extensive cross-talk between Smad and non-Smad pathways in 

chondrocytes which should be taken into account when considering the role of aberrant 

TGF- signaling in OA. 

5.5 TGF- co-receptors 

TGF- co-receptors such as endoglin, betaglycan and CD109 have emerged as important 

regulators of TGF-signaling and responses with critical roles in diseases such as cancer 

and organ fibrosis [43, 47, 54, 58, 134-136].  This section focuses on the available information 

on these TGF- co-receptors in cartilage health and disease. 

Endoglin (CD105): We have previously shown that endoglin is detected in human articular 

cartilage in vivo and in primary human articular chondrocytes in vitro [137]. We have also 

demonstrated that endoglin enhances TGF--induced Smad1/5 signaling and suppresses 

Smad2/3 signaling and ECM production in human chondrocytes [138].  Importantly, we 

found that endoglin protein levels are increased in human OA cartilage as compared to 

normal cartilage [138]. These results are in agreement with the microarray data showing that 

endoglin mRNA levels are  increased in human OA cartilage [102] and in a rat model of OA 

[97]. Interestingly, elevated circulating and synovial fluid endoglin are associated with 

primary knee OA severity, suggesting that endoglin may be a useful biomarker for 

determining disease severity and/or play a causative role in OA pathogenesis [139]. 

Betaglycan: Our group has shown that betaglycan is expressed in human chondrocytes and 

that it forms a complex with the signaling receptors and endoglin in a ligand- and TRII-
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independent manner [137]. Betaglycan levels in damaged versus intact human OA cartilage 
were similar [140] although normal cartilage was not analyzed in this study. Furthermore, 
betaglycan levels did not change in a rat model of OA [97]. However, betaglycan expression 
was shown to be increased in adult human articular cartilage in response to mechanical 
injury [141]. These results suggest that elevated betaglycan expression might be important in 
secondary OA when joint trauma is involved. Interestingly, betaglycan expression was 
shown to be increased in mesenchymal stem cells from the femur channel [142] and in 
trabecular bone from the iliac crest [143] of OA patients. These studies suggest that altered 
betaglycan expression or function in bone might play a role in OA pathogenesis. 
CD109: Information available on CD109 expression or function in cartilage is limited. CD109 
was detected in conditioned media of human articular chondrocytes in monolayer culture 

[144-145] and in that of bovine cartilage explants treated with IL-1 or TNF-[146]. These 
studies suggest that CD109 is released from the chondrocyte cell surface which is in 
agreement with our previous studies on skin cells [58, 147]. We have detected CD109 
protein in conditioned media and cell lysates of human OA and normal human articular 
chondrocytes cultured in monolayer (Finnson and Philip, unpublished data). Recently, 
CD109 was detected in peripheral circulation and synovial fluid as a component of CD146-
positive lymphocytes in patients with various musculoskeletal diseases [148]. The precise 

mechanisms by which TGF- co-receptors may contribute to deregulation of TGF- action in 
OA remain to be determined. 

6. Targeting the TGF- pathway for osteoarthritis therapy 

Several components of the TGF- signaling pathway display altered expression in human 

OA cartilage and in experimental models of OA. Genetic manipulation of some of the 

TGF- pathway components in mice leads to OA-like phenotypes or to delayed OA 

progression in experimental OA models. These findings suggest that targeting specific 

components of the TGF- pathway may represent a suitable therapeutic strategy for the 

treatment of OA. Many groups have studied the effect of exogenous TGF- to promote 

cartilage repair and/or prevent cartilage degradation. Early studies showed that intra-

articular injection of recombinant TGF-1 into murine joints conferred protection against 

IL-induced articular cartilage destruction [149-150] although this effect was not observed 

in older mice [150-151]. Subsequently, exogenous delivery of TGF-1 was shown to 

restore depleted proteoglycans in arthritic murine joints [74] and to stimulate 

proteoglycan synthesis and content in normal murine joints [152]. In addition, TGF- 

injected into the osteoarthritic temporomandibular joint of rabbits was shown to have a 

protective effect on articular cartilage degradation [153]. Although these studies support 

the notion that TGF- promotes cartilage repair, its use has been hampered by undesirable 

side effects including inflammation, synovial hyperplasia and osteophyte formation [84-

86, 152, 154]. In this regard, several studies suggest that adjuvant therapies might be used 

to circumvent the undesirable effects TGF-s on the osteoarthritic joint. For example, TGF-

β was shown to stimulate cartilage repair and the resulting synovial fibrosis could be 

blocked by Smad7 overexpression in the synovial lining [155].  Such findings suggest that 

strategies designed to take advantage of the beneficial effects of TGF- on cartilage repair 

and simultaneously block its unwanted side effects will be a fruitful avenue for the 

development of this molecule for OA therapy.  

www.intechopen.com



 
TGF- in Cartilage 

 

505 

Another important factor to consider when developing a TGF--based strategy for OA 

therapy is that TGF- may have differential effects on the chondrocyte itself, depending on 

the cellular context. We have shown that TGF- signaling in chondrocytes occurs through 

two different TGF- type I receptors, ALK5 and ALK1, with ALK1/Smad1/5 pathway 

opposing ALK5/Smad2/3 signaling and ECM production in human chondrocytes [34]. 

These data suggest that ALK1 signaling might interfere with the chondroprotective effects 

of TGF-. Furthermore, others have shown that ALK1 expression is highly correlated with 

MMP-13 expression in human OA cartilage and that ALK1 stimulates MMP13 expression in 

chondrocytes [117]. Thus, a better approach for OA therapy might involve treatment with 

TGF- while simultaneously blocking ALK1 activity in chondrocytes. Alternatively, 

targeting molecules that tip the balance of signaling away from ALK1 and towards ALK5 in 

OA chondrocytes might also prove to be beneficial. However, there are others who argue 

that the critical transition from a non-reparative to a reparative cell phenotype involves 

switching from ALK5-mediated fibrogenic signaling to ALK1-mediated chondrogenic 

signaling [156]. Therefore, further research on understanding the role of ALK5 and ALK1 

signaling pathways in regulating chondrocyte phenotype is needed.  

Targeting TGF- co-receptors for the treatment of human diseases is an attractive concept. 

Endoglin, betaglycan and CD109 exist both as membrane-anchored and soluble forms due 

to enzymatic shedding of their ectodomains [134-135, 157-158] and soluble forms of these 

proteins have been shown to bind and neutralize TGF- [58, 159, 160, 2001 #587]. One way 

that these soluble proteins might be used in combination with TGF- for OA therapy would 

be to restrict TGF- expression to the OA chondrocytes. For example, one can use an 

adenoviral vector containing a type II collagen-specific promoter to drive TGF- expression 

in the cartilage while blocking the adverse side effects (synovial fibrosis) of exogenous TGF-

 in the joint by co-administration of a soluble co-receptor protein into the synovial fluid. 

The soluble co-receptor because of its higher molecular weight would not readily diffuse 

into the cartilage from the synovial fluid [161-162] to block TGF- action in chondrocytes but 

would sequester any  TGF- that diffuses from the cartilage into the synovial fluid. 

Alternatively, TGF- co-receptor expression in chondrocytes might be targeted directly to 

promote cartilage repair. Our results indicate that endoglin inhibits TGF--induced ALK5-

Smad2/3 signaling and ECM production and enhances TGF--induced ALK1-Smad1/5 

signaling in human chondrocytes [138]. These findings suggest that reducing endoglin 

expression in OA chondrocytes might promote cartilage repair. 

7. Concluding remarks 

TGF- is a critical regulator of articular cartilage development, maintenance and repair. 

Studies to date indicate that several extracellular, cell surface and intracellular components 

of the TGF- pathway display altered expression or activity in OA suggesting that they 

might represent potential targets for therapeutic treatment of this disease.  TGF- has been 

shown to promote cartilage repair and its therapeutic use might be improved by 

“compartmentalized” inhibition of TGF- activity in synovial tissues to halt or reverse 

synovial fibrosis and osteophyte formation. Targeting TGF- co-receptors such as endoglin, 

betaglycan and CD109 represent new opportunities to explore aberrant TGF- signaling in 

OA and to discover new strategies for manipulating the TGF- pathway for OA therapy.  
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8. List of abbreviations 

ALK, activin receptor-like kinase; ATF, activating transcription factor; ECM, extracellular 
matrix; ERK, extracellular signal-regulated kinase; Evi-1, ecotropic virus integration site 1 
protein homologue; FKBP, FK506 binding protein; GPI, glycosyl phosphatidylinositol; HSP, 
heat shock protein; IL, interleukin; JNK, c-jun N-terminal kinase/stress-activated protein 

kinase; kDa, kilodalton; LAP, latency associated peptide; LTBP, latent TGF- binding 
protein;  MMP, matrix metalloproteinase; OA, osteoarthritis; PI3K, phosphatidylinositol 3-
kinase; SARA, Smad anchor for receptor activation; Ski, Sloan Kettering Institute proto-
oncogene; Sno, ski-related novel protein; SNP, single nucleotide polymorphism; Smurf, 
Smad ubiquitin regulatory factor; STRAP, serine-threonine kinase receptor-associated 

protein; TAK, TGF- activated kinase; TG, transglutaminase; TGF-, transforming growth 

factor-beta; TGIF, TGF--induced factor; TIMP, tissue inhibitor of metalloproteinase; TSP, 

thrombospondin; TNF, tumor necrosis factor; TRAP, TGF- receptor-associated protein; 

TRIP, TGF- receptor-interacting protein. 
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