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Rainfall Prediction Using Teleconnection 
Patterns Through the Application of  

Artificial Neural Networks  

Gholam Abbas Fallah-Ghalhari 
Sabzevar Tarbiat Moallem University 

I.R of Iran 

1. Introduction 

All aspects of human life are, directly or indirectly, affected by climatic processes. This effect is 
especially noticeable in such fields as agriculture, irrigation, economy, telecommunications, 
transportation, traffic, air pollution and military industries (Haltiner & Williams 1980). 

A number of researchers have studied the possibility of forecasting rainfall several months in 
advance using climate indices such as SOI, PDOI and NPI (e.g. Silverman and Dracup 2000).  

A well-known atmospheric phenomenon is the Southern Oscillation (SO). The SO is an 
atmospheric see-saw process in the tropical Pacific sea level pressure between the eastern 
and western hemispheres associated with the El Niño and La Niña oceanographic features. 
The oscillation can be characterized by a simple index, the Southern Oscillation Index (SOI). 
(Kawamura et al., 1998). The Pacific Decadal Oscillation index (PDOI) is the leading 
principal component of monthly sea surface temperature (SST) anomalies in the North 
Pacific Ocean north of 20°N (Zhang et al., 1997; Mantua et al., 1997). Trenberth and Hurrell 
(1994) have defined the North Pacific Index (NPI) as the area-weighted sea level pressure 
over the region 30°N to 65°N, 160°E to 140°W to measure the decadal variations of 
atmosphere and ocean in the north Pacific. 

Furthermore, the existence of substantial databases of sea surface temperature anomalies 
(SST) opens the possibility of using these data to forecast rainfall several months in advance. 
Most of the research carried out in this area has used traditional statistical methods such as 
linear correlation or time series methods to identify the significant variables. These methods 
test for a linear relationship between the independent variables and rainfall, whereas the 
relationships are more likely to be non-linear as the underlying processes are themselves 
non-linear (Iseri et al. 2005).  

Long-term rainfall prediction is very important to countries thriving on agro-based 
economy. In general, climate and rainfall are highly non-linear phenomena in nature giving 
rise to what is known as butterfly effect (Abraham et al. 2001). In their quest for new ways of 
predicting important meteorological factors, researchers have devised and developed 
techniques such as intelligent methods, which are viable and flexible means independent of 
system dynamic models.  
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Pongracz & Bartholy (2006) designed a model of monthly rainfall in Hungary using types of 
atmospheric circulation patterns and ENSO (El Niño - Southern Oscillation) index. To this 
end, they used a modeling technique based on fuzzy rules to establish a relationship 
between inputs and rainfall. Their results indicated that the model based on fuzzy rules 
provides an excellent means for the prediction of statistical features of rainfall using 
monthly occurrence of types of daily circulation pattern and delayed SOI.  

Halid & Ridd (2002) used the fuzzy logic to design a model and predict local rainfall in 

January at Hasanuddin airport, Indonesia, which is the largest rice-producing area in the 

country. Their results indicated that, compared to other statistical models, the fuzzy logic 

model is more useful for the prediction of rainfall in January. Choi (1999) used neural 

networks and the Geographical Information System to forecast rainfall. The results indicated 

the efficiency of the Geographical Information System and neural networks in rainfall 

forecast. Cavazos (2000) used neural networks to forecast daily rainfall. The parameters 

which were used included the thickness between 500 and 1000 hecto-Pascal levels, the 

altitude of 500 hPa levels, and the humidity of 700 hPa levels. The outcomes indicated the 

efficiency of neural networks in the prediction of rainfall. Maria et al (2005) used neural 

networks and regression models to forecast rainfall in Sao Paulo, Brazil. The parameters 

they used included: potential temperature, vertical wind component, specific humidity, 

precipitable water, relative vorticity and humidity flux divergence. The results indicated the 

efficiency of both methods in forecasting rainfall.  

One of the most crucial issues of global climatic variability is its effect on water resources. If 

more accurate predictions of rainfall were possible, this would enable more efficient 

utilization of water resources. However, long-term rainfall prediction models are still 

unsatisfactory, whereas short-term rainfall prediction models have undergone significant 

development. The probable reasons for the difficulties in conducting long-term rainfall 

prediction are the complexity of atmosphere-ocean interactions and the uncertainty of the 

relationship between rainfall and hydro meteorological variables. So far, long-term climate 

prediction using numerical models has not demonstrated useful performance, and statistical 

models have shown better performance than numerical models (Zwiers & Von Storch 2004). 

Consequently, in this study Artificial Neural Networks and linear regression models have 

been applied to nonlinear and linear statistical prediction. 

Due to the significance of rainfall in many decision making processes such as water 
resources management and agriculture, the present study aims to find out the relationship 
between large-scale climatic synoptic patterns and regional rainfall using such synoptic 
patterns as sea level temperature and temperature difference, sea level pressure and 
pressure difference, precipitable water, air temperature at 700-hPa level, the thickness 
between 500 and 1000-hPa levels and the relative humidity at 300-hPa level. 

2. Data and methods 

2.1 Data 

2.1.1 Study area 

The region studied in this research is Khorasan Razavi Province. The time series studied is 

the average rainfall from April to June during 38 years. The data of spring rainfall for each 
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year includes the rainfall in 34 visibility, climatology and rainfall measurement stations 

provided by the Weather Bureau and the Power Ministry. Of these, 24 stations are rainfall 

measurement stations of the Power Ministry and the rest belong to the Weather Bureau. Fig. 

1 represents the map of the studied area and the name of the relevant stations. To 

compensate for some defects in rainfall data, subtractions and ratios method have used. Run 

test was also used to test the homogeneity of the data. The analysis of runs within a 

sequence is applied in statistics in many ways (for examples see Feller 1968 & Ducan 1974). 

The term run may in general be explained as a succession of items of the same class. Many 

concepts to analyze runs in a series of data have been studied. The main concepts are based 

on (i) the analysis of the total number of runs of a given class (see Guibas and Odlyzko 1980 

and Knuth 1981) and (ii) examinations about the appearance of long runs (see Feller 1968, 

Guibas and Odlyzko 1980 and Wolfowitz 1944). 

 

Fig. 1. Map of the region under study and selected stations (Fallah Ghalhary et al, 2010) 
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2.1.2 Climatological data 

The data used in this study are: 

1. 34 Rainfall station data for the seasonal rainfall (April – June) were obtained from Iranian 
Meteorological organization. All of these stations are in the north eastern region of Iran.  

2. Large-scale ocean and atmospheric circulation variables such as Sea Surface Temperature 
(SST), Sea Level Pressure(SLP), the difference Sea Level Pressure, the difference Sea 
Surface Temperature between surface and 1000 hPa level, relative humid at 300 hPa 
level, geopotential height at 500 hPa level, air temperature at 850 hPa level during 
months (Oct-Mar). These data were obtained from NCEP/NCAR Re-analysis data. 
These data sets span the period of 1948 – current, covering the globe on a 2.5 × 2.5 grid 
and available at http://www.cdc.noaa.gov National Oceanic and Atmospheric 
Administration (NOAA) website. Table 1 summarizes the data used in this study.  

Data source time year 

Rainfall station data 
Iranian Meteorological 
organization

April – June 1970-2007 

NCEP/NCAR Re-
analysis data 

Large-scale ocean and 
atmospheric circulation variables

Oct-Mar 1970-2007 

Table 1. Summaries of the data used in this study 

2.2 Methods 

2.2.1 Spatial prediction and kriging 

The need to obtain accurate predictions from observed data can be found in all scientific 
disciplines. Those that have embraced statistical notions of random variation are able to do 
this by exploiting the statistical dependence among the data and the variables(s) to be 
predicted. However, the statistical approach has not been without its detractors; for 
example, Philip and Waston (1986) argue that geostatistics is unhelpful for solving problems 
in mining and geology. Their article and the accompanying discussions are worth perusing. 

It is helpful to explain first the terms used in the title of this chapter. Let {Z(s): s D∈ ⊂ Rd} be 
a random function (or process), from which n data Z (s1), …, Z (sn) are collected. The data 
are used to perform inference on the process, here, to predict some known functional g 
({Z(s): s∈ D}) [or, more simply, g (Z (.))] of the random function Z (.). For example, point 
prediction assumes g (Z (.))=Z (S0), where S0 is a known spatial location. g is mostly real-
valued. Sometimes interest is not in Z (.), but in a "noiseless" version of it. 

Suppose that 

 Z(s) = S(s) + ∈ (s), s∈ D, (1) 

Where ∈ (.) is a white-noise measurement-error process. In this case, one is interested in 
predicting a known functional g(S (.)) of the noiseless random function S (.). 

Spatial prediction refers to prediction either g(Z(.)) or g(S(.)) from data Z(s1), … , Z(sn) 
observed at known spatial locations s1 , … , sn. 

Notice that my terminology encompasses the temporal notions of smoothing (or 
interpolation), filtering, and prediction (e.g., Lewis, 1986, PP. 36), which rely on time- 
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ordering for their distinction. If temporal data are available from the past up to and 
including the present, smoothing refers to prediction of g(S (.)) at time points in the past, 
filtering refers to prediction of g(S (.)) at the present time and prediction refer to prediction 
of g(S (.)) at time points in the future. In this paper, the word "estimation" will be used 
exclusively for inference on fixed but unknown parameters; "prediction" is reserved for 
inference on random quantities. 

Kriging is a minimum-mean-squared-error method of spatial prediction that (usually) 
depends on the second-order properties of the process Z (.). 

Matheron (1963) named this method of optimal spatial linear prediction after D. G. Krige, a 
South African mining engineer who, in the 1950s, developed empirical methods for 
determining true ore-grade distributions from distributions based on sampled ore grades (e. 
g., Krige, 1951). However, the formulation of optimal spatial linear prediction did not come 
from krige's work. (See Matheron, 1971, pp. 117-119, and Cressie, 1990, for the extent of the 
early work of Krige.) The contributions of Wold (1938), Kolmogorov (1941), and Wiener 
(1949) all contain optimal linear prediction equations that reflect the notion that 
observations closer to the prediction point ( for them, closer in time) should be given more 
weight in the predictor. 

At the same time as geostatististics was developing in mining engineering under G. 
Matheron in France, the very same ideas developed in meteorology under L. S. Gandin 
(Gandin, 1963) in the Soviet Union. The original (and simultaneous) contribution of these 
authors was to put optimal linear prediction (in terms of variogram) into a spatial setting. 
Gandins' name for his approach was objective analysis, and he used the terminology optimum 
interpolation instead of Kriging. Details of the origins of Kriging are set out in Cressie (1990) 
and Cressie (1993). 

2.2.1.1 Observational and spatial scale 

The following model is useful. Suppose that the data (Z (S1)… Z (Sn)) represent Z values at 
points of D ⊂ Rd, and that they are modeled as a partial realization of the random process: 

 {Z(s): S D∈ ⊂ Rd},  (2) 

Which satisfies the decomposition 

 Z(s) =µ(s) +W(s) +η(s) + ∈ (s), s D∈ , (3) 

Where: 

(.) ( (.))E Zµ ≡  Is the deterministic mean structure that will be called large-scale variation. 

W (.) is a zero-mean, 2L -continues 2[ . ., ( ( ) ( )) 0 0],i e E W s h W s as h+ − → →  intrinsically 
stationary process whose variogram rang (if it exist) is larger than min 
{ :1i js s i j n− ≤ < ≤ }. Call W (.) smooth small-scale variation. 

η (.) Is a zero-mean, intrinsically stationary process, independent of W, whose variogram 
rang exists and is smaller than min { :1i js s i j n− ≤ < ≤ }. Call (.)η microscale variation. 

∈ (.) is a zero-mean white-noise process, independent of W and η call ∈  (.) measurement 
error or noise, and denote var (∈ (s))= MEC . There are occasions when ∈ (.) may possess 
more structure than that of white noise (e.g., Laslett and McBratney, 1990). 
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In notation as follow, 

 2 (.) 2 (.) 2 (.) 2 .Z W MEy y y cη= + +  (4) 

The quantities MEC  and ( )Z hγ , h  larger, are pertinent to the observational scale; the other 
quantities contain information on the spatial scale. 

From the decomposition (3), write 

 Z(s) =S(s) + ∈ (s), s∈ D, (5) 

Where the "signal" or smooth process S (.) is given by S (.) (.)µ≡ +W (.)+ η (.). The S process 
is often referred to as the noiseless version of the Z process or, in the engineering literature, 
as the state process. Also, write 

 Z(s) ( ) ( ),s sµ δ≡ +  s∈ D, (6) 

Where the correlated error process (.)δ  is given by (.) (.) (.) (.).δ η≡ + + ∈W  When the 
Correlation of ( )sδ  white ( )s hδ +  can be written as a function of 

/ ( ),h hα where 0 ( ) ,hα< < ∞ then ( )hα is sometimes called the spatial correlation scale of the 
process in direction h (Cressie, 1993). 

2.2.1.2 Ordinary kriging 

Ordinary Kriging produced better estimates than simple Kriging because of the non-
stationarity of the data. The original data set had large areas where the values were low and 
large areas where the values were high. Simple Kriging requires the mean value of the data 
set to be provided, whereas ordinary Kriging calculates a mean for each individual block, 
based on the samples included in estimate. The local mean appears to be more meaningful 
in a situation where the global mean is not constant (Weber and Englund, 1992). 

The word "Kriging" is synonymous with "optimal prediction" (as a noun) or with "optimally 
predicting" (as the present participle of a verb). In other words, it refers to making 
inferences on unobserved values of the random process Z (.) given by (2) or of S (.) given by 
(5) from data: 

 
1( ( ),..., ( ))nZ Z S Z S≡  (7) 

Observed at known spatial locations { }.,...,1 nss  

Denote the generic predictor of g (Z (.) or g(S (.)) by: 

 P (Z; g) (8) 

Choice of a good predictor will depend on the geometry and location of the region of space 
where prediction is desired and weather it is the Z process or the S process that is to be 

predicted. When g (Z (.)) = Z (B) [ ( ) / ]≡ 
B

Z u du B  or g(S (.)) = S (B), write (3.2.3) as p (Z; B). In 

the special case of B = {s0}, write (8) as p (Z; s0). 

Ordinary Kriging (Matheron, 1971; Journel and Huijbregts, 1978) refers to spatial prediction 
under the following two assumptions. 
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Model Assumption. In (6) 

 ( ) ( ),Z s sµ δ= +  ,s D µ∈ ∈R, and µ  unknown. (9) 

Predictor Assumption. 

 
1

( ; ) ( ),
n

i i

i

p Z B Z sλ
=

=  
1

1.
n

i

i

λ
=

=  (10) 

This latter condition, which the coefficients of the linear predictor sum to 1, guarantees 
uniform unbiasedness. E (p (Z; B)) = ( ( )),E Z Bµ =  for all µ ∈ R. 

There is a version of Kriging called simple Kriging, where µ  in (9) is known and the 

coefficients are not constrained to sum to 1. 

Hence, if 

 
{ }

( ) / ,
( (.)) ( )

( ) : ,

BZ u du B
g Z Z B

ave Z u u B

  
= ≡  

∈  

  
0

0

B

B

>

=
 (11) 

Then the optimal p (. ; B) will minimize the mean-squared prediction error 

 2 2( ( ) ( ; ))e E Z B p Z Bσ ≡ −  (12) 

Over the class of linear predictors 
1

( )λ
=

n

i i

i

Z s  that satisfy 
1

1λ
=

=
n

i

i

(Cressie, 1993). 

2.2.1.3 Kriging and calculating the average regional rainfall 

In this research, we have used from ordinary Kriging for obtaining the average regional 

rainfall in the area under study. Kriging is the estimation procedure used in geostatistics 

using known values and a semivariogram to determine unknown values. It was named 

after D. G. Krige from South Africa. The procedures involved in Kriging incorporate 

measures of error and uncertainty when determining estimations. Based on the 

semivariogram used, optimal weights are assigned to unknown values in order to 

calculate unknown ones. Since the variogram changes with distance, the weights depend 

on the known sample distribution (Davis 1990). 

The final goal of studying spatial changes of rainfall is to simulate the changes in rainfall 

data in the spatial dimension in order to pave the way for attaining other goals such as 

forecasting rainfall and getting necessary information for the long-term analysis of rainfall 

in every region in the area under study. As mentioned before, Kriging method used in this 

study to calculate the average regional rainfall. The following steps were taken to obtain the 

time series of average regional rainfall: 

1. Making input files for the Arc GIS 9.2 software 

2. Obtaining the experimental variogram 

3. Analyzing and drawing annual spatial changes of rainfall in the region 

4. Obtaining the values of annual average rainfall in the region under study  

5. Making time series of rainfall in the region under study. 
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Fig.2 for example shows the diagram of the Variogram using spherical model to estimate of 
the average regional rainfall for the year of 2007.  

 

Fig. 2. Variogram diagram using spherical model to estimate of the average regional rainfall 
for year of 2007. Units on the horizontal and vertical axes are meter and square millimeter 
respectively. 

2.2.2 Determining seasonal rainfall and predictors 

The predictors studied in this research are classified into two groups: meteorological 
parameters at ground level and meteorological parameters at upper levels of the 
atmosphere. Table 2 shows these parameters. 

Upper level of atmosphere Ground level 

Air temperature at 700-hPa level Sea level pressure
the thickness between 500 and 1000hPa levels Sea level pressure difference 
Relative humidity of 300-hPa level Sea level temperature

 
Temperature difference between sea 
level and 1000-hPa level

 Zonal wind
 Meridional wind
 Precipitable water

Table 2. Meteorological Parameters used in this study 

One distinctive scenario is considered in this study. This scenario uses input data with 6 

months lags to investigate the possibility of forecasting more than 3 months in advance.  

One of the objectives of this study is the identification of a possible relationship between 
rainfall in Iran and climatic predictors, using Pearson's correlation coefficient. The other 
objective is to verify the forecasts produced using the predictors identified with Pearson's 
correlation coefficient.  

Distance, h  10
-4

γ   10 
-2 

0 6.09 12.18 18.27 24.36 30.45 36.54 42.63 48.72
-0.38

-0.02

0.34 

0.7 

1.06 

1.42 
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Seasonal rainfall and predictors have been determined using the average of the values of a 
predictor in order to predict the amount of seasonal rainfall. We made sure that the seasons 
of the predictor do not include months with rainfalls. 

Since we aimed to investigate the relation between meteorological parameters and spring 
rainfall in this study (spring rainfall is very important in dry land cultivation and water 
recourses management), we used the average value of meteorological predictors in the 
period between October and March as the time series of the predictors and the average 
rainfall in the period between April and June as the rainfall time series.  

To analyze the parameters of the upper levels of the atmosphere as well as three ground 
parameters, i.e. zonal wind, meridional wind and precipitable water in the present study, 
we used 5°×5° and 10°×10° degrees spatial resolution. The study areas, where 
meteorological parameters at ground level and upper levels of atmosphere have been factor-
analyzed, are located between 0-80 °E and 10-50 °N in 5°×5° degrees spatial resolution and 
between 0-100 °E and 0-70 °N in 10°×10° degrees spatial resolution. The area includes 
regions where changes in the pattern of temperature, pressure, humidity, and wind speed 
affect Iranian rainfall (Fig. 3). 

 

Fig. 3. Humidity sources of Iranian rainfalls in the spring season (Alijani, 2006). the wider 
arrows have more contribution. 

For other parameters at ground level including pressure, temperature, pressure difference 
and temperature difference between sea level and 1000-hPa level, some points has been 
selected. That is, points were selected and analyzed in different parts of the seas, which were 
known to affect the climate of Iran from previous studies by other researchers 
(Nazemosadat & Cordery 2000, Alijani 2006).  

We have used factor analysis to analyze the meteorological parameters at upper atmosphere 
and ground levels (zonal wind, meridional wind and precipitable water). The field of factor 
analysis involves the study of order and structure in multivariate data. The field includes 
both theory about the underlying constructs and dynamics which give rise to observed 
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phenomena, and methodology for attempting to reveal those constructs and dynamics from 
observed data. Factor analysis is preferable to principal components analysis. Components 
analysis is only a data reduction method. It became common decades ago when computers 
were slow and expensive to use; it was a quicker, cheaper alternative to factor analysis 
(Gorsuch 1997). It is computed without regard to any underlying structure caused by latent 
variables; components are calculated using all of the variance of the manifest variables, and 
all of that variance appears in the solution (Ford et al. 1986). 

In this statistical method designed to reduce the number of variables, the initial parameters 
are transformed into independent variables based on their correlation coefficients. These 
independent variables are called factors. The value of each of the observations in the new 
factors is calculated as factorial score. Hence, rather than true values of observations, their 
scores in new components are used as new criteria for clustering. The advantage of this 
method is that while it reduces the number of variables, it preserves the initial variance of 
the main data (Alijani 2006). 

As mentioned above, to find out the relation between rainfall in the region under study and 
the changes in meteorological parameters of pressure, temperature, pressure difference and 
temperature difference, the points in different parts of the seas have been studied, which are 
supposed to affect the climate of Iran. These include points in the Mediterranean, Persian 
Gulf, Oman Sea, Aden Gulf, Arab Sea, Red Sea, Black Sea, the Adriatic, Aral Lake, Indian 
Ocean, The Atlantic, North Sea and Siberia (Fig. 4). Table 3 shows Time series of average 
regional rainfall (from April to June) and value of predictors. 

SIBERIA GRID 

ISLAND GRID 

ADRIATIC SEA 

NORTH OF CASPIAN SEA 

WEST OF MEDITERRANEAN SEA 

NORTH OF PERSIAN Gulf 

NORTH OF RED SEA 

SOUTH OF PERSIAN GULF 

SOUTH OF RED SEA 

OMAN SEA 

ARABIC SEA 

ADEN GULF 

ARAL SEA 

 

Fig. 4. Name and coordinates that have used for relation between rainfall and Remote 
Linkage Controlling (Fallah Ghalhary et al, 2010) 
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Table 3. Time series of regional monthly average rainfall (from April to June) and value of 
predictors 

2.2.3 Neural information processing systems 

Artificial neural networks (ANNs) form a class of systems that is inspired by biological neural 
networks. They usually consist of a number of simple processing elements, called neurons that 
are interconnected to each other. In most cases one or more layers of neurons are considered 
that are connected in a feed forward or recurrent way (Zurada 1992, Grossberg 1988, 
Lippmann 1987). In trying to understand the emergence of the new discipline of neural 
networks it is useful to look at some historical milestones in Table 4 (Johan et al. 1997). 

2.2.4 Basic neural network architectures 

The best known neural network architecture is the multilayer feedforward neural network 
(multilayer perceptron). It is a static network that consists of a number of layers: input 
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layer, output layer and one or more hidden layers connected in feedforward way (see e.g. 
Zurada 1992).  

One signal neuron makes the simple operation of a weighted sum of the incoming signals 
and a bias term (or threshold), fed through an activation function σ and resulting in the 
output value of the neuron. A network with one hidden layer is described in matrix-vector 
notation as 

 ( ),xy W Vσ β= +  (13) 

Or in elementwise notation: 

 
1 1

( )
hn m

i ir rj j r

r j

y v xω σ β
= =

= +   1,..., .i l=  (14) 

Here χ ∈  Rm is the input and y ∈  Rl the output of the network and the nonlinear 
operation σ is taken elementwise. The intererconnection matrices are ×∈ ℜ hl n

W for the 
output layer ×∈ ℜ hn m

V for the hidden layer, β ∈ ℜ hn is the bias vector (thresholds of 
hidden neurons) with nh the number of hidden neurons. 

Year Network Inventor /Discoverer 

1942 McCulloch-Pitts neuron McCulloch, pitts

1957 Perceptron Rosenblatt

1960 Madaline Widrow

1969 Cerebellatron Albus

1974 Back propagation network Werbos, parker, Rumelhart 

1977 Brain state in a box Anderson

1978 Neocognitron Fukushima

1978 Adaptive Resonance Theory Carpenter, Grossberg

1980 Self-organizing map Kohonen

1982 Hopfield Hopfield

1985 Bidirectional assoc. mem. Kosko

1985 Boltzmann machine Hinton, Sejnowsky

1986 Counterpropation Hecht- Nielsen

1988 Cellular neural network Chua, yang

Table 4. The best known artificial neural network architectures together with their year of 
introduction and their inventor/ discoverer. See Hecht Nielsen (1988) for part of this table 
(Johan et al, 1997). 

Fig. 5 shows a multilayer perceptron, which is a static nonlinear network that consists of a 
dummy input layer, an output layer and two hidden layer. A layer consists of a number of 
McCulloch-pitts neurons that perform the operation of a weighted sum of incoming signals, 
feeded through a saturation-like nonlinearity. One hidden layer is sufficient in order to be 
universal approximators for any continues nonlinear function (Johan et al. 1997).  
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Fig. 5. Multilayer perceptron neural network (Johan et al, 1997). 

For a network with two hidden layers (see Fig. 5): 

 2 1 1 2. ( . ( ) )y W V V xσ σ β β= + +  (15) 

Or: 

 
2 1

(2) (1) (1) (2)

1 1 1

( ( ),
h hn n m

i ir rs sj j s r

r s j

y w v v xσ σ β β
= = =

= + +    1,..., .i l=  (16) 

The interconnection matrices are 2hl n
W

×∈ℜ  for the output layer, 2 1
2

h hn n
V

×∈ℜ  for the second 
hidden layer and 1

1
hn m

V
×∈ℜ  for the first hidden layer. The bias vectors are 2

2
hnβ ∈ℜ , 

1
1

hnβ ∈ℜ for the second a first hidden layer respectively. In order to describe a network with 
L layer (L-1 hidden layers, because the input layer is a 'dummy' layer), the following 
notation will be used in the sequel. 

 ( ),l l
i ix σ ξ=  (17) 

 1

1

lN
l l l
i ij j

j

w xξ −

=

=  (18) 

Where 1,...,l L= is the layer index, lN  denotes the number of neurons in layer l  and l
ix  is 

the output of the neurons at layer l . The thresholds are considered here to be part of the 
interconnection matrix, by defining additional constant inputs. 

The choice of the activation function σ  may depend on the application area. Typical 

activation functions are shown in Fig. 6. 

Input Data Output Data 

Hidden 

Layer 1 

Hidden 

Layer 2 

Output 

Layer 

Input 

Layer 

www.intechopen.com



 
Modern Climatology 

 

374 

 

Fig. 6. Some possible activation functions for the neurons in the multilayer perceptron 
(Johan et al, 1997). 

Fig. 6 shows some possible activation functions for the neurons in the multilayer 
precipitation. In this paper, we take the hyperbolic tangent function tanh. Note that this is a 
static nonlinearity that belongs to the sector [0, 1]. 

For applications in modeling and control the hyperbolic tangent functions: 

 tanh( ) (1 exp( 2 )) / (1 exp( 2 ))x x x= − − + −  (19) 

Is normally used. In case of a 'tanh' the derivative of the activation function is: 

 ' 21σ σ= −  (20)  

The neurons of the input layer have a linear activation function. 

A network that has received a lot of attention recently in the field of neural networks is the 
redial basic function network. This network can be described as:  

 
1

( )
hn

i i

i

y w g x c
=

= −  (21) 

With m
x∈ℜ  the input vector and y∈ℜ  the output (models with multiple outputs are also 

possible). The network consists of one hidden layer with nh hidden neurons. One of the 
basic differences with the multilayer perceptron is in the use of the activation function. In 
many cases one takes a Gaussian function for g, which is radially symmetric with respect to 
the input argument. The output layer has output weights hnω ∈ℜ . The parameters for the 
hidden layer are the centers m

ic ∈ℜ (Johan et al. 1997). 

2.2.5 Recurrent neural network model 

In recurrent neural network, some outputs of the nodes (output nodes or hidden nodes) are 
fed back to the previous layers. Most commonly used recurrent neural networks are external 

www.intechopen.com



Rainfall Prediction Using Teleconnection Patterns  
Through the Application of Artificial Neural Networks 

 

375 

recurrent neural networks (Fig.7). In this scheme, the outputs of a neural network are fed 
back to form a part of its input layer. Another recurrent scheme is internal recurrent neural 
networks, in which the outputs of hidden nodes (instead of output nodes) are fed back to 
the input layer (Fig.8) (Aoyama et al, 1999). 

 

Fig. 7. External recurrent neural networks (Aoyama et al, 1999). 

 

Fig. 8. Internal recurrent (state space) neural networks (Aoyama et al, 1999). 

After various runs to test the network and the number of neurons of the hidden layer and 

different activation functions in the hidden and output layers, eventually found out that the 

final model with its one input layer, one hidden layer and one output layer (average regional 

rainfall) had the least error so in this research, used it as the main model. The numbers of the 

neurons in the input, hidden and output layers is fourteen, four and one respectively (14-4-1). 

The hidden layer activation function is a function of the hyperbolic tangent and the output 

layer activation function is a function of the linear hyperbolic tangent. 

To assess the accuracy of the model, the index of Root Mean Square Error (RMSE) has been 
used which is calculated by the following formula: 
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−

=
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 (22)  

In the above formula, RMSE is Root Mean Square Error, iO  and ie  are the observed and 
predicted value of the variable respectively in the point i and n is number of network 
outputs. 

3. Results and discussion 

3.1 Predicting spring rainfall by means of artificial neural networks 

In this study, Pearson Correlation Method has used to obtain meteorological predictors 
which affect regional rainfall. Thus, all the predictors which have shown a correlation with 
%5 level of significance in the period between October and March have been used as 
predictors in the structure of the rainfall forecast model. After numerous checking, it became 
clear that the optimum effect of predictors is when the period between October and March is 
used. Therefore, the following predictors in the period between October and March were 
used as predictors in rainfall forecast models: 1) SST Central Atlantic, 2) SST Western 

Mediterranean, 3) ∆SST Aral Lake, 4) ∆SST Labrador Sea, 5) SLP Northern Persian Gulf, 6) 

SLP Oman Sea, 7) SLP Southern Persian Gulf 8) SLP Southern Red Sea, 9) ∆SLP Between 
Eastern Mediterranean and Oman Sea, 10) air temperature at 700-hPa level in the region of 

index factor 2 in 5×5 degrees spatial resolution (Fig. 9), 11) air temperature at 700-hPa level 

in the index region of factor 3 in 5×5 degrees spatial resolution (Fig. 9), 12) precipitable 

water content in the index region of factor 10 in 10×10 degrees spatial resolution (Fig. 10), 

13) relative humidity at 300-hPa level in the region of factor 2 in 5×5 degrees spatial 

resolution (Fig. 11), 14) relative humidity at 300-hPa level in the region of factor 4 in 5×5 
degrees spatial resolution (Fig. 11). The variables which used as predictors in the rainfall 
forecast models show in the Table 5.  

The above model divides the data into three different sections, namely, training data, 
validation data and testing data. The data belonging to 38 years were in turn divided into 19 
years (1970– 1988) of training data, 9 years (1989–1997) of validation data and 10 years 
(1998–2007) of testing data. In the other words, from the whole set of historical data, two-
thirds (1970-1997) were considered as calibration data, and one-third (1998 – 2007) as testing 
data. There is a clear analogy between the neural network weights and the parameters of 
other modeling approaches, and between the learning set and what we have before calles a 
period of calibration data. Work in neural networks often does not draw this analogy but it 
is a useful one in that just as an increase in the number of parameters gives a model more 
degrees of freedom in calibration but may result in over parameterization with respect to 
information in the data set, so in a neural network an increase in the number of layers, 
nodes and interconnections will also result in more degrees of freedom in fitting the 
learning set, also with the possibility of over parameterization (Beven 2001). Table 6 presents 
the results of the calibration period of the rainfall forecast model. As is shown, the minimum 
mean-square error after 1000 learning epochs is 0.169. Also, the maximum mean-square 
error is 0.169. In the other words, at this stage in the epoch of 1000, the network shows the 
maximum error. The minimum mean-square error of the validation epoch in the epoch of 3 
is 0.234. The results of the prediction model are illustrated in Table 7 and Fig. 12. It is to be 
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noted that these results were presented for the years 1998 to 2007, which was the testing 
epoch of the model. The features of this model have been presented in Table 8.  

Symbol The Name of Predictor Time 
Correlation Coefficient 

with the average 
regional rainfall 

P-value 

(X1) SST Central Atlantic  Oct-Mar -0.31 0.05 
(X2) SST Western Mediterranean Oct-Mar -0.38 0.01 

(X3) ∆SST Aral Lake Oct-Mar -0.35 0.03 

(X4) ∆SST Labrador Sea  Oct-Mar 0.36 0.02 

(X5) SLP Northern Persian Gulf  Oct-Mar 0.31 0.05 
(X6) SLP Oman Sea  Oct-Mar 0.38 0.01 
(X7) SLP Southern Persian Gulf  Oct-Mar 0.31 0.05 
(X8) SLP Southern Red Sea  Oct-Mar 0.34 0.03 

(X9) 
∆SLP Between Eastern 
Mediterranean and Oman Sea  

Oct-Mar -0.32 0.04 

(X10) 
air temperature at 700-hPa level in 
the region of index factor 2 in 5°×5° 
degrees spatial resolution (Fig. 9)  

Oct-Mar -0.38 0.01 

(X11) 
air temperature at 700-hPa level in 
the region of index factor 3 in 5°×5° 
degrees spatial resolution (Fig. 9)  

Oct-Mar -0.45 0.004 

(X12) 
precipitable water in the region of 
index factor 10 in 10°×10° degrees 
spatial resolution (Fig. 10)  

Oct-Mar -0.31 0.05 

(X13) 
relative humidity at 300-hPa level in 
the region of index factor 2 in 5°×5° 
degrees spatial resolution (Fig. 11)  

Oct-Mar 0.45 0.004 

(X14) 
relative humidity at 300-hPa level in 
the region of index factor 4 in 5°×5° 
degrees spatial resolution (Fig. 11)  

Oct-Mar 0.46 0.003 

Table 5. Selected predictor variables which used in the rainfall prediction model 

Best Networks Training Cross Validation 

Epoch 1000 3 

Minimum Mean Squared Error 0.169 0.235 

Final Mean Squared Error 0.169 0.426 

Table 6. Minimum & Maximum Error in Training and Validation Epochs 

As Table 8 shows, the mean square error is 46.5 and the normalized mean square error is 

0.55. Also, the mean absolute error for this model was calculated to be 6.15 millimeters. The 

minimum absolute error is 0.13 millimeter and the maximum absolute error is 10.9 

millimeters. Also, the correlation coefficient between observed and predicted rainfall for the 

model is 0.79. The root mean square error for this model was calculated to be 6.8 

millimeters.  
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Year Observed rainfall Predicted rainfall
1998 32 27
1999 19 15
2000 9 15
2001 7 15
2002 20 15
2003 34 24
2004 28 17
2005 21 15
2006 15 15
2007 10 15

Table 7. Rainfall prediction in the region under study by means of neural network model 

Performance Y (mm) 

Mean Squared Error 46.54 

Normalized Mean Squared Error(MSE/variance desired output) 0.55 

Mean Absolute Error 6.15 

Minimum Absolute Error 0.13 

Maximum Absolute Error 10.98 

Linear correlation coefficient 0.79 

Table 8. The features of artificial neural network model 

 

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6

 

Fig. 9. The index areas detected by factor analysis at the temperature of 700-hPa level in 
the period October to March in networks of 5×5 degrees spatial resolution (Fallah 
Ghalhary et al, 2010) 
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Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 Factor9 Factor10 Factor11

 

Fig. 10. The detected areas of precipitable water in the period October to March in networks 
of 10×10 degrees spatial resolution (Fallah Ghalhary et al, 2010) 

 

Factor1 Factor2 Factor3 Factor4 Factor5

 

Fig. 11. The detected areas of relative humidity at 300-hPa level in networks of 5×5 degrees 
spatial resolution (Fallah Ghalhary et al, 2010) 
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Fig. 12. Comparison of the observed and predicted rainfall in the region under study by 
means of artificial neural network model 

The analysis of the results shows that the model is basically incapable of predicting rainfall 
in dry or wet extreme years. This is due to the fact that these extreme years have not been 
repeated in the calibration epoch of the prediction model and, for this reason, the model is 
not able to predict these extreme years. It must be noted that the minimum rainfall in the 
rainfall time series occurred in 2000 and 2001. To remove this problem, we must train the 
model with these extreme data. For this reason and in order to enable the neural network 
model to predict seasonal rainfall in such a way that it can be applied to all cases including 
dry, wet and normal years, we deleted the years 1998 and 2000 as the two extreme years in the 
test epoch of the model. One represents the dry extreme year and the other the wet extreme 
year. These two years were replaced by other data. They were taken out of the testing data and 
transferred into the training data and calibration epoch of the model. The results of the 
calibration epoch of the rainfall forecast model have been illustrated in Table 9. It is indicated 
that the minimum training error in the epoch of 17 is 0.108. The ultimate training error is 0.175. 
Also, the minimum validation error in the epoch of 1 is 0.087 and the ultimate validation error 
is 0.399. As the data show the accuracy of the model in detecting all dry, wet and normal years 
has amazingly increased. We can see that the accuracy of the model is higher than the previous 
model, as shown in Fig. 13, changes in the type of training data have affected the results of 
rainfall forecast model and that this model can estimate rainfall with higher accuracy. 

Best Networks Training Cross Validation 

Epoch 17 1 

Minimum Mean Squared Error 0.108 0.087 

Final Mean Squared Error 0.175 0.399 

Table 9. Minimum and maximum error in training and validation epochs after modifying 
the network with proper historical data. 

The observed and predicted rainfall by the model after modifying the input vector of the 
model in the training epoch has been presented in Table 10. the accuracy of the model has 
highly increased in this case and the root mean-square error has reached 2.5 millimeter, which 
indicates the high efficiency of the model in predicting rainfall in the area under study. The 
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features of this model have been presented in Table 11. The mean-square error is 6.7 millimeter 
and the normalized mean-square error is 0.12. Furthermore, the mean absolute error for this 
model was equal to 2.12 millimeters. The minimum absolute error was 0.03 millimeter and the 
maximum absolute error was 4.97 millimeters. The correlation coefficient between observed 
and predicted rainfall was 0.95, which is very reasonable. Fig. 14 shows the observed values of 
rainfall versus predicted values. The equation of the regression line for the changes in the 
values of observed versus predicted rainfall is as follows: 

 Observed Rainfall (mm) = 0.05 + 0.93 Predicted Rainfall  

Year Observed rainfall Predicted rainfall 

1996 21 22 
1997 25 27 
1998 32 35 
1999 19 18 
2001 7 7,7 
2002 20 22 
2004 28 25 
2005 21 26 
2006 15 15 
2007 10 14 

Table 10. Rainfall forecast in the region under study after modifying the network with 
historical data 
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Fig. 13. Comparison of observed and predicted rainfall in the region under study by 
artificial neural network model after modifying the network with historical data. 

the observations of the linear regression between observed values of rainfall and predicted 
values and the results of the variance analysis of the linear regression between the observed 
values of rainfall and predicted values have been summarized in Table 12 and Table 13 
respectively. As we can see in Table 12, considering the confidence range of %99 of the 
linear regression between the observed values of rainfall and predicted values, the root 
mean-square error was calculated to be 2.46 millimeters. Table 13 shows that the F ratio is 
significant at %1 level, which is indicative of a strong relation between the changes in the 
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observed values of rainfall versus predicted values. The significance test of the gradient of 
the regression line between the true values of rainfall and the values predicted by the model 
has also been done (Table 14). As observed here, the gradient of the regression line is also 
significant at %1 level. The P-value for the significance test of the gradient of the regression 
equation was smaller than 0.0001. 

Performance Y (mm) 

Mean Squared Error 6.73 

Normalized Mean Squared Error(MSE/variance desired output) 0.12 

Mean Absolute Error 2.12 

Minimum Absolute Error 0.03 

Maximum Absolute Error 4.97 

Linear correlation coefficient 0.95 

Table 11. Features of artificial neural network after modifying the network with historical 
data 

Value Variable 

0.908079 RSquare 

0.896589 RSquare Adj 

2.466808 Root Mean Square Error 

19.8 Mean of Response 

10 Observations (or Sum Wgts) 

Table 12. Summary of the observations of the linear regression between the true values of 
rainfall and predicted values 

F Ratio Mean Square Sum of Squares DF Source 

79.0317 480.919 480.91887 1 Model 
Prob > F 6.085 48.68113 8 Error 
<.0001  529.60000 9 C. Total 

Table 13. The variance analysis of the linear regression between the true values of rainfall 
and predicted values 

Prob>|t| t Ratio Std Error Estimate Term 

0.9753 -0.03 2.367907 -0.075552 Intercept 
<.0001 8.89 0.105608 0.9388546 Predicted rainfall (mm) 

Table 14. Summary of the statistical observations of the estimation of the parameters of the 
model 

Minimum Absolute 
Error 

Maximum Absolute 
Error 

RMSE Model 

0.13 10.98 6.82 ANN Model 
0.03 4.97 2.5 Modified ANN Model 

Table 15. Statistical comparative of two models 
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Fig. 14. Changes in the true values of rainfall versus predicted values. The slanted line is the 
regression line 
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Fig. 15. The confidence range of %99 for changes of the observed rainfall versus predicted 
values 

The confidence range of %99 for the changes of the observed rainfall versus the predicted 
values has been illustrated (Fig. 15). Here again, the changes of the observed rainfall and the 
predicted rainfall shows a close correspondence, being significant at 0.01 level. Fig. 16 Displays 
the changes in the values of residuals versus predicted values of rainfall. Here again, the 
changes in the values of residuals versus predicted values of rainfall are completely accidental 
and normal, indicating the high accuracy of the model in predicting rainfall. In sum, the 
analysis of the results indicates that the difference between the observed and predicted rainfall 
is within a reasonable range; moreover, the model has been able to predict rainfall in all years 
with an acceptable error. The root mean-square error for this model was 2.5 millimeter, which 
is very small, indicating the accuracy of the model in predicting rainfall. We can conclude from 
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the above discussion that the variables used in the model have been able to detect the 
distribution pattern of rainfall in the region with great ease and accuracy. We can also decide 
that the model can be successfully used for predicting rainfall in spring.  
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Fig. 16. Changes of the values of residuals versus predicted values of rainfall in terms of 
millimeter 

4. Conclusion 

Based on the obtained results, we can conclude that ANN models were successful in the 
prediction of spring rainfall, but the ANN model has higher accuracy after the revision of 
training data with a root mean square error of 2.5 milliliters. This is clearly observable in 
Fig.13, ANN model after the revision of training data has been more successful than the 
before. Table 15 shows the results of two ANN models to predicting the amount of the rainfall 
in the area under study. At the end, we can result that the variables entering rainfall prediction 
models have been well able to detect the rainfall distribution patterns in the region and can be 
used in rainfall prediction patterns in the region. This plays a vital role in the management and 
planning of drink and agriculture water resources. Considering these predictions, we can plan 
future policies for optimizing the costs and possibilities for maximum efficiency. 
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evident these days that what recent work in climatology has revealed carries profound implications for

economic and social policy; it is with these in mind that the final chapters consider acumens as to the

application of what has been learned to date.
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