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1. Introduction   

More-Electric Aircraft (MEA) is the future trend in adopting single power type for driving 

the non-propulsive aircraft systems; i.e. is the electrical power. The MEA is anticipated to 

achieve numerous advantages such as optimising the aircraft performance and decreasing 

the operation and maintenance costs. Moreover, MEA reduces the emissions of air pollutant 

gases from aircrafts, which can contribute in signifcantly solving some of the problems of 

climate change. However, the MEA puts some challenges on the aircraft electrical system, 

both in the amount of the required power and the processing and management of this 

power. This chapter introduces the outline for MEA. It investigates possible topologies for 

the power system of the aircraft. The different electric power generation options are 

highlighted; while at the same time assessing the generator topologies. It also includes a 

general review of the power electronic interfacing circuits. Also, the key design 

requirements for an interfacing circuit are addressed. Finally, a glance at protection facilities 

for the aircraft power system is given.   

2. More electric aircraft  

Recently, the aircraft industry has achieved a tremendous progress both in civil and military 

sectors (AbdElhafez & Forsyth, 2008,2009; Cronin, 1990; Moir & Seabridge, 2001). For example 

some current commercial aircraft operate at weights of over 300 000 kg and have the ability to 

fly up to 16 000 km in non-stop journey at speed of 1000 km/h (AbdElhafez & Forsyth, 2009). 

The non-propulsive aircraft systems are typically driven by a combination of different 
secondary power drives/subsystems such as hydraulic, pneumatic, electrical and 
mechanical (AbdElhafez & Forsyth, 2008,2009; Jones, 1999; Moir, 1999; Moir & Seabridge, 
2001; Quigley, 1993). These powers subsystems are all soured from the aircraft main engine 
by different methods. For example, mechanical power is extracted from the engine by a 
driven shaft and distributed to a gearbox to drive lubrication pumps, fuel pumps, hydraulic 
pumps and electrical generators (AbdElhafez & Forsyth, 2009; Jones, 1999; Moir, 1999; 
Quigley, 1993). Pneumatic power is obtained by bleeding the compressor to drive turbine 
motors for the engine’s starter subsystem, and wing anti-icing and Environmental Control 
Systems (ECS), while electrical power and hydraulic power subsystems are distributed 
throughout the aircraft for driving actuation systems such as flight control actuators, 
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landing gear brakes, utility actuators, avionics, lighting, galleys, commercial loads and 
weapon systems (AbdElhafez & Forsyth, 2009, Howse, 2003; Jones, 1999; Moir, 1998, 1999; 
Quigley, 1993). 

This combination had always been debated, because these systems had become rather 
complicated, and their interactions reduce the efficiency of the whole system. For 
example, a simple leak in pneumatic or hydraulic system jeopardises the journey by 
grounding the aircraft, and eventually causing inconvenient flight delays. The leak is 
usually difficult to locate and once located it cannot easily be handled (AbdElhafez & 
Forsyth, 2009; Cutts, 2002; Hoffman, 1985; Moir, 1998; Pearson, 1998; Rosero, et al, 2007;  
Weimer, 1993). Furthermore, from manufacturing point of view reducing the cost of 
ownership, increasing the profit and some anticipated future legislation regarding the 
climate changes demand radical changes to the entire aircraft, as it is no longer sufficient 
to optimise the current aircraft sub-systems and components individually to achieve these 
goals (AbdElhafez & Forsyth, 2009; Andrade, 1992; Cutts, 2002; Clyod, 1997; Emadi & 
Ehsani, 2000; Hoffman, 1985; Moir, 1998; Pearson, 1998; Ponton, 1998; Rosero, etal, 2007;  
Weimer, 1993). 

The trend is using the electrical power for sourcing and distributing non-propulsive aircraft 
engine powers. This trend is defined as MEA. The MEA concept is utterly not a new 
concept, it has been investigated for several decades since W.W. II (Andrade, 1992; Cutts, 
2002; Pearson, 1998; Ponton, 1998; Weimer, 1993). However, due to the lack of electric power 
generation capabilities and prohibitive volume of power conditioning equipments, the focus 
has been drifted into the conventional power types. Relatively, the recent technology 
breakthroughs in the field of power electronics systems, fault-tolerant electric machines, 
electro- hydrostatic actuators, electromechanical actuators, and fault-tolerant electrical 
power systems have renewed the interest in MEA (AbdElhafez & Forsyth, 2009; Andrade, 
1992; Cutts, 2002; Clyod, 1997; Emadi & Ehsani, 2000; Hoffman, 1985; Moir, 1998; Pearson, 
1998; Ponton, 1998;  Rosero, etal, 2007;  Weimer, 1993). A comparison between conventional 
aircraft subsystems and MEA subsystems is shown in Fig. 1 (AbdElhafez & Forsyth, 2009).  

 

Fig. 1. Comparison between conventional systems aircraft and MEA systems (AbdElhafez & 
Forsyth, 2009). 
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The adoption of MEA in the future aircraft both in civil and military sectors will result in 
tremendous benefits such as:- 

1. Removal of hydraulic systems, which are costly, labour-intensive, and susceptible to 
leakage and contamination problems, improves the aircraft reliability, vulnerability, 
and reduces complexity, redundancy, weight, installation and running cost ( Cutts, 
2002; Pearson, 1998; Ponton, 1998; Quigely, 1993; Weimer, 1993). 

2. Deployment of electrical starting for the aero-engine through the engine 
starter/generator scheme eliminates the engine tower shaft and gears, power take-off 
shaft, accessory gearboxes and reduces engine starting power especially in the cold 
conditions and aircraft front area (Clyod, 1997; Emadi & Ehsani, 2000; Jones, 1999; Moir 
& Seabridge, 2001).   

3. Utilization of the Advanced Magnetic Bearing (AMB) system, which could be 
integrated into the internal starter/generator for both the main engine and auxiliary 
power units, allows for oil-free, gear-free engine area (AbdElhafez & Forsyth, 2009; 
Andrade & Tenning, 1992a, 1992b; Hoffman et al., 1985; Jones, 1999; Moir & Seabridge, 
2001).  

4. In MEA, using a fan shaft generator that allowing emergency power extraction under 
windmill conditions removes the conventional inefficient single-shot ram air turbine, 
which increases the aircraft’s reliability, and survivability under engine-failure 
conditions (AbdElhafez & Forsyth, 2009; Andrade & Tenning, 1992a, 1992b; Quigley, 
1993).  

5. Replacement of the engine-bleed system by electric motor-driven pumps reduces the 
complexity and the installation cost, and improves the efficiency (Jones, 1999).  

In general, adopting MEA will revolutionise the aerospace industry completely, and 

significant improvements in terms of aircraft-empty weight, reconfigureability, fuel 

consumption, overall cost, maintainability, supportability, and system reliability will be 

achieved (AbdElhafez & Forsyth, 2009; Clyod, 1997; Cronin, 1990; Emadi & Ehsani, 2000; 

Hoffman et at., 1985; Moir, 21998, 1999, Weimer, 1993 ). 

On the other hand, the MEA requires more demand on the aircraft electric power system in 

areas of power generation and handling, reliability, and fault tolerance. These entails 

innovations in power generation, processing, distribution and management systems 

(AbdElhafez & Forsyth, 2009; Clyod, 1997; Cronin, 1990; Emadi & Ehsani, 2000; Hoffman et 

at., 1985; Moir, 21998, 1999). 

The proceeding sections briefly discuss a general overview of the electrical power 
distribution and management, generation and processing systems in MEA. 

3. Distribution systems  

The power distribution system of the most in-service civil aircrafts is composed of combined 
of AC and DC topologies. E.g., an AC supply of 115V/400Hz is used to power large loads as 
such as galleys, while the DC supply of 28V DC is used for avionics, flight control and 
battery-driven vital services.  

Recently there is a trend for using only high voltage DC system for power distribution and 
management in MEA. A number of factors encouraged this trend (AbdElhafez & Forsyth, 
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2009; Cross et al., 2002; Hoffman, 1985; Jones, 1999; Glennon, 1998; Maldonado et al., 1996, 
1997, 1999; Mallov et al., 2000; Quigely, 1993; Worth, 1990)  : 

1. Adopting the new generation options as variable frequency,  
2. Recent advancements in the areas of interfacing circuits, control techniques and 

protection systems, 
3. The advantages of the high voltage DC distribution system in reducing the weight, the 

size and the losses, while increasing the levels of the transmitted power.  

Some values of the system voltage are presently under research. These values are: 270, 350 
and 540V. The exact value, however, is determined by a number of factors such as, the 
capabilities of DC switchgear, the availability of the components and the risk of corona 
discharge at high altitude and reduced pressure (Brockschmidt, 1999).  

Different topologies were suggested for implementing the distribution system in MEA 
(Cross et al., 2002; Hoffman, 1985; Glennon, 1998; Maldonado et al., 1996, 1997, 1999; Mallov 
et al., 2000; Worth, 1990). In the following four main candidates of these topologies are 
briefly reviewed, as follows :  

1. Centralized Electrical Power Distribution System (CEPDS), 
2. Semi-Distributed Electrical Power Distribution System (SDEPDS), 
3. Advanced Electrical Power Distribution System (AEPDS),  
4. Fault-Tolerant Electrical Power Distribution System (FTEPDS). 

3.1 Centralized Electrical Power Distribution System (CEPDS) 

CEPDS is a point-to-point radial power distribution system as shown in Figure 2. It has 

only one distribution centre. The generators supply this distribution centre. The electrical 

power is being processed and fed to the different electrical loads. The distribution centre 

is normally positioned in the avionics bay, Figure 2, where the voltage regulation is also 

located. In this system, each load is supplied individually from the power distribution 

centre (Cross et al., 2002; Worth et al., 1990). CEPDS has a number of advantages, such  

as : 

1. The ease of maintenance, since all equipments are located in one place, i.e. avionics 
bay.  

2. Decoupling between loads; thus the disturbance in a load is not transferred to the 
others.  

3. Fault-tolerance, as the main buses are highly protected.  

As stated  CEPDS may have significant advantages, however it also  has a number of 
disadvantages, such as: 

1. CEPDS suffers from the difficulty of upgrading.  
2. The faults in the distribution system affect probably all loads and disable the entire 

system.  
3. CEPDS is cumbersome, expensive and unreliable, as each load has to be wired from the 

avionics bay.  
4. Costly and bulky protection system has to be deployed to protect the distribution 

system.  
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Fig. 2. Centralised Electrical Power Distribution System CEPDS for the MEA (AbdElhafez & 
Forsyth, 2009). 

3.2 Semi-Distributed Electrical Power Distribution System (SDEPDS) 

SDEPDS was proposed to overcome the problems of  CEPDS  (AbdElhafez & Forsyth; 2009; 
Cross et al., 2002; Hoffman, 1985; Glennon, 1998; Maldonado et al., 1996, 1997, 1999; Mallov 
et al., 2000; Worth, 1990) . The SDEPDS as shown in Figure 3 has a large number of Power 
Distribution Centres (PDCs). These centres are scaled versions of PDCs in CEPDS. The PDCs 
are distributed around the aircraft in such way to optimise the system volume, weight and 
reliability. They are located, Figure 3, close to load centres. 

 

Fig. 3. Semi-Distributed Electrical Power Distribution System SDEPDS for the MEA 
(AbdElhafez & Forsyth, 2009) 
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SDEPDS has a number of advantages :  

1. Elevated power quality and improved Electromagntic compatibility, due to the position 
of the distribution centres near to the loads,  

2. High efficiency and cost effective, attributed to the deployment of electrical components 
with small weight/volume in PDCs, 

3. Efficient and stable system operation, due to reduced losses/voltage drops across the 
distribution network.  

4. High level of redundancy in primary power distribution path, due to the strategy of 
increasing and distributing the PDCs,  

5. Simplicity and flexibility of upgrading. 

On the other hand, the close coupling between the loads in SDEPDS may reduce the 

reliability, as faults/ disturbances in a load can propagate to nearby loads. Moreover, extra 

equipments are required to perform the monitoring and control of the distributed PDCs.  

3.3 Advanced Electrical Power Distribution System (AEPDS) 

AEPDS is a flexible, fault-tolerant system controlled by a redundant microprocessor system. 

This system is developed to replace the conventionally centralized and semi-distributed 

systems.  

AEPDS as shown in Figure 4, is highly protected. The electrical power from the generators, 

Auxiliary Power Unit (APU), battery and ground sources is supplied to the primary power 

distribution, where the Contactor Control Units (CCU) and high power contactors are 

located. The primary power distribution centre performs a number of tasks: 

voltage/frequency regulation, damping oscillation and transient and controlling the flow of 

the reactive power. 

The aircraft loads are supplied via the Relay Switching Units (RSU). Each RSU is controlled 

and monitored by a Remote Terminal (RT) unit. The AEPDS is controlled by either one of 

the two redundant Electrical load Management Units (ELMU). The ELMU interact and 

exchange data/control strategies with the RTs through a quad redundant data bus (Mollov 

et al., 2002; Worth, 1990) .    

The AEPDS has improved performance than CEPDS and SDEPDS. This is attributed for the 

following (Worth, 1990): 

1. AEPDS reduces the aircraft life cycle cost, as the system reconfiguration in case of 

aircraft modification/upgrade can easily be accommodated.  

2. AEPDS can detect deviant conditions of current/voltage and provide instantaneous 

load shut-off. 

3. A major reduction in the weight and wiring in the AEPDS is achieved due to the 

elimination of circuit breaker panels from the flight deck stands. 

4. AEPDS is fault-tolerant distribution system.   

The AEPDS has the disadvantage of concentrating the distribution and the management of 

power supplied by the generating units/sources into a single unit; therefore a fault in this 

unit may interrupt the whole system operation.   
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Fig. 4. Advanced Electrical Power Distribution System AEPDS for MEA (AbdElhafez & 
Forsyth, 2009). 

3.4 Faulted-Tolerant Electrical Power Distribution System (FTEPDS) 

FTEPDS is adequatly protected. A typical FTEPDS for a two-engine aircraft is shown in 
Figure 5. The system is composed of two switch matrices, six multi-purpose converter, six 
generators and different loads. The source and load switch matrices could be implemented 
by using mechanical or solid-state switches. However, the latter has the advantages of 
controllability, fast response and high efficiency (Cross et al., 2002; Hoffman et al., 1985; 
Glennon, 1998; Maldonado  et al., 1996, 1997) over the former.  

FTEPDS is a mixed distribution system; the AC power from generators and airport grid are 
connected to source switch matrix, while 270V DC system is interfaced with the converters. 
The bi-directional power flow in the generators indicates that system allows integral 
starter/generator operation, where the generator initally acts as a motor to start the jet 
engine; then it operates as generator to supply the aircraft electrical system. Also 270V DC 
system has a bi-directional power flow; this is to charge the batteries and other energy 
storage units during normal flight conditions. However, during faults and disturbances the 
DC system injects power to stabilize the aircraft distribution system.  

FTEPDS enjoys the following advantages: 

1. The ability to start the aircraft engine by generator/starter scheme, 
2. High redundancy,  
3. Fault-tolerant, the ability of the system to continue functioning even under an engine 

failure,  
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However FEEPDS has a serious drawback; a fault in source/load switch matrices may 
interrupt the operation of the entire system.  

 
 

 

Fig. 5. Fault-tolerant Electrical Power Distribution System FTEPDS for MEA (AbdElhafez & 
Forsyth, 2009). 

4. Electric power generation in MEA 

Since its advent, generated electrical power uilization has been rising rapidly. The growth of 
electrical power generation/application in aircrafts is shown in Figure 6. The quadratic 
growth is attributed to the increase aircraft system loading such as : galley and In-Flight 
Entertainment (IFE) systems. 

MEA recently is one of the major driving force in electric generation in aircrafts (AbdElhafez 
& Forsyth, 2009; Andrade, 1992; Bansal et al., 2003, 2005; Howse, 2003; Jones, 1999; Quigely, 
1993; Mellor et al., 2005; Moir & Seabridge, 2001; Moir, 1999; Raimondi et al., 2002). Not only 
are aircraft electrical system power levels growing, but the diversity of the power generation 
types is increasing as well.   

4.1 Schemes of power generation  

The various in-service and prospect schemes of electrical power generation are shown in 
Figure 7 (AbdElhafez & Forsyth, 2009; Cossar, 2004) 

Examples of civil/military aircraft and the corresponding generation scheme are given in 
Table 1.  
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Fig. 6. Growth of generated electrical power in aircraft since the first flight (AbdElhafez & 
Forsyth, 2009). 

 

Fig. 7. Aircraft Electrical Power Generation Options (AbdElhafez & Forsyth, 2009). 
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Generation scheme 

Civil Military 

Aircraft 
Rating 
(kVA) 

Aircraft Rating (kVA) 

CF(IDG) 

B777 
A340 

B373NG 
MD-12 
B747-X 
B717 

B767-400 
Do728 

2x120 
4x90 
2x90 
4x120 
4x120 
2x40 
2x40 
2x40 

  

VSCF (Cycloconverters)   F-18E/F 2x60/65 

VSCF(DC-link) 
B77(backup)

MD-90 
2x20 
2x75 

C145 2x120 

VF 
Global Ex 
Horizon 

A3xx 

4x50 
2x20/25

4x150 
Boeing JSF 2x50 

270VDC   
F-22 Raptor 
X-35A/B/C

2x70 
2x50 

 

Table 1. Civil/Military aircraft and electrical power generation techniques (AbdElhafez & 
Forsyth, 2009). 

A brief review of the different generation techniques is given below where the focus is on 
the merits/demerits of each.   

4.1.1 Constant frequency  

The constant Frequency (CF), three-phase 115V/400Hz scheme is the most common electric 
power generation option. This scheme is in-service in most civil aircrafts as shown in Table 
1. The CF is alternatively termed Integrated Drive Generator (IDG). 

In CF system, the generator is attached to the engine through unreliable and cumbersome 
mechanical gearbox. This gearbox is essential to ensure that the generator speed is constant 
irrespective of the engine speed and aircraft status. The frequency f of the generated power 
is related to generator speed N by,  

 
PN

f=
120

 (1) 

where f is output frequency in cycle/sec(Hz); N is generator speed in revolution per 
minutes (rpm) and P is the number of magnetic poles. Maintaining generator speed N 
constant ensures that output frequency remains fixed; however the CF has a number of 
disadvantages (AbdElhafez & Forsyth, 2009; Cossar, 2004; Howse, 2003; Jones, 1999; 
Quigely, 1993; Moir, 1999; Raimondi et al., 2002):  

1. The interfacing mechanical gear box is unreliable, inefficient and costly, which reduces 
the overall system efficiency.  
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2. The system has to be examined for every flight, increasing the operational costs.  
3. CF could not allow internal starting for the aero-engine by integral starter/generator 

scheme.  

4.1.2 DC-link system 

Variable Speed Constant Frequency (VSCF) DC-link system is now the preferred option for 
most new military aircraft and some commercial aircraft, Table 1. The generator in this 
scheme, Figure 7, is attached directly to the engine, thus according to (1) the output 
frequency will vary with engine speed. The engine speed is subjected to wide variation 
during the normal course of flight, and so does the frequency; therefore interfacing circuits 
are required to change the generator output power into usable form.  

The output of the generator is supplied to diode rectifiers, which converts the variable 
frequency AC power into DC form. Then three-phase inverters are used to convert the DC 
power into three-phase 115V/400Hz AC type. This is the typical form of VSCF DC-link 
system. However, recently several topologies were reported. These new topologies produce 
improved performance regarding harmonics, reactive power flow and system stability. 
Moreover, the range of VSCF DC-link system has been widened due to the recent 
advancements in field of high power electronic switches. VSCF DC-link option is generally 
characterised by simplicity and reliability (AbdElhafez & Forsyth, 2009; Hoffman et al., 1985;  
Ferriera, 1995; Moir, 1999; Quigley, 1993; Olaiya, &. Buchan, 1999; Ying shing & Lin, 1995).  

4.1.3 Cycloconverters  

Variable Speed Constant Frequency (VSCF) Cycloconverters as shown in Figure 2 convert 

directly the variable frequency AC input power into AC form with fixed frequency and 

amplitude, three-phase 115V/400Hz (AbdElhafez & Forsyth, 2009; Cloyd, 1997; Cronin, 

1990; Emad & Ehasni, 2000; Howse, 2003, Jones, 1999;  Moir & Seabridge, 2001). The output 

frequency is lower than the input frequency; thus, making it possible for the generator to be 

attached to the engine with a fixed turns ratio gearbox. In the typical form of 

cycloconverters, three bidirectional switches interface each generator phase with the 

corresponding supply phase.  

The VSCF cycloconverters are more efficient than CF and VSCF DC-link; however they 

require sophisticated control. The power generation efficiency of the cycloconverters 

increases as the power factor decrease, which would be beneficial if this technique is applied 

to motor loads with significant lagging power factors (AbdElhafez & Forsyth, 2009).  

4.1.4 Wild frequency 

Variable Frequency (VF), commonly known as wild frequency, is the most recent electric 

power generation contender. In VF approach, the generator is attached directly to the engine 

shaft. This method is commonly termed embedded generation (Raimondi et al., 2002). 

Generator direct allocation in the engine shafts de-rates power take-off shaft and the 

associated gearbox, which reduce their size and weight and increase the reliability. 

However, a number of implications will arise, in case of embedding one or more electrical 

machines within the core of the engine: 
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1. Accommodation of the embedded generators requires revision of the design of the 
engine components from their current state, which may change the components 
structure and probably the profile of the airflow through the engine. 

2. The heat loss within the generator places a significant burden on the engine oil cooling 
system, requiring additional or alternative heat exchange.   

3. If the generator rotor is only supported through main engine bearings, the small air gap 
requirement of the generator may lead to obligatory stiffening of the engine structure. 
The latter being nessary to ensure that rotor and stator do not come into contact under 
high acceleration 

4. Transmitting high levels of electrical power to and from the core of the engine would 
require significant alterations in the supporting engine core structure relative to the 
engine pylon (Raimondi et al., 2002).  

In VF, variations in engine speed would manifest directly into the output frequency as 
shown from (1) and Figure 2.  The promising features of VF are the small size, weight, 
volume, and cost as compared with other aircraft electrical power generation options. Also 
VF offers a very cost-effective source of power for the galley loads, which consumes a lot of 
on-board power. However VF may pose significant risk at higher power levels, particularly 
with high power motor loads. Furthermore, the cost of motor controllers required due to the 
variation in the supply frequency, need to be taken into consideration when assessing VF 
(AbdElhafez & Forsyth, 2009; Cronin, 2005; Elbuluk & Kankam, 1997; Hoffman, 1999; ; Moir, 
1998, Pearson, 1998; Weimer, 1993). 

4.2 Generator topologies  

The anticipated increase in electrical power generation requirements on MEA suggests that 

high power generators should be attached directly to the engine, mounted on the engine 

shaft and used for the engine start in Integral Starter/Generator (IS/G) scheme . The harsh 

operating conditions and the high ambient temperatures push most materials close to or 

even beyond their limits, requiring more innovations in materials, processes and thermal 

management systems design.  

Consequently, Induction, Switched Reluctance, Synchronous and Permanent Magnet 

machine types (Hoffman et al., 1985; Mollov et al., 2000; Cross, 2002 ) have been considered 

for application in MEA due to their robust features.  

4.2.1 Induction generator 

Induction Generators (IGs) are characterized by their robustness, reduced cost and ability to 

withstand harsh environment. However, the IG requires complex power electronics and is 

considered unlikely to have the power density of the other machines (Khatounian et 

al.,2003; Ying & Lin, 1995; Bansal et. al, 2003, 2005). 

4.2.2 Synchronous generator 

The current generator technology employed on most commercial and military aircraft is the 
three-stage wound field synchronous generator (Hoffman, 1985). This machine is reliable 
and inherently safe; as the field excitation can be removed, de-energising the machine. 
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Therefore, the rating of the three-stage synchronous generator has increased over the years 
reaching to 150KVA (Hoffman, 1985) on the Airbus A380. The synchronous machine has the 
ability to absorb/generate reactive power, which enhances the stability of the aircraft power 
system. However, this machine requires external DC excitation, which unfortunately 
decreases the reliability and the efficiency.  

4.2.3 Switched reluctance generator 

The Switched Reluctance (SR) machine has a very simple robust structure, and can operate 
over a wide speed range. The three-phase type has a salient rotor similar to salient pole 
synchronous machine. The stator consists of three phases; each phase is interfaced with the 
DC supply through two pairs of anti-parallel switch-diode combination. Thus, the SR 
machine is inherently fault-tolerant. However the machine has the severe disadvantage of 
producing high acoustic noise and torque ripples (Mitcham & Cullenm, 2002, 2005; Pollock 
& Chi-Yao, 1997; Trainer & Cullen, 2005; Skvarenina et al., 1996,1997).  

4.2.4 Permanent generator 

The Permanent Magnet (PM) generator has a number of favourable characteristics 
(AbdElhafez & Forsyth, 2009; Argile, 2008; Bianchi, 2003; Jack et al., 1996; Pollock & Chi-Yao, 
1997; Mecrow et al., 1996; Mitcham & Cullenm, 2002, 2005): 

1. Ease of cooling, as the PM generator theoretically has almost zero rotor losses. 
2. High efficiency compared to other machine types.  
3. High volumetric and gravimetric power density. 
4. High pole number with reduced length of stator end windings.  
5. Self excitation at all times.  

However, conventional PM machines are claimed to have inferior fault tolerance compared 
with SR machines (Argile, 2008; Mecrow et al., 1996; White, 1996). Conventional PM 
generators are intolerant to elevated temperatures. Furthermore, PM generators require 
power converters with high VA rating to cater for a wide speed range of operation 
(AbdElhafez & Forsyth, 2009; Bianchi, 2003 ;Jack et al., 1996;Mecrow et al., 1996; Mitcham & 
Cullenm, 2002, 2005). Therefore, a different implementation is mandatory in PM machine 
technology if they are to be used in aero-engines.  

The fault-tolerant PM machines are one solution and offer high levels of redundancy and 
fault tolerance (Argile, 2008; Ho et al.,1988; Mitcham & Grum, 1998; Mellor, at al.,2005). 
These machines are designed with a high number of phases, such that the machine can 
continue to deliver a satisfactory level of torque/power after a fault in one or more phases. 
Furthermore, each phase has minimal electrical, magnetic, and thermal impact upon the 
others (Argile, 2008; Jack et al., 1996; Jones & Drager, 1997;Mecrow et al., 1996; Mitcham & 
Cullenm, 2002, 2005; White, 1996). This is realised by: 

1. The number of magnetic poles in the machine being similar to the stator slot number; 
each phase winding can be placed in a single slot, which is thermally isolated from the 
other phases (AbdElhafez, 2008; Adefajo, 2008; Jones & Drager, 1997;Mecrow et al., 
1996; Mitcham & Cullenm, 2002). 

2. The stator coils being wound around alternate teeth, which provides physical and 
magnetic isolation between the phases (AbdElhafez, 2008; Jones & Drager, 1997). 
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3. Each phase being attached to a separate single-phase power converter, which achieves 
the electrical isolation (AbdElhafez, 2008; Adefajo, 2008; Jack et al., 1996; Jones & 
Drager, 1997;Mecrow et al., 1996; Mitcham & Cullenm, 2002, 2005). 

4. The machine synchronous reactance per phase is typically 1.0 p.u., limiting the short-
circuit fault current to no greater than the rated phase current (AbdElhafez, 2008; Jack et 
al., 1996; Jones & Drager, 1997;Mecrow et al., 1996; Mitcham & Cullenm, 2002, 2005). 

4.3 Integrated generation  

MEA as mentioned, suggests innovative strategies for optimizing the aircraft performance 
and reducing the installation and operational costs, such as IS/G and emergency power 
generation schemes.  

4.3.1 Integral starter/generator  

Commonly, jet engines are externally started by pneumatic power from a ground cart. This 
reduces the system reliability and increases maintenance and running cost. A move toward 
internal starting for the engine is adopted in MEA. 

The jet engine has two shafts: High Pressure (HP) and Low Pressure (LP) shafts. The main 
generator is usually attached to the HP shaft . The trend is to use that generator as the prime 
mover to start the engine. Once the engine is started, the generator returns to its default 
operation, generator. The prime mover (starter) is powered from the aircraft system, which 
during this stage is supplied from energy storage devices. ISG scheme has a number of 
advantages (AbdElhafez & Forsyth, 2009; Ganev, 2006; Elbuluk & Kankam, 1997; Ferreira, 
1995; Skvarenina, 1996, 1997 ) : 

1. Improves the aircraft reconfigureability by eliminating the arrangement used 
previously for ground starting.  

2. Allows the adoption of All Electric Aircraft (AEA)  
3. Uses AMB system that results in reliable robust and compact engine.  
4. Reduces the operational and maintenance cost, which boosts the air traffic industry  

Different machine topologies are suggested for IS/G scheme; however the SR and fault-
tolerant PM machines are most reliable. These machines do not require external excitation or 
sophisticated control techniques. Also, they are either inherently or artificially fault-tolerant.   

4.3.2 Emergency power generation 

The level of the emergency power is expected to grow significantly for future aircrafts, due 
to rising demands of critical aircraft loads/services. Currently, the emergency power is 
sourced from generators coupled to a Ram Air Turbine (RAT). This scheme is deployed only 
under emergency conditions, and suffers from serious drawbacks such as (AbdElhafez et al., 
2006a, 2006b, 2008; Adefajo, 2008; Bianchi, 2003 ) : 

1. It is expensive to develop, install and maintain.  
2. It is unpopular with the airliners.  
3. The integrity of such a ‘one-shot’ system is always subject to some doubt.  

The proposal is to utilize the windmill effect of the aero-engine fan, which is driven from the 
LP shaft, for emergency power generation. While, the fan is normally rotating, the heath of 
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the emergency generation system is continuously monitored and backup power will be 
immediately available following a main generator failure. Also the stored inertial energy of 
the engine is significant and could be recovered as another source of emergency power 
(AbdElhafez & Forsyth, 2008, 2009; Ganev, 2006). 

Different machine topologies are competing for LP emergency generators. Trade-off studies 
were conducted to identify the most suitable machine technology. Due to the difficulty of 
the location, reliability is paramount and it is clear that a brushless machine format is 
required. The harsh operating environment particularly extremely high ambient 
temperatures, pushes many common materials, e.g. permanent magnet materials and 
insulation materials close to or beyond their operating limits. Consequenclty, cooling or 
alternative materials and process would be required (AbdElhafez & Forsyth, 2008, 2009; 
Mitcham &. Grum, 1998 ) .  

Machine efficiency is another crucial issue, since dissipated heat needs to be absorbed by the 
engine cooling system. Currently, the generator loss is absorbed by the engine oil system 
and this is in turn mainly cooled by the fuel entering the engine. This restricts the amount of 
heat that can be dissipated without introducing an alternative cooling method. 

Some key requirements, assisting in the choice of LP generator type are list below 

(AbdElhafez & Forsyth, 2008, 2009 ):  

1. The machine operates only as a generator, drive torque is not allowed.  
2. The machine is subject to a harsh operating environmental conditions (specifically high 

temperature), with limited access for maintenance. 
3. Power must be generated over a very wide speed range (approximately 12:1) with an 

output voltage compatible with the aircraft DC-distribution system voltage 350 V dc. 
4. The machine is fault tolerant, such that it continues to run even if there is a fault on one 

or two phases without significantly degrading the output power.   

Also the operating speed range, weight and volume constraints are important parameters 
that affect the choice of machine type. 

Several brushless machine types seem to have the required ruggedness and hence the 

capability of operation in such environment. These include: IG, SR and PM machines 

(AbdElhafez & Forsyth, 2008, 2009; Mitcham &. Grum, 1998 ).   

5. Interfacing circuits  

There are many occasions within the aircraft industry where it is required to convert the 
electrical power from one level/form to another level/form, resulting in a wide range of 
Power Electronics Circuits (PECs) such as AC/DC, DC/DC, DC/AC and matrix converters 
(AbdElhafez & Forsyth, 2009; Chivite-Zabalza, 2004; Cutts, 2002; Lawless & Clark, 1997; 
Matheson, &. Karimi, 2002; Moir & Seabridge, 2001; Singh et. al, 2008 ). There are general 
requirements, which PEC should satisfy: 

1. PEC should have reduced weight and volumetric dimension.  
2. PEC should be fault-tolerant, which implies its ability to continue functioning under 

abnormal conditions without much loss in its output power or degradation of its 
performance.   
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3. PEC should be efficient and have the ability for operation in harsh conditions such as 
high temperature and low maintenance.  

4. PEC should emit minimum levels of harmonic and Electromagnetic Interference (EMC).  
5. PEC could be easily upgraded and computerized.  

Innovation in the area of power electronics components is required to enable realisation of 
MEA. Wide-Band Gap (WBG) High-Temperature Electronics (THE) is an example of these 
developments. The devices manufactured from WBG-THE are capable of operating at both 
higher temperatures (600 0C) (Reinhardt & Marciniak, 1996) and higher efficiencies 
compared to Si-based devices (-55 0C to 125 0C). A number of advantages are expected to be 
realized from employing WBG-THE devices (AbdElhafez et al., 2006, 2008, Howse, 2003; 
Gong et al., 2003; Lawless & Clark, 1997; Matheson, &. Karimi, 2002; Moir & Seabridge, 1998, 
2001; Trainer & Cullen, 2005 ): 

1. Eliminating/reducing of ECS required for cooling flight control electronics and other 
critical PECs  

2.  Reducing the engine control system weight and volumetric dimension  
3. Improving the system reliability by using a distributed processing architecture  
4. Optimizing the aircraft system and reducing the installation and running cost 
5. Improving system fault-tolerance and redundancy  

Another main challenge for PECs in the aircraft is passive electrical component size, as the 
current components are heavy and bulky, especially for the high power level expected in the 
MEA. However, the on-going research in the design and fabrication of the passive 
components for MEA gives some optimistic results. For example, some advanced polymer 
insulation materials such as Eymyd, L-30N, and Upilex S (AbdElhafez & Forsyth, 2009; 
Cutts, 2002; Lawless & Clark, 1997; Moir & Seabridge, 2001 ) have the ability to operate over 
a wide temperature range (-269 0C to 300 0C). Also these materials can withstand the 
environmental conditions such as humidity, ultraviolet radiation, basic solution and solvent 
at high altitudes (AbdElhafez & Forsyth, 2009; Lawless & Clark, 1997). The ceramic 
capacitor is a good example, which offers remarkable advantages in volumetric density  
compared to other capacitor technology (Lawless & Clark, 1997).  

 

 SSCB Conventional 

Mechanism  The breaker consists of 
bidirectional switches that 
allow current flow in both 
directions. The gating signal of 
the switches are blocked to 
inhabit the faulty current 

Commonly an isolating air 
gap is developed in the path 
of the fault current.  A upon 
disconnection, an arc is 
created. Depending on the arc 
distinguishing methodology 
the breaker is termed.    

Response time Very small  Long 

Power rating Small  Medium to high 

Volumetric/weight   Compact/small Bulky/heavy  

Cost  Expensive  Cheap 

Functionality  Multi-task, they perform 
current monitoring and status 
reporting  

They should be instructed to 
be opened  

Table 2. Comparison between SSCB and conventional breakers. 
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6. Protection system 

The distribution system of aircraft is adequatly protected; different types of Circuit Breakers 
(CBs) are utilized. Thus includes the conventional and power electronics based. The 
conventional CBs include air, SF6, and oil, while the Solid-State Circuit Breakers (SSCBs) 
represent the power electronics based breakers (AbdElhafez & Forsyth, 2009; Jones, 1999; 
Moir & Seabridge, 2001). A comparison between SSCB and a generic conventional CB is 
given in Table 2 above. 
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