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Rainfall Prediction Using Teleconnection
Patterns Through the Application of
Artificial Neural Networks

Gholam Abbas Fallah-Ghalhari
Sabzevar Tarbiat Moallem University
IR of Iran

1. Introduction

All aspects of human life are, directly or indirectly, affected by climatic processes. This effect is
especially noticeable in such fields as agriculture, irrigation, economy, telecommunications,
transportation, traffic, air pollution and military industries (Haltiner & Williams 1980).

A number of researchers have studied the possibility of forecasting rainfall several months in
advance using climate indices such as SOI, PDOI and NPI (e.g. Silverman and Dracup 2000).

A well-known atmospheric phenomenon is the Southern Oscillation (SO). The SO is an
atmospheric see-saw process in the tropical Pacific sea level pressure between the eastern
and western hemispheres associated with the El Nifio and La Nifia oceanographic features.
The oscillation can be characterized by a simple index, the Southern Oscillation Index (SOI).
(Kawamura et al., 1998). The Pacific Decadal Oscillation index (PDOI) is the leading
principal component of monthly sea surface temperature (SST) anomalies in the North
Pacific Ocean north of 20°N (Zhang et al., 1997; Mantua et al., 1997). Trenberth and Hurrell
(1994) have defined the North Pacific Index (NPI) as the area-weighted sea level pressure
over the region 30°N to 65°N, 160°E to 140°W to measure the decadal variations of
atmosphere and ocean in the north Pacific.

Furthermore, the existence of substantial databases of sea surface temperature anomalies
(SST) opens the possibility of using these data to forecast rainfall several months in advance.
Most of the research carried out in this area has used traditional statistical methods such as
linear correlation or time series methods to identify the significant variables. These methods
test for a linear relationship between the independent variables and rainfall, whereas the
relationships are more likely to be non-linear as the underlying processes are themselves
non-linear (Iseri et al. 2005).

Long-term rainfall prediction is very important to countries thriving on agro-based
economy. In general, climate and rainfall are highly non-linear phenomena in nature giving
rise to what is known as butterfly effect (Abraham et al. 2001). In their quest for new ways of
predicting important meteorological factors, researchers have devised and developed
techniques such as intelligent methods, which are viable and flexible means independent of
system dynamic models.
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362 Modern Climatology

Pongracz & Bartholy (2006) designed a model of monthly rainfall in Hungary using types of
atmospheric circulation patterns and ENSO (El Nifo - Southern Oscillation) index. To this
end, they used a modeling technique based on fuzzy rules to establish a relationship
between inputs and rainfall. Their results indicated that the model based on fuzzy rules
provides an excellent means for the prediction of statistical features of rainfall using
monthly occurrence of types of daily circulation pattern and delayed SOL

Halid & Ridd (2002) used the fuzzy logic to design a model and predict local rainfall in
January at Hasanuddin airport, Indonesia, which is the largest rice-producing area in the
country. Their results indicated that, compared to other statistical models, the fuzzy logic
model is more useful for the prediction of rainfall in January. Choi (1999) used neural
networks and the Geographical Information System to forecast rainfall. The results indicated
the efficiency of the Geographical Information System and neural networks in rainfall
forecast. Cavazos (2000) used neural networks to forecast daily rainfall. The parameters
which were used included the thickness between 500 and 1000 hecto-Pascal levels, the
altitude of 500 hPa levels, and the humidity of 700 hPa levels. The outcomes indicated the
efficiency of neural networks in the prediction of rainfall. Maria et al (2005) used neural
networks and regression models to forecast rainfall in Sao Paulo, Brazil. The parameters
they used included: potential temperature, vertical wind component, specific humidity,
precipitable water, relative vorticity and humidity flux divergence. The results indicated the
efficiency of both methods in forecasting rainfall.

One of the most crucial issues of global climatic variability is its effect on water resources. If
more accurate predictions of rainfall were possible, this would enable more efficient
utilization of water resources. However, long-term rainfall prediction models are still
unsatisfactory, whereas short-term rainfall prediction models have undergone significant
development. The probable reasons for the difficulties in conducting long-term rainfall
prediction are the complexity of atmosphere-ocean interactions and the uncertainty of the
relationship between rainfall and hydro meteorological variables. So far, long-term climate
prediction using numerical models has not demonstrated useful performance, and statistical
models have shown better performance than numerical models (Zwiers & Von Storch 2004).
Consequently, in this study Artificial Neural Networks and linear regression models have
been applied to nonlinear and linear statistical prediction.

Due to the significance of rainfall in many decision making processes such as water
resources management and agriculture, the present study aims to find out the relationship
between large-scale climatic synoptic patterns and regional rainfall using such synoptic
patterns as sea level temperature and temperature difference, sea level pressure and
pressure difference, precipitable water, air temperature at 700-hPa level, the thickness
between 500 and 1000-hPa levels and the relative humidity at 300-hPa level.

2. Data and methods
2.1 Data
2.1.1 Study area

The region studied in this research is Khorasan Razavi Province. The time series studied is
the average rainfall from April to June during 38 years. The data of spring rainfall for each
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year includes the rainfall in 34 visibility, climatology and rainfall measurement stations
provided by the Weather Bureau and the Power Ministry. Of these, 24 stations are rainfall
measurement stations of the Power Ministry and the rest belong to the Weather Bureau. Fig.
1 represents the map of the studied area and the name of the relevant stations. To
compensate for some defects in rainfall data, subtractions and ratios method have used. Run
test was also used to test the homogeneity of the data. The analysis of runs within a
sequence is applied in statistics in many ways (for examples see Feller 1968 & Ducan 1974).
The term run may in general be explained as a succession of items of the same class. Many
concepts to analyze runs in a series of data have been studied. The main concepts are based
on (i) the analysis of the total number of runs of a given class (see Guibas and Odlyzko 1980
and Knuth 1981) and (ii) examinations about the appearance of long runs (see Feller 1968,
Guibas and Odlyzko 1980 and Wolfowitz 1944).
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Fig. 1. Map of the region under study and selected stations (Fallah Ghalhary et al, 2010)
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2.1.2 Climatological data
The data used in this study are:

1. 34 Rainfall station data for the seasonal rainfall (April - June) were obtained from Iranian
Meteorological organization. All of these stations are in the north eastern region of Iran.

2. Large-scale ocean and atmospheric circulation variables such as Sea Surface Temperature
(SST), Sea Level Pressure(SLP), the difference Sea Level Pressure, the difference Sea
Surface Temperature between surface and 1000 hPa level, relative humid at 300 hPa
level, geopotential height at 500 hPa level, air temperature at 850 hPa level during
months (Oct-Mar). These data were obtained from NCEP/NCAR Re-analysis data.
These data sets span the period of 1948 - current, covering the globe on a 2.5 x 2.5 grid
and available at http://www.cdc.noaa.gov National Oceanic and Atmospheric
Administration (NOAA) website. Table 1 summarizes the data used in this study.

Data source time year

Iranian Meteorological April - June  1970-2007

Rainfall station data

organization
NCEP / NCAR Re- Large—scalg ocean an.d . Oct-Mar 1970-2007
analysis data atmospheric circulation variables

Table 1. Summaries of the data used in this study

2.2 Methods
2.2.1 Spatial prediction and kriging

The need to obtain accurate predictions from observed data can be found in all scientific
disciplines. Those that have embraced statistical notions of random variation are able to do
this by exploiting the statistical dependence among the data and the variables(s) to be
predicted. However, the statistical approach has not been without its detractors; for
example, Philip and Waston (1986) argue that geostatistics is unhelpful for solving problems
in mining and geology. Their article and the accompanying discussions are worth perusing.

It is helpful to explain first the terms used in the title of this chapter. Let {Z(s): se D < Rd} be
a random function (or process), from which n data Z (s1), ..., Z (sn) are collected. The data
are used to perform inference on the process, here, to predict some known functional g
({Z(s): se D}) [or, more simply, g (Z (.))] of the random function Z (.). For example, point
prediction assumes g (Z (.))=Z (So), where Sy is a known spatial location. g is mostly real-
valued. Sometimes interest is not in Z (.), but in a "noiseless" version of it.

Suppose that
Z(s)=S(s) + € (s),se D, 1)

Where € (.) is a white-noise measurement-error process. In this case, one is interested in
predicting a known functional g(S (.)) of the noiseless random function S (.).

Spatial prediction refers to prediction either g(Z(.)) or g(S(.)) from data Z(s1), ... , Z(sn)
observed at known spatial locations s1, ..., sn.

Notice that my terminology encompasses the temporal notions of smoothing (or
interpolation), filtering, and prediction (e.g., Lewis, 1986, PP. 36), which rely on time-
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ordering for their distinction. If temporal data are available from the past up to and
including the present, smoothing refers to prediction of g(S (.)) at time points in the past,
filtering refers to prediction of g(S (.)) at the present time and prediction refer to prediction
of g(S (.)) at time points in the future. In this paper, the word "estimation" will be used
exclusively for inference on fixed but unknown parameters; "prediction" is reserved for
inference on random quantities.

Kriging is a minimum-mean-squared-error method of spatial prediction that (usually)
depends on the second-order properties of the process Z (.).

Matheron (1963) named this method of optimal spatial linear prediction after D. G. Krige, a
South African mining engineer who, in the 1950s, developed empirical methods for
determining true ore-grade distributions from distributions based on sampled ore grades (e.
g., Krige, 1951). However, the formulation of optimal spatial linear prediction did not come
from krige's work. (See Matheron, 1971, pp. 117-119, and Cressie, 1990, for the extent of the
early work of Krige.) The contributions of Wold (1938), Kolmogorov (1941), and Wiener
(1949) all contain optimal linear prediction equations that reflect the notion that
observations closer to the prediction point ( for them, closer in time) should be given more
weight in the predictor.

At the same time as geostatististics was developing in mining engineering under G.
Matheron in France, the very same ideas developed in meteorology under L. S. Gandin
(Gandin, 1963) in the Soviet Union. The original (and simultaneous) contribution of these
authors was to put optimal linear prediction (in terms of variogram) into a spatial setting.
Gandins' name for his approach was objective analysis, and he used the terminology optimum
interpolation instead of Kriging. Details of the origins of Kriging are set out in Cressie (1990)
and Cressie (1993).

2.2.1.1 Observational and spatial scale

The following model is useful. Suppose that the data (Z (S1)... Z (Sn)) represent Z values at
points of D c R4, and that they are modeled as a partial realization of the random process:

{Z(s): Se D c R4}, )
Which satisfies the decomposition
Z(s) =u(s) *W(s) +n\(s) + € (s), se D, €)
Where:

U()=E(Z(.)) Is the deterministic mean structure that will be called large-scale variation.

W () is a zero-mean, L,-continues [i.e., EW(s+h)—-W(s)> =0 as ||h||—>0], intrinsically
stationarv process whose variogram rang (if it exist) is larger than min
{ Hsi - st :1<i< j<n}. Call W (.) smooth small-scale variation.

1 (.) Is a zero-mean, intrinsically stationarv process. independent of W, whose variogram
rang exists and is smaller than min {Hsi -5 ]H :1<i< j<n}. Call n()microscale variation.

€ (.) is a zero-mean white-noise process, independent of W and 1) call € (.) measurement
error or noise, and denote var (€ (s))= C,;;. There are occasions when e () may possess
more structure than that of white noise (e.g., Laslett and McBratney, 1990).
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In notation as follow,

2y, () =2y () + 23, () + 2¢ .- (4)

The quantities C,;; and y,(h), h|| larger, are pertinent to the observational scale; the other
quantities contain information on the spatial scale.

From the decomposition (3), write
Z(s) =S(s) + € (s),se D, )

Where the "signal" or smooth process S (.) is given by S (.)= ¢(.) +W (.)+ 11 (.). The S process
is often referred to as the noiseless version of the Z process or, in the engineering literature,
as the state process. Also, write

Z(s)= u(s)+4(s), se D, (6)

Where the correlated error process o(.) is given by J&(.)=W()+n()+e (). When the
Correlation of J8(s) white O(s+h) can be written as a function of
h ! a(h), where 0 < ar(h) < oo, then a(h)is sometimes called the spatial correlation scale of the
process in direction h (Cressie, 1993).

2.2.1.2 Ordinary kriging

Ordinary Kriging produced better estimates than simple Kriging because of the non-
stationarity of the data. The original data set had large areas where the values were low and
large areas where the values were high. Simple Kriging requires the mean value of the data
set to be provided, whereas ordinary Kriging calculates a mean for each individual block,
based on the samples included in estimate. The local mean appears to be more meaningful
in a situation where the global mean is not constant (Weber and Englund, 1992).

The word "Kriging" is synonymous with "optimal prediction" (as a noun) or with "optimally
predicting" (as the present participle of a verb). In other words, it refers to making
inferences on unobserved values of the random process Z (.) given by (2) or of S (.) given by
(5) from data:

Z =(Z(8)) Z(S,)) (7)
Observed at known spatial locations {S 1oeees S, }
Denote the generic predictor of g (Z (.) or g(S (.)) by:
P (Z; g) (8)

Choice of a good predictor will depend on the geometry and location of the region of space
where prediction is desired and weather it is the Z process or the S process that is to be

predicted. When g (Z (.)) = Z (B) [= J.Z(u)du / |B|] or g(S (.)) =S (B), write (3.2.3) as p (Z; B). In
B

the special case of B = {so}, write (8) as p (Z; so).

Ordinary Kriging (Matheron, 1971; Journel and Huijbregts, 1978) refers to spatial prediction
under the following two assumptions.
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Model Assumption. In (6)
Z(s)=u+0(s), s€e D,ue R, and 4 unknown. )

Predictor Assumption.

p(Z;B):Zn:/L-Z(si), Zn:/ii =1. (10)

i=1 i=1

This latter condition, which the coefficients of the linear predictor sum to 1, guarantees
uniform unbiasedness. E (p (Z; B)) = 4= E(Z(B)), forall ue R.

There is a version of Kriging called simple Kriging, where u# in (9) is known and the
coefficients are not constrained to sum to 1.

Hence, if

B|>0
g<Z<.>>=Z(B>z{ J BZ(”)d“”B’} 13/> (11)

ave{Z(u):ue BY,| |B|=0
Then the optimal p (. ; B) will minimize the mean-squared prediction error
o’ =E(Z(B)- p(Z;B))* (12)

Over the class of linear predictors Z&Z (s;) that satisfy 2/11 =1 (Cressie, 1993).

i=1 i=1
2.2.1.3 Kriging and calculating the average regional rainfall

In this research, we have used from ordinary Kriging for obtaining the average regional
rainfall in the area under study. Kriging is the estimation procedure used in geostatistics
using known values and a semivariogram to determine unknown values. It was named
after D. G. Krige from South Africa. The procedures involved in Kriging incorporate
measures of error and uncertainty when determining estimations. Based on the
semivariogram used, optimal weights are assigned to unknown values in order to
calculate unknown ones. Since the variogram changes with distance, the weights depend
on the known sample distribution (Davis 1990).

The final goal of studying spatial changes of rainfall is to simulate the changes in rainfall
data in the spatial dimension in order to pave the way for attaining other goals such as
forecasting rainfall and getting necessary information for the long-term analysis of rainfall
in every region in the area under study. As mentioned before, Kriging method used in this
study to calculate the average regional rainfall. The following steps were taken to obtain the
time series of average regional rainfall:

Making input files for the Arc GIS 9.2 software

Obtaining the experimental variogram

Analyzing and drawing annual spatial changes of rainfall in the region
Obtaining the values of annual average rainfall in the region under study
Making time series of rainfall in the region under study.

Gk LN =
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Fig.2 for example shows the diagram of the Variogram using spherical model to estimate of
the average regional rainfall for the year of 2007.
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Fig. 2. Variogram diagram using spherical model to estimate of the average regional rainfall
for year of 2007. Units on the horizontal and vertical axes are meter and square millimeter
respectively.

2.2.2 Determining seasonal rainfall and predictors

The predictors studied in this research are classified into two groups: meteorological
parameters at ground level and meteorological parameters at upper levels of the
atmosphere. Table 2 shows these parameters.

Upper level of atmosphere Ground level
Air temperature at 700-hPa level Sea level pressure
the thickness between 500 and 1000hPa levels  Sea level pressure difference
Relative humidity of 300-hPa level Sea level temperature

Temperature difference between sea
level and 1000-hPa level

Zonal wind

Meridional wind

Precipitable water

Table 2. Meteorological Parameters used in this study

One distinctive scenario is considered in this study. This scenario uses input data with 6
months lags to investigate the possibility of forecasting more than 3 months in advance.

One of the objectives of this study is the identification of a possible relationship between
rainfall in Iran and climatic predictors, using Pearson's correlation coefficient. The other
objective is to verify the forecasts produced using the predictors identified with Pearson's
correlation coefficient.
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Seasonal rainfall and predictors have been determined using the average of the values of a
predictor in order to predict the amount of seasonal rainfall. We made sure that the seasons
of the predictor do not include months with rainfalls.

Since we aimed to investigate the relation between meteorological parameters and spring
rainfall in this study (spring rainfall is very important in dry land cultivation and water
recourses management), we used the average value of meteorological predictors in the
period between October and March as the time series of the predictors and the average
rainfall in the period between April and June as the rainfall time series.

To analyze the parameters of the upper levels of the atmosphere as well as three ground
parameters, i.e. zonal wind, meridional wind and precipitable water in the present study,
we used 5°x5° and 10°x10° degrees spatial resolution. The study areas, where
meteorological parameters at ground level and upper levels of atmosphere have been factor-
analyzed, are located between 0-80 °E and 10-50 °N in 5°x5° degrees spatial resolution and
between 0-100 °E and 0-70 °N in 10°x10° degrees spatial resolution. The area includes
regions where changes in the pattern of temperature, pressure, humidity, and wind speed
affect Iranian rainfall (Fig. 3).
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Fig. 3. Humidity sources of Iranian rainfalls in the spring season (Alijani, 2006). the wider
arrows have more contribution.

For other parameters at ground level including pressure, temperature, pressure difference
and temperature difference between sea level and 1000-hPa level, some points has been
selected. That is, points were selected and analyzed in different parts of the seas, which were
known to affect the climate of Iran from previous studies by other researchers
(Nazemosadat & Cordery 2000, Alijani 2006).

We have used factor analysis to analyze the meteorological parameters at upper atmosphere
and ground levels (zonal wind, meridional wind and precipitable water). The field of factor
analysis involves the study of order and structure in multivariate data. The field includes
both theory about the underlying constructs and dynamics which give rise to observed
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phenomena, and methodology for attempting to reveal those constructs and dynamics from
observed data. Factor analysis is preferable to principal components analysis. Components
analysis is only a data reduction method. It became common decades ago when computers
were slow and expensive to use; it was a quicker, cheaper alternative to factor analysis
(Gorsuch 1997). It is computed without regard to any underlying structure caused by latent
variables; components are calculated using all of the variance of the manifest variables, and
all of that variance appears in the solution (Ford et al. 1986).

In this statistical method designed to reduce the number of variables, the initial parameters
are transformed into independent variables based on their correlation coefficients. These
independent variables are called factors. The value of each of the observations in the new
factors is calculated as factorial score. Hence, rather than true values of observations, their
scores in new components are used as new criteria for clustering. The advantage of this
method is that while it reduces the number of variables, it preserves the initial variance of
the main data (Alijani 2006).

As mentioned above, to find out the relation between rainfall in the region under study and
the changes in meteorological parameters of pressure, temperature, pressure difference and
temperature difference, the points in different parts of the seas have been studied, which are
supposed to affect the climate of Iran. These include points in the Mediterranean, Persian
Gulf, Oman Sea, Aden Gulf, Arab Sea, Red Sea, Black Sea, the Adriatic, Aral Lake, Indian
Ocean, The Atlantic, North Sea and Siberia (Fig. 4). Table 3 shows Time series of average
regional rainfall (from April to June) and value of predictors.
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Fig. 4. Name and coordinates that have used for relation between rainfall and Remote
Linkage Controlling (Fallah Ghalhary et al, 2010)
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Year  Rainfall ®1 X2 %3 x4 X3 X6 x7 X8 x93 x10 x11 x12 x13 x14

1970 20.40 -1.15 027 047 073 -165 097 -163 -1.23 -1.28 020 -6.57 3653 33.29 31.94
1971 17.35 -084 088 030 019 -122 -130 -160 -146 002 007 -7.10 3605 3271 2239
1972 27.93 -1.88 -046 0418 181 026 -003 -023 -030 011 -180 -742 3317 3553 3018
1973 30.96 -0.57 -045 -0.14 0T 1.03 044 0233 022 029 -078 -7.35 3644 3631 27.58
1974 2846 -065 -040 o001 -058 011 -1.03 071 -1.04 046 -083 -T.12 3452 3260 2540
1975 20.53 -067 -140 000 -008 051 -041 -006 -0.18 -069 -095 -704 3465 3497 2405
1976 21.07 -1.80 -056 -026 084 -102 -154 -141 -083 016 -1.20 -783 3408 3595 28.07
1977 33.50 030 -102 012 -088 035 -102 -041 053 102 020 -594 3675 3426 3478
1978 20.54 056 038 023 049 09N 049 -012 141 -149 011 -670 3626 3080 2998
1979 20.88 -092 <018 032 030 -012 016 018 083 <051 061 -628 3577 31.06 2798
1980 17.18 028 -067 004 025 -014 010 018 -013 -144 018 -719 3488 3984 3005
1981 22,40 028 -165 016 -002 -021 -020 -018 031 -1.41 1.10 -6.59 36.24 3534 26.22
1982 28.08 -052 -006 002 -025 065 062 09 079 -091 -033 -710 3536 3497 2645
1983 24.48 -0.27 -035 -038 -0.11 271 094 271 272 040 -1.33 -6.65 3487 3771 29.28
1984 19.19 -044 046 -002 015 021 002 054 053 -013 034 -698 3957 3110 2257
1985 17.83 034 -100 004 -146 040 -1.21 -048 -009 101 007 -741 3657 3278 2518
1986 16.11 -1.53 022 -009 010 026 0417 040 012 005 014 -675 3604 23092 23.09
1987 20.41 005 -0219 -004 -046 095 1.4 1.60 1.60 -1.87 039 -766 3627 2892 20.10
1988 23.79 037 109 -006 -027 014 -112 008 029 042 074 -664 3942 3270 2455
1989 19.86 -0.46 000 -020 069 066 -007 035 073 177 -021 -691 3509 2591 2053
1990 14.07 -0.13 126 -026 -054 075 066 051 048 100 001 -590 3591 3622 2697
1991 17.73 053 -054 -007 -038 -059% 059 -055 016 -011 048 -622 3714 3480 2784
1992 36.57 -065 -125 -036 0% 160 158 179 152 -072 -1.36 -7.63 3374 3707 26862
1993 42.83 072 114 -033 057 148 13 134 092 027 -065 -745 3489 3534 2889
1994 25.00 002 -217 -023 011 003 -026 009 031 081 056 -604 3837 2894 2812
1995 16.99 1.54 021 005 -023 155 2147 164 098 -1.79 -0.14 -658 3594 33.07 2051
1996 21.03 -1.05  0M 013 -053 -132 041 111 082 -025 -033 -673 3561 3050 2518
1997 25.82 041 070 -002 116 049 077 081 116 058 033 -673 3482 3073 2518
1998 32.48 004 184 -022 -009 -004 223 0859 -015 -224 -036 -6.84 3627 3520 2574
1999 19.65 1.69 017 012 -049 -249 -1.34 -180 -1.57 1.27 067 -7.26 3872 21.04 2894
2000 9.18 142 047 016 -028 -100 -166 -1.24 074 369 03553 -5.14 3710 2223 18.58
2001 T42 244 079 00 071 -104 156 -089 163 208 053 -5.14 3796 2382 2274
2002 20.14 092 098 027 005 -015 035 034 -081 <012 047 -725 3617 2629 2325
2003 34.78 150 080 -006 004 -122 001 -101 -052 <09 111 -639 3706 2985 2570
2004 28.40 075 021 -007 069 -025 -0.10 -006 -043 010 014 -718 3530 2699 2175
2005 21.59 103 076 044 072 016 068 027 -082 -047 014 -T18 3453 2489 2540
2006 15.01 049 030 006 -088 -087 -013 -062 -1.20 020 106 -7.22 3897 2599 2019
2007 10.09 1.26 314 -010 018 -022 -016 -021 -1.21 112 024 -542 3594 2285 20.74

Table 3. Time series of regional monthly average rainfall (from April to June) and value of
predictors

2.2.3 Neural information processing systems

Artificial neural networks (ANNSs) form a class of systems that is inspired by biological neural
networks. They usually consist of a number of simple processing elements, called neurons that
are interconnected to each other. In most cases one or more layers of neurons are considered
that are connected in a feed forward or recurrent way (Zurada 1992, Grossberg 1988,
Lippmann 1987). In trying to understand the emergence of the new discipline of neural
networks it is useful to look at some historical milestones in Table 4 (Johan et al. 1997).

2.2.4 Basic neural network architectures

The best known neural network architecture is the multilayer feedforward neural network
(multilayer perceptron). It is a static network that consists of a number of layers: input
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layer, output layer and one or more hidden layers connected in feedforward way (see e.g.
Zurada 1992).

One signal neuron makes the simple operation of a weighted sum of the incoming signals
and a bias term (or threshold), fed through an activation function o and resulting in the
output value of the neuron. A network with one hidden layer is described in matrix-vector
notation as

y=Wo(,+p), (13)
Or in elementwise notation:
ny, m
Vi =2, 0,00 vx;+B,) i=L..L (14)
r=l1 j=1

Here y € Rm is the input and y € RI the output of the network and the nonlinear
operation o is taken elementwise. The intererconnection matrices are W e R’ for the
output layer V e R"™" for the hidden layer, e R" is the bias vector (thresholds of
hidden neurons) with ni the number of hidden neurons.

Year Network Inventor /Discoverer
1942 McCulloch-Pitts neuron McCulloch, pitts

1957  Perceptron Rosenblatt

1960  Madaline Widrow

1969  Cerebellatron Albus

1974  Back propagation network Werbos, parker, Rumelhart
1977  Brain state in a box Anderson

1978  Neocognitron Fukushima

1978  Adaptive Resonance Theory Carpenter, Grossberg

1980  Self-organizing map Kohonen

1982  Hopfield Hopfield

1985  Bidirectional assoc. mem. Kosko

1985  Boltzmann machine Hinton, Sejnowsky

1986  Counterpropation Hecht- Nielsen

1988  Cellular neural network Chua, yang

Table 4. The best known artificial neural network architectures together with their year of
introduction and their inventor/ discoverer. See Hecht Nielsen (1988) for part of this table
(Johan et al, 1997).

Fig. 5 shows a multilayer perceptron, which is a static nonlinear network that consists of a
dummy input layer, an output layer and two hidden layer. A layer consists of a number of
McCulloch-pitts neurons that perform the operation of a weighted sum of incoming signals,
feeded through a saturation-like nonlinearity. One hidden layer is sufficient in order to be
universal approximators for any continues nonlinear function (Johan et al. 1997).
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Input Data Output Data
Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer
Fig. 5. Multilayer perceptron neural network (Johan et al, 1997).
For a network with two hidden layers (see Fig. 5):
y=W.oV,.oVix+B)+ ) (15)
Or:
=2 w0 vy o Qv+ B+ B, i=1l (16)
r=1 s=1 j=1

The interconnection matrices are W € R for the output layer, V, e R">*"1 for the second
hidden layer and V,e R™™" for the first hidden layer. The bias vectors are f,e R"2,
S € R for the second a first hidden layer respectively. In order to describe a network with
L layer (L-1 hidden layers, because the input layer is a 'dummy' layer), the following
notation will be used in the sequel.

x =0(&), (17)
§l _%Wl xl—l (18)
oM
=

Where [=1,...,L is the layer index, N, denotes the number of neurons in layer / and xf is
the output of the neurons at layer/. The thresholds are considered here to be part of the
interconnection matrix, by defining additional constant inputs.

The choice of the activation function o may depend on the application area. Typical
activation functions are shown in Fig. 6.
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a = ol

Tanh function Sigmoid function

Signum function Step funetion

Fig. 6. Some possible activation functions for the neurons in the multilayer perceptron
(Johan et al, 1997).

Fig. 6 shows some possible activation functions for the neurons in the multilayer
precipitation. In this paper, we take the hyperbolic tangent function tanh. Note that this is a
static nonlinearity that belongs to the sector [0, 1].

For applications in modeling and control the hyperbolic tangent functions:
tanh(x) = (1 — exp(=2x)) / (1 + exp(=2x)) (19)

Is normally used. In case of a 'tanh' the derivative of the activation function is:

o =1-0’ (20)
The neurons of the input layer have a linear activation function.

A network that has received a lot of attention recently in the field of neural networks is the
redial basic function network. This network can be described as:

=Y welr—c)) (21)
i=1

With xe R" the input vector and ye R the output (models with multiple outputs are also
possible). The network consists of one hidden layer with n, hidden neurons. One of the
basic differences with the multilayer perceptron is in the use of the activation function. In
many cases one takes a Gaussian function for g, which is radiallv symmetric with respect to
the input argument. The outout layer has output weights we R" . The parameters for the
hidden layer are the centers ¢; € R" (Johan et al. 1997).

2.2.5 Recurrent neural network model

In recurrent neural network, some outputs of the nodes (output nodes or hidden nodes) are
fed back to the previous layers. Most commonly used recurrent neural networks are external
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recurrent neural networks (Fig.7). In this scheme, the outputs of a neural network are fed
back to form a part of its input layer. Another recurrent scheme is internal recurrent neural
networks, in which the outputs of hidden nodes (instead of output nodes) are fed back to
the input layer (Fig.8) (Aoyama et al, 1999).

A

Ourput Nodes

Hidden Nodes

Input Nodes

Hidden Nodes

Input Nodes

— o —

Fig. 8. Internal recurrent (state space) neural networks (Aoyama et al, 1999).

After various runs to test the network and the number of neurons of the hidden layer and
different activation functions in the hidden and output layers, eventually found out that the
final model with its one input layer, one hidden layer and one output layer (average regional
rainfall) had the least error so in this research, used it as the main model. The numbers of the
neurons in the input, hidden and output layers is fourteen, four and one respectively (14-4-1).
The hidden layer activation function is a function of the hyperbolic tangent and the output
layer activation function is a function of the linear hyperbolic tangent.

To assess the accuracy of the model, the index of Root Mean Square Error (RMSE) has been
used which is calculated by the following formula:
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Zﬂ (0, —e)?
RMSE:\/’_‘— (22)

n

In the above formula, RMSE is Root Mean Square Error, O, and ¢; are the observed and
predicted value of the variable respectively in the point i and n is number of network
outputs.

3. Results and discussion
3.1 Predicting spring rainfall by means of artificial neural networks

In this study, Pearson Correlation Method has used to obtain meteorological predictors
which affect regional rainfall. Thus, all the predictors which have shown a correlation with
%5 level of significance in the period between October and March have been used as
predictors in the structure of the rainfall forecast model. After numerous checking, it became
clear that the optimum effect of predictors is when the period between October and March is
used. Therefore, the following predictors in the period between October and March were
used as predictors in rainfall forecast models: 1) SST Central Atlantic, 2) SST Western
Mediterranean, 3) ASST Aral Lake, 4) ASST Labrador Sea, 5) SLP Northern Persian Gulf, 6)
SLP Oman Sea, 7) SLP Southern Persian Gulf 8) SLP Southern Red Sea, 9) ASLP Between
Eastern Mediterranean and Oman Sea, 10) air temperature at 700-hPa level in the region of
index factor 2 in 5x5 degrees spatial resolution (Fig. 9), 11) air temperature at 700-hPa level
in the index region of factor 3 in 5x5 degrees spatial resolution (Fig. 9), 12) precipitable
water content in the index region of factor 10 in 10x10 degrees spatial resolution (Fig. 10),
13) relative humidity at 300-hPa level in the region of factor 2 in 5x5 degrees spatial
resolution (Fig. 11), 14) relative humidity at 300-hPa level in the region of factor 4 in 5x5
degrees spatial resolution (Fig. 11). The variables which used as predictors in the rainfall
forecast models show in the Table 5.

The above model divides the data into three different sections, namely, training data,
validation data and testing data. The data belonging to 38 years were in turn divided into 19
years (1970- 1988) of training data, 9 years (1989-1997) of validation data and 10 years
(1998-2007) of testing data. In the other words, from the whole set of historical data, two-
thirds (1970-1997) were considered as calibration data, and one-third (1998 - 2007) as testing
data. There is a clear analogy between the neural network weights and the parameters of
other modeling approaches, and between the learning set and what we have before calles a
period of calibration data. Work in neural networks often does not draw this analogy but it
is a useful one in that just as an increase in the number of parameters gives a model more
degrees of freedom in calibration but may result in over parameterization with respect to
information in the data set, so in a neural network an increase in the number of layers,
nodes and interconnections will also result in more degrees of freedom in fitting the
learning set, also with the possibility of over parameterization (Beven 2001). Table 6 presents
the results of the calibration period of the rainfall forecast model. As is shown, the minimum
mean-square error after 1000 learning epochs is 0.169. Also, the maximum mean-square
error is 0.169. In the other words, at this stage in the epoch of 1000, the network shows the
maximum error. The minimum mean-square error of the validation epoch in the epoch of 3
is 0.234. The results of the prediction model are illustrated in Table 7 and Fig. 12. It is to be
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noted that these results were presented for the years 1998 to 2007, which was the testing
epoch of the model. The features of this model have been presented in Table 8.

Correlation Coefficient

Symbol The Name of Predictor Time with the average = P-value
regional rainfall
(X1) SST Central Atlantic Oct-Mar -0.31 0.05
(X2) SST Western Mediterranean Oct-Mar -0.38 0.01
(X3) ASST Aral Lake Oct-Mar -0.35 0.03
(X4) ASST Labrador Sea Oct-Mar 0.36 0.02
(X5) SLP Northern Persian Gulf Oct-Mar 0.31 0.05
(X6) SLP Oman Sea Oct-Mar 0.38 0.01
(X7)  SLP Southern Persian Gulf Oct-Mar 0.31 0.05
(X8) SLP Southern Red Sea Oct-Mar 0.34 0.03
(X9) ASLP Between Eastern Oct-Mar 032 0.04

Mediterranean and Oman Sea

air temperature at 700-hPa level in

(X10) the region of index factor 2 in 5°x5°  Oct-Mar -0.38 0.01
degrees spatial resolution (Fig. 9)
air temperature at 700-hPa level in

(X11) the region of index factor 3 in 5°x5°  Oct-Mar -0.45 0.004
degrees spatial resolution (Fig. 9)
precipitable water in the region of

(X12) index factor 10 in 10°x10° degrees Oct-Mar -0.31 0.05
spatial resolution (Fig. 10)
relative humidity at 300-hPa level in

(X13) the region of index factor 2 in 5°x5°  Oct-Mar 0.45 0.004
degrees spatial resolution (Fig. 11)
relative humidity at 300-hPa level in

(X14) the region of index factor 4 in 5°x5°  Oct-Mar 0.46 0.003

degrees spatial resolution (Fig. 11)

Table 5. Selected predictor variables which used in the rainfall prediction model

Best Networks Training Cross Validation
Epoch 1000 3
Minimum Mean Squared Error 0.169 0.235
Final Mean Squared Error 0.169 0.426

Table 6. Minimum & Maximum Error in Training and Validation Epochs

As Table 8 shows, the mean square error is 46.5 and the normalized mean square error is
0.55. Also, the mean absolute error for this model was calculated to be 6.15 millimeters. The
minimum absolute error is 0.13 millimeter and the maximum absolute error is 10.9
millimeters. Also, the correlation coefficient between observed and predicted rainfall for the
model is 0.79. The root mean square error for this model was calculated to be 6.8
millimeters.
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Year Observed rainfall Predicted rainfall
1998 32 27
1999 19 15
2000 9 15
2001 7 15
2002 20 15
2003 34 24
2004 28 17
2005 21 15
2006 15 15
2007 10 15

Table 7. Rainfall prediction in the region under study by means of neural network model

Performance Y (mm)
Mean Squared Error 46.54
Normalized Mean Squared Error(MSE/variance desired output) 0.55
Mean Absolute Error 6.15
Minimum Absolute Error 0.13
Maximum Absolute Error 10.98
Linear correlation coefficient 0.79
Table 8. The features of artificial neural network model
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Fig. 9. The index areas detected by factor analysis at the temperature of 700-hPa level in
the period October to March in networks of 5x5 degrees spatial resolution (Fallah

Ghalhary et al, 2010)
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spatial resolution (Fallah Ghalhary et al, 2010)
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Fig. 12. Comparison of the observed and predicted rainfall in the region under study by
means of artificial neural network model

The analysis of the results shows that the model is basically incapable of predicting rainfall
in dry or wet extreme years. This is due to the fact that these extreme years have not been
repeated in the calibration epoch of the prediction model and, for this reason, the model is
not able to predict these extreme years. It must be noted that the minimum rainfall in the
rainfall time series occurred in 2000 and 2001. To remove this problem, we must train the
model with these extreme data. For this reason and in order to enable the neural network
model to predict seasonal rainfall in such a way that it can be applied to all cases including
dry, wet and normal years, we deleted the years 1998 and 2000 as the two extreme years in the
test epoch of the model. One represents the dry extreme year and the other the wet extreme
year. These two years were replaced by other data. They were taken out of the testing data and
transferred into the training data and calibration epoch of the model. The results of the
calibration epoch of the rainfall forecast model have been illustrated in Table 9. It is indicated
that the minimum training error in the epoch of 17 is 0.108. The ultimate training error is 0.175.
Also, the minimum validation error in the epoch of 1 is 0.087 and the ultimate validation error
is 0.399. As the data show the accuracy of the model in detecting all dry, wet and normal years
has amazingly increased. We can see that the accuracy of the model is higher than the previous
model, as shown in Fig. 13, changes in the type of training data have affected the results of
rainfall forecast model and that this model can estimate rainfall with higher accuracy.

Best Networks Training Cross Validation
Epoch 17 1
Minimum Mean Squared Error 0.108 0.087
Final Mean Squared Error 0.175 0.399

Table 9. Minimum and maximum error in training and validation epochs after modifying
the network with proper historical data.

The observed and predicted rainfall by the model after modifying the input vector of the
model in the training epoch has been presented in Table 10. the accuracy of the model has
highly increased in this case and the root mean-square error has reached 2.5 millimeter, which
indicates the high efficiency of the model in predicting rainfall in the area under study. The
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features of this model have been presented in Table 11. The mean-square error is 6.7 millimeter
and the normalized mean-square error is 0.12. Furthermore, the mean absolute error for this
model was equal to 2.12 millimeters. The minimum absolute error was 0.03 millimeter and the
maximum absolute error was 4.97 millimeters. The correlation coefficient between observed
and predicted rainfall was 0.95, which is very reasonable. Fig. 14 shows the observed values of
rainfall versus predicted values. The equation of the regression line for the changes in the
values of observed versus predicted rainfall is as follows:

Observed Rainfall (mm) = 0.05 + 0.93 Predicted Rainfall

Year Observed rainfall Predicted rainfall
1996 21 22
1997 25 27
1998 32 35
1999 19 18
2001 7 7,7
2002 20 22
2004 28 25
2005 21 26
2006 15 15
2007 10 14

Table 10. Rainfall forecast in the region under study after modifying the network with
historical data

40
35 -
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20 -
15 | —a— Predicted rainfall
10 -

5 1

0 ‘ ‘ ‘ ‘ ‘ ‘
1994 1996 1998 2000 2002 2004 2006 2008

—e— Observed rainfall

Rainfall (mm)

Year

Fig. 13. Comparison of observed and predicted rainfall in the region under study by
artificial neural network model after modifying the network with historical data.

the observations of the linear regression between observed values of rainfall and predicted
values and the results of the variance analysis of the linear regression between the observed
values of rainfall and predicted values have been summarized in Table 12 and Table 13
respectively. As we can see in Table 12, considering the confidence range of %99 of the
linear regression between the observed values of rainfall and predicted values, the root
mean-square error was calculated to be 2.46 millimeters. Table 13 shows that the F ratio is
significant at %1 level, which is indicative of a strong relation between the changes in the
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observed values of rainfall versus predicted values. The significance test of the gradient of
the regression line between the true values of rainfall and the values predicted by the model
has also been done (Table 14). As observed here, the gradient of the regression line is also
significant at %1 level. The P-value for the significance test of the gradient of the regression
equation was smaller than 0.0001.

Performance Y (mm)
Mean Squared Error 6.73
Normalized Mean Squared Error(MSE/ variance desired output) 0.12
Mean Absolute Error 212
Minimum Absolute Error 0.03
Maximum Absolute Error 4.97
Linear correlation coefficient 0.95

Table 11. Features of artificial neural network after modifying the network with historical
data

Variable Value
RSquare 0.908079
RSquare Adj 0.896589
Root Mean Square Error 2.466808
Mean of Response 19.8
Observations (or Sum Wgts) 10

Table 12. Summary of the observations of the linear regression between the true values of
rainfall and predicted values

Source ~ DF  Sum of Squares Mean Square F Ratio
Model 1 480.91887 480.919 79.0317
Error 8 48.68113 6.085 Prob > F

C.Total 9 529.60000 <.0001

Table 13. The variance analysis of the linear regression between the true values of rainfall
and predicted values

Term Estimate Std Error t Ratio  Prob>|t|
Intercept -0.075552 2.367907 -0.03 0.9753
Predicted rainfall (mm) 0.9388546 0.105608 8.89 <.0001

Table 14. Summary of the statistical observations of the estimation of the parameters of the
model

Model RMSE Maximum Absolute Minimum Absolute
Error Error
ANN Model 6.82 10.98 0.13
Modified ANN Model 25 4.97 0.03

Table 15. Statistical comparative of two models
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Fig. 15. The confidence range of %99 for changes of the observed rainfall versus predicted
values

The confidence range of %99 for the changes of the observed rainfall versus the predicted
values has been illustrated (Fig. 15). Here again, the changes of the observed rainfall and the
predicted rainfall shows a close correspondence, being significant at 0.01 level. Fig. 16 Displays
the changes in the values of residuals versus predicted values of rainfall. Here again, the
changes in the values of residuals versus predicted values of rainfall are completely accidental
and normal, indicating the high accuracy of the model in predicting rainfall. In sum, the
analysis of the results indicates that the difference between the observed and predicted rainfall
is within a reasonable range; moreover, the model has been able to predict rainfall in all years
with an acceptable error. The root mean-square error for this model was 2.5 millimeter, which
is very small, indicating the accuracy of the model in predicting rainfall. We can conclude from
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the above discussion that the variables used in the model have been able to detect the
distribution pattern of rainfall in the region with great ease and accuracy. We can also decide
that the model can be successfully used for predicting rainfall in spring.

5.0

2.5

0.0 - —

Residual

_2_5_

-5.0 — I I I I I
5 10 15 20 25 30

Predicted rainfall (mm)

Fig. 16. Changes of the values of residuals versus predicted values of rainfall in terms of
millimeter

4. Conclusion

Based on the obtained results, we can conclude that ANN models were successful in the
prediction of spring rainfall, but the ANN model has higher accuracy after the revision of
training data with a root mean square error of 2.5 milliliters. This is clearly observable in
Fig.13, ANN model after the revision of training data has been more successful than the
before. Table 15 shows the results of two ANN models to predicting the amount of the rainfall
in the area under study. At the end, we can result that the variables entering rainfall prediction
models have been well able to detect the rainfall distribution patterns in the region and can be
used in rainfall prediction patterns in the region. This plays a vital role in the management and
planning of drink and agriculture water resources. Considering these predictions, we can plan
future policies for optimizing the costs and possibilities for maximum efficiency.
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