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1. Introduction 

Diabetes mellitus (DM) of type 1 (T1D) and type 2 (T2D) are characterized by persistently 

high glucose (HG) blood levels known as hyperglycemia. The preponderance of evidence 

points to a significant role of oxidative stress in the development of complications in 

patients with DM. In particular, the pathogenic increase in reactive oxygen (ROS) and 

nitrogen species (RNS) as well as accumulation of oxidation and nitration products has been 

well documented in cases of diabetes. ROS and RNS affect all types of biological molecules: 

they cause oxidation of membrane lipids, modification of protein amino groups as well as 

deoxynucleotites. Insulin producing beta-cells, which are part of pancreatic islets of 

Langerhans, perform the energetically demanding function of sensing blood glucose and 

releasing insulin to sustain metabolic homeostasis. They are highly specialized endocrinal 

cells with a complex system of signal transduction and insulin producing capacity. In 

pathology of diabetes beta-cells are the ones which are most susceptible to oxidative stress. 

2. Sources of oxidative stress in islets 

In islets, reactive species can originate from several sources. NAD(P)H-oxidase located in 

the plasma membrane produces molecule of O2-. Several isoforms of this enzyme were 

found in islets (Uchizono et al. 2006; Newsholme et al. 2007; Newsholme et al. 2009) and 

they are considered as substantial producers of ROS. The enzyme can be activated by 

exposure to fatty acids and in normal conditions it is believed to participate in glucose-

stimulated insulin secretion (GSIS) (Graciano et al. 2011; Santos et al. 2011). Islets also 

possess both types of nitric oxide synthases (NOS): constitutive cNOS (Nakada et al. 2003) 

and inducible (iNOS) (Darville and Eizirik 1998; Kutlu et al. 2003). Nitric oxide produced by 

cNOS is part of normal beta-cell physiology, while activation of iNOS is associated with 

beta-cell destruction, in particular via cytokines produced by immune cells.  

There is plentiful evidence that hyperglycemic conditions cause rise in ROS and RNS in 

beta-cells reviewed in: (Newsholme et al. 2007; Acharya and Ghaskadbi 2010). It was shown 

that high glucose triggers generation of ROS in rodent and human islets as well as in 

insulinoma cell lines (Tanaka et al. 1999; Tanaka et al. 2002; Bindokas et al. 2003; Robertson 

et al. 2003). A definitive role for mitochondria in glucose-induced ROS signal was proposed 

in a number of papers (Maechler and Wollheim 2001; Brownlee 2003; Fridlyand and 
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Philipson 2004; Newsholme et al. 2007; Newsholme et al. 2009). Thus, mitochondria are 

considered as an important ROS generator in islets.  

3. Islet mitochondria as a source of reactive oxygen species 

The main role of mitochondria in a cell is the production of ATP molecules for cellular 
energetic needs using for that energy of metabolite oxidation. ATP production by 
mitochondria is central for glucose sensing and insulin release in beta-cells, the fact that 
directs attention to mitochondria in diabetes studies. In the process of metabolite oxidation, 
mitochondria are dealing with the transfer of electrons along respiratory Complexes I 
through IV. Eventually four electrons are combined with four protons, H+, and one molecule 
of oxygen, producing two molecules of water; the reaction takes place within Complex IV 
(for reference see (Nicholls and Ferguson 2002). However, as a side reaction, a low portion 
of unpaired electrons leaks from the respiratory complexes and interacts with molecular 
oxygen producing a molecule of superoxide anion radical, a form of ROS. Currently, it is 
believed that the sites of ROS production in the mitochondrial respiratory chain are 
Complex I and Complex III (Turrens 2003; Rigoulet, Yoboue, and Devin 2011).  

For proper mitochondrial functioning with low levels of ROS production, the availability of 

end-point electron acceptor, molecular oxygen, is absolutely necessary. Temporal hypoxia, 

which causes a halt in electron flow followed by reoxygenation and resuming of electron 

flow, results in an increase of mitochondrial ROS (Selivanov et al. 2009). This phenomenon 

is related to a widely known phenomenon of ischemia-reperfusion injury and is a critical 

factor in the process of islet isolation from donor pancreata for transplantation purposes, as 

donor tissues inevitably become hypoxic when blood circulation stops. Presence of 

antioxidants in preservation and isolation media detoxifies mitochondria-derived ROS and 

substantially improves viability of islets and their potency to normalize blood glucose in 

recipient diabetic animals (Bottino et al. 2002; Bottino et al. 2004; Sklavos et al. 2010). 

Manipulation of electron flow in the respiratory chain by specific inhibitors of mitochondrial 

respiratory Complexes can either increase or decrease ROS generation. In normal 

conditions, with low levels of glucose and low base level of ROS, inhibitors of Complexes I 

and III, rotenone and antimycin, respectively, increase ROS production in rat islets (Armann 

et al. 2007; Leloup et al. 2009). This is consistent with data obtained on isolated mitochondria 

in vitro (Votyakova and Reynolds 2001; Starkov, Polster, and Fiskum 2002; Starkov and 

Fiskum 2003; Rigoulet, Yoboue, and Devin 2011). 

An important question is whether mitochondrial inhibitors are capable of down regulating 
ROS signals originating from the respiratory chain under conditions of hyperglycemia and 
hyperlipidemia. The answer depends on the type of chemical agent and the locus it binds in 
the respiratory chain. Oxidation of succinate in Complex II results in a high ROS generation 
because this prosess initiates forward electron flow to Complex III as well as reverse 
electron flow upstream to Complex I (Selivanov et al. 2011). Thus, inhibition of succinate 
oxidation would lead to a decrease in overall ROS. This effect was observed in a work by 
Sakai and collaborators (Sakai et al. 2003) where an inhibitor of Complex II 
thenoyltrifluoroacetone (TTFA) decreased glucose-stimulated ROS in human islets and 
MIN-6 cells. The inhibitor of Complex III antimycin A blocks Q-cycle in a way that increases 
free radical forms of respiratory chain components (Votyakova and Reynolds 2001; Starkov, 
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Polster, and Fiskum 2002; Starkov and Fiskum 2003). Leloup and co-authors observed a 
similar effect of antimycin A on rat islets (Leloup et al. 2009).  

Complex I, or NADH-oxidoreductase, is the largest and the most sophisticated segment in 

the respiratory chain; its architecture, functioning and mechanisms of ROS generation has 

been extensively studied (Magnitsky et al. 2002; Vinogradov 2008). In mammals it consists 

of 47 subunits with a number of redox centers to transfer electrons. Among them, there are 

flavine mononucleotide at the entrance of the Complex, which binds NADH, several sulfur-

iron clusters and several Coenzyme Q binding sites in the middle of the Complex. 

According to the current consensus, all inhibitors, which bind to subunits located in the 

middle of Complex I and block electron flow within the complex, such as rotenone, 

piericidin and others, increase ROS (Grivennikova and Vinogradov 2006). The only known 

inhibitor that decreases ROS generation in Complex I is diphenylene iodonium, which binds 

at the very entrance at the flavin mononucleotide (FMN) site (Liu, Fiskum, and Schubert 

2002). This compound, though, is unspecific and also inhibits NAH(P)H oxidase of the 

plasma membrane. In other words, if an inhibitor blocks the very entry of Complex I at the 

site of FMN and prevents the access of electrons into Complex I at all, it would prevent ROS 

generation. If an inhibitor blocks electron flow somewhere in the middle of Complex I and 

allows redox centers upstream of the block to be over-reduced, it would result in an increase 

of ROS (Genova et al. 2003). In accordance with this notion, inhibitory effects of diphenylene 

iodonium on ROS induced by hyperglycemia in MIN-6 cells were reported by (Tsubouchi et 

al. 2005), though the researchers attributed this fact solely to the plasma membrane 

NAD(P)H oxidase inhibition. Regarding the other Complex I inhibitors, there is some 

controversy in the literature. The same authors reported no effect of rotenone, the effect 

could be expected if ROS was already increased, while earlier work by Sakai and 

collaborators reported that rotenone twofold decreased hyperglycemia-induced ROS in 

human islets and MIN-6 cells (Sakai et al. 2003).  

There is a way to modulate mitochondrial ROS generation without interference into the 

activity of respiratory Complexes. In the cell this function belongs to a special group of 

proteins located in the inner membrane of mitochondria, called uncoupling proteins 

(USPs), which in a highly controlled manner modulate membrane potential, basically 

working as proton conductors (Ricquier and Bouillaud 2000). Islets express an UCP2 

isoform of uncoupling protein (Gimeno et al. 1997), and in a number of publications it was 

shown that overexpression of UCP2 downregulated the levels of ROS (Pi et al. 2009; 

Affourtit, Jastroch, and Brand 2011). 

The same effect can be achieved by using chemical compounds called uncouplers, which, 

while different in structure, have two properties in common: they can penetrate into 

mitochondrial membrane and are capable to easily accept or dissociate H+ ion. 

Uncouplers decrease membrane potential by transporting protons into mitochondrial 

matrix and, in principle, their function is similar to that of UCPs, though they are more 

powerful modulators (see (Nicholls and Ferguson 2002) for detailed mechanism). 

Uncouplers were shown to decrease ROS production in glucose-stimulated human and rat 

islets as well as in MIN-6 cell line (Sakai et al. 2003; Leloup et al. 2009). This is consistent 

with the data observed on isolated mitochondria in vitro (Votyakova and Reynolds 2001; 

Selivanov et al. 2008). 
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Overall, the amount of data on the mechanism of mitochondrial ROS generation in beta-cell 

is limited and this issue is underexplored, mainly because islets are precious and less 

available for research compared with other more abundant tissues, like liver, muscle, heart 

and even brain. Mostly intriguing is the fact that, despite extensive evidence of increased 

level of free radicals in conditions of high glucose or high lipids, there is still no satisfactory 

molecular mechanism explaining exactly how high levels of cellular energy metabolites 

cause beta-cell mitochondria to produce more free radicals. 

4. Antioxidant capacity of insulin producing beta-cells 

Antiradical defense systems in the cell consist of a gamut of small antioxidant molecules and 

enzymes capable of interaction with reactive oxygen and nitrogen species. Endogenous 

antioxidant molecules are vitamins A, C and E, sulfur-containing compounds like amino 

acid cysteine and tripeptide glutathione (GSH – reduced form, GSSG – oxidized form). 

Coenzyme Q may also act as an antioxidant in particular conditions. These compounds 

possess different efficiency in scavenging harmful oxidants, glutathione being the most 

potent. The main players in enzymatic antiradical protection are superoxide dismutases 

(SOD), catalase and glutathione peroxidases (GPx). Within the cell two isoforms of SOD are 

found: Zn,Cu-SOD (SOD1) which is located in cytoplasm and Mn-SOD (SOD2) located in 

mitochondrial matrix. They are the first line of defense as they convert superoxide anion 

radical into O2 and H2O2 by dismutation. The hydrogen peroxide next can be converted into 

H2O and O2 by catalase or, to H2O, by GPx; the latter will use reduced glutathione molecule 

as a substrate. Glutathione is a recyclable molecule: its oxidized form is reduced back by 

glutathione reductase. Mitochondria have both enzymes (about of 10% of total cellular 

activity) which, working in concert, effectively detoxify peroxides and recycle GSH (for 

reference see (Halliwell 2001)). The proteins UCPs, which downregulate ROS generation in 

mitochondria, can also be formally added to antioxidant proteins. 

Glucose sensor function and production of insulin on demand are the two dominating 

functions in beta-cell physiology and, apparently, this comes at a cost of downregulating 

some other functions. High susceptibility of islets to oxidative insults was well established 

long ago, and this feature was utilized to specifically target these cells, thus, creating 

animal models of diabetes. Compared to cells from other tissues, islet cells have 

profoundly lower activity of enzymes involved into antiradical defense. As early as in 

1979 Grankvist and co-authors shown that alloxan effectively destroys rat islet cells 

through ROS-mediated mechanisms (Grankvist et al. 1979). Two years later they reported 

that beta-cell super-sensitivity to oxidative agent is due to a deficiency of anti-radical 

defense capacity (Grankvist, Marklund, and Taljedal 1981). The activity of the main anti-

oxidant enzymes was found to be about 30% for both types of SODs and only in single 

percentage range for catalase and glutathione peroxidase (1.2% and 1.8%, respectively), as 

compared to liver. This data was confirmed by estimating the levels of mRNA of the 

respective genes by Lenzen and co-workers (Lenzen, Drinkgern, and Tiedge 1996). It 

should be noted, though, that a more appropriate comparison of islet enzymes’ activities 

would be with that of tissues with similar functions and/or intensity of metabolism. As 

Table 1 shows, when compared with hypophysis or brain tissues, islets’ activities of anti-

oxidant enzymes were only 50% or lower.  
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Gene Expression Cu/Zn SOD Mn SOD Catalase 
Glutathione 
Peroxidase 

Pancreatic islets % of Liver* 38 30 n.d. ** 15 

Pancreatic islets % Pituitary gland  48 64 n.d.** 23 

Pancreatic islets % of Brain 49 45 n.d.** 38 

Table 1. The levels of anti-oxidant gene expression in islets compared to brain and pituitary 
gland. *Data adopted from Lenzen & al. (1996). **In (Tiedge et al. 1997) it was determined to 
be around 5%.  

Expression of anti-oxidant enzymes in islets may vary within the same species reflecting 
genome variations. Zraika and co-authors have found that mRNA levels of Mn-SOD in islets 
of a diabetes-prone DBA/2 mice were twofold higher than in islets of C57BL/6 mice (Zraika 
et al. 2006), while the level of catalase was the same. This means that at the same level of 
superoxide anion radical beta-cells of DBA/2 mice would produce H2O2 twice as fast 
compared to that of C57BL/6 mice, and consequently, having the same level of catalase, 
DBA/2 islets would deal with higher levels of peroxide.  

Among species the differences in activities of antioxidant enzymes can also vary 
substantially. It was shown that human islets have more active catalase and SOD than 
rodent ones and, consequently, are more resistant to oxidative stress (Welsh et al. 1995).  

The expression of antiradical enzymes can be changed in diabetes conditions. In islets of 

Goto–Kakizaki/Paris rats, a model of T2D, expression of the whole spectrum of 

antiradical defense genes is increased along with an increased level of reduced 

glutathione compared with normal healthy animals (Lacraz et al. 2010). In patients with 

T2D expression of Cu,Zn-SOD was found reduced (Sakuraba et al. 2002). Diabetes is a 

complex and dynamic disease, in which epigenetic and environmental factors can 

differently affect the expression of antioxidant enzymes at particular time points of its 

development. Thus, it is often difficult to compare data on diabetes-related oxidative 

stress in short-lived rodents to long-lived humans. 

It is important to note that beta-cells possess a substantial activity of enzymes dealing with 

superoxide anion radicals, while the activity of the enzymes decomposing H2O2 is very low, 

especially that of catalase. This feature is in line with increasing evidence that suggests a 

signaling role for H2O2 molecule in the process of insulin secretion (Pi et al. 2009; Affourtit, 

Jastroch, and Brand 2011).  

5. Application of chemical compounds with antioxidative properties as a 
strategy to offset oxidative stress 

Low level of antioxidant defense in beta-cells suggested that supplementation of 
antioxidants could be beneficial. A number of chemical compounds with antioxidant 
properties were employed to prevent or counteract oxidative stress in islets. The studies 
were conducted on diabetic animals and on isolated islets. Both preventive and curing 
actions of antioxidants were studied; the antioxidative agents were administered either prior 
to induction of diabetes of oxidation stress, or in the course of developing processes. 
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Historically, the first to study were vitamins A, C and E which are naturally present in the 
body and possess the ability to scavenge free radicals. Unfortunately they offered very 
limited or no protection (Kaneto et al. 2001). Hence, a broad spectrum of chemical 
compounds was tested in search for agents capable to counteract oxidative burden 
experiencing by islets. They differ in chemical nature and by the mechanism through which 
they protect from oxidative stress. The most important aspect in search of these compounds 
is to pay attention to their potential side effects. We will focus on the most prominent ones. 

5.1 Antioxidant properties of N-acetyl-L-cysteine (NAC) 

Antioxidant properties of N-acetyl-L-cysteine (NAC), an acetylated derivative of amino acid 
L-cysteine) were employed in a range of medical conditions such as neurodegeneration 
(Pocernich et al. 2011), cardiovascular diseases (De Rosa et al. 2010), gastroenterological 
diseases (Ramudo and Manso 2010; Jegatheeswaran and Siriwardena 2011), transplantation 
(Czubkowski, Socha, and Pawlowska 2011) and diabetes (Kaneto et al. 2001). There are 
several mechanisms by which NAC can modulate oxidative stress: (i) it is a precursor in the 
synthesis of glutathione, an important component of the cellular antiradical defense system 
in the cell; (ii) NAC, as a thiol-containing compound, is able to directly reduce free radicals 
as well as S-S bonds in proteins, thus modulating redox signaling (Parasassi et al. 2010) 

It was reported that NAC is protective or partially protective in animal models of 
diabetes. It reduces levels of oxidative stress markers and preserves beta-cell mass and 
function in STZ-treated hamsters (Takatori et al. 2004). Intravenous co-infusion of NAC 
with high glucose into Wistar rats offered only partial protection, as it quenched ROS, but 
did not restore beta-cell functions (Tang et al. 2007). However, the same group reported 
that NAC, co-infused with free fatty acids, not only decreased beta-cells ROS caused by 
prolonged exposure to fatty acids, but preserved their insulin and C-peptide responses to 
hyperglycemic clamps (Oprescu et al. 2007). These two studies show that effectiveness of 
particular antioxidant molecules depends on the type of oxidative stimuli and the 
metabolic pathways that are intervened. A study by Kaneto and co-workers also 
demonstrated that NAC can be protective in T2D-like metabolic deregulations. Using the 
db/db diabetic mouse model, the researchers found that NAC improved glucose-
stimulated insulin response in these animals and, on a molecular level, NAC increased 
expression of pancreatic and duodenal homeobox factor-1 (PDX-1) in islets, a beta-cell-
specific transcription factor (Kaneto et al. 2001). 

NAC protects against oxidative stress stimuli in vitro. LDL oxidation level, which is relevant 
to pathology of T2D, significantly changes the expression of genes involved in the 
production and secretion of insulin and in cell survival mechanisms. This effect was offset 
by NAC (Favre et al. 2011). NAC counteracts the damaging effect of human amylin (hA), a 
small fibrillogenic protein, which accumulates in beta-cells in most subjects with T2D 
(Konarkowska et al. 2005). It is believed that NAC offers protection as a reagent capable of 
reducing protein SH groups, rather than a general ROS scavenger. 

NAC is also protective against oxidative damage caused by direct short exposure of islets to 
H2O2 and free fatty acids, but is inefficient or partially efficient against long exposure islets 
to high glucose, or cytokines (Khaldi et al. 2006; Oprescu et al. 2007; Michalska et al. 2010). 
In some cases NAC, while decreasing ROS, did not restore beta-cell functions completely 
(Wang et al. 2004; Tang et al. 2007). 
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5.2 (R)-alpha-Lipoic acid (ALA) 

(R)-alpha-Lipoic acid (ALA), (3R)-1,2-dithiolane-3-pentanoic acid, is a cyclic disulfide, being 

an oxidized form of its dithiol congener, (6R)-6,8-dimercaptooctanoic acid, or (R)-

dihydrolipoic acid. Two sulfur atoms in ALA, which are connected to each other by a 

disulfide bond, can undergo facile and highly reversible redox processes (Arner, Nordberg, 

and Holmgren 1996). Thus, this compound can feature either antioxidant or pro-oxidant 

properties depending on particular redox context (Haramaki et al. 1997). 

ALA is an essential co-factor in several mitochondrial oxidative complexes; the most 

important of these are pyruvate dehydrogenase (PDH) complex, 2-oxoglutarate 

dehydrogenase (OGDH) complex, and the complex for oxidation of branched chain amino 

acids (BCDH) (Nelson 2005).  

Administration of alpha-lipoic acid to non-obese diabetic (NOD) mice decreased incidence 

of diabetes induced by cyclophosphamide from 60% to 30%. It also reduced severe intraislet 

infiltration and increases the percentage of islets with mild per-insular and periductular 

infiltrates (from 8.4 to 29.6 and 25.9%, respectively, P < 0.01) (Faust et al. 1994). The authors 

concluded that the anti-inflammatory action of lipoic acid may be due to its ability to 

scavenge oxygen radicals and to suppress nitric oxide production. 

In the alloxan-induced diabetic mouse ALA lowered blood glucose, increased insulin release 

and prevented loss of beta cells and their dysfunction (Zhang et al. 2009). ALA prevented 

development of diabetes mellitus in obese Otsuka Long-Evans Tokushima Fatty (OLETF) 

rats, a T2D animal model. It diminished glycosuria, reduced body weight and protected 

pancreatic beta-cells from destruction. ALA also reduced triglyceride accumulation in 

skeletal muscle and pancreatic islets (Song et al. 2005). 

In vitro studies provided a deeper insight into the mechanism of ALA action on cellular 
and organellar levels. ALA counteracted oxidative stress induced by proinflamatory 
cytokines IL-1ǃ, IL-6 and IFN-Ǆ by preventing NF-κB activation (Zhang et al. 2009) and 
restoring insulin secretion (Schroeder et al. 2005). When a direct oxidative insult was 
applied in a form of H2O2 (Lee, Kwon, et al. 2009) or xantine-xantine oxidase (Burkart et 
al. 1993), pretreatment with ALA decreased cellular ROS and c-JNK activation, stabilized 
mitochondrial membrane potential and induced Akt phosphorylation, altogether offering 
protection to beta-cells from oxidative stress. In MIN6 cells and rat islets, this compound 
also offsets the deleterious actions of free fatty acids, which feature an in vitro model for 
conditions of T2D (Shen et al. 2008). In particular, it decreased levels of ROS, restored 
mitochondrial membrane potential, glucose-induced ATP and glucose stimulated insulin 
secretion. 

It is worth noting that ALA, like many other redox active chemicals (Skulachev et al. 2009), 

has an optimum concentration for anti-radical actions, and, consequently, for protective 

activity. Optimum protective concentration for isolated mouse islets against oxidative stress 

induced by cytokine IL-6 was found to be 10-9 M; lower and higher concentrations were not 

effective (Schroeder et al. 2005). In the case of chemically-induced oxidative stress in INS-1 

cells or isolated islets, ALA prevented apoptotic cell death in 150-300 μM concentrations, 

while higher concentrations caused apoptosis. Discrepancies in the effective concentration 

ranges reported in these studies may lie in different nature of oxidative stress stimuli and in 
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different protective mechanisms by which ALA acted in each case. Concentration of 2 mM, 

which is not physiologically relevant, impaired functions of isolated rat islets and MIN6 

cells (Targonsky et al. 2006). 

The nature of protective effects exhibited by ALA and NAC suggests that these compounds 
can act by multiple mechanisms, working as direct scavengers of free radicals, or by 
controlling of the thiol-disulfide level of reduction in signaling protein molecules (Pietta 
2000; Pandey and Rizvi 2009; Parasassi et al. 2010). The antioxidant properties of ALA can 
be boosted by mitochondrial thioreductase (Trx), which restores its reduced form (Packer, 
Witt, and Tritschler 1995). 

5.3 Coenzyme Q (CoQ) 

Coenzyme Q (CoQ), a quinone, is an essential component of mitochondrial respiratory 
complexes I and III. In general, quinones can undergo two reversible one-electron redox 
processes, converting them into semiquinones and hydroquinones. High stability of 
semiquinone radicals renders the redox reversibility and is the basis for antioxidant 
properties of the quinone-related systems; both quinones and hydroquinones can serve as 
radical-protecting agents. 

In cells, exogenous CoQ can exhibit either antioxidant or pro-oxidant properties, depending 
on conditions. As it was shown (Schroeder et al. 2005), a very low concentration of 10-12 M 
CoQ10 restored insulin production by mouse islets which were impaired by exposure to 
cytokine IL-1ǃ. However, higher concentrations showed no effect or were even harmful. 
Overdoses of CoQ (50-200μM), although able to stimulate insulin release, were toxic to 
human islets and INS-1 cells. At these concentrations, CoQ, being a strong electrophile, 
covalently binds to E2 components of pyruvate dehydrogenase and ǂ-ketoglutarate 
dehydrogenase complexes in mitochondria causing a substantial inhibition of the complexes 
and eventually triggering cell apoptosis (MacDonald et al. 2004). This circumstance put into 
a question the possibility to utilize CoQ10 as antioxidant to counteract diabetes-related 
oxidative burden as it would be difficult to find the right dose, while overdose would 
greatly outweigh potential benefits. 

Some synthetic and plant-derived compounds may possess profound antioxidant 
properties, actively reacting with free radicals and ROS. These compounds belong to 
different chemical types; the most known of them are stable nitroxyl free radicals, 
metalloporphyrins, and plant polyphenols. 

Superoxide anion radical is the first product resulting from the passing of unpaired electrons 

to molecular oxygen in the chain of chemical reactions causing oxidative stress. Thus, its 

detoxification would seem strategically advantageous. This notion prompted the introduction 

of a number of compounds which belong to different classes, but can all act as superoxide 

scavengers as they are able to effectively disproportionate superoxide to dioxygen and 

hydrogen peroxide. These compounds have a common name of SOD-mimetics. 

5.4 TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl)  

TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) is a nitroxyl stable radical. Being 
redox-active, TEMPOL facilitates the metabolism of many reactive oxygen and nitrogen 
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species (see review by (Wilcox 2010), in particular, TEMPOL catalyzes O2- 
disproportionation. Its activity is not limited to this reaction, though, as it also catalytically 
converts H2O2 into water and dioxygen in a catalase-like reaction and inhibits generation of 
OH˙ from H2O2 in the presence of redox-active transition metals in the Fenton reaction 
(Soule et al. 2007; Wilcox and Pearlman 2008). 

Application of TEMPOL in diabetic animal models and in vitro on isolated islets was found 
to be protective against a variety of oxidative stress stimuli. Intravenous co-infusion of 
TEMPOL with high glucose or with free fatty acids into rats prevented islet dysfunction 
caused by hyperglycemia (Tang et al. 2007) or by hyperlipidemia (Oprescu et al. 2007). In 
Zuker rats, an animal model for T2D that features hyperglycemia, hyperinsulinemia as well 
as renal oxidative stress and high blood pressure, TEMPOL administered in drinking water 
reduced blood glucose, insulin secretion, renal oxidative stress and blood pressure which 
implies normalization of islet function (Banday et al. 2005). 

5.5 Metalloporphyrins  

Metalloporphyrins represent another well-known class of organic redox-active compounds. 

Manganese metalloporphyrins feature high chemical stability in different oxidation states 

and coordination of substrates at the central metal atom (Patel and Day 1999). Manganese 

ion can coordinate additional water or H2O2 in its axial sites, thus, performing its catalytic 

action. The stability of the porphyrin ring enables a variety of reversible catalytic metal-

centered redox processes. Depending on substitutents, Mn-porphyrin compounds vary in 

their overall electric charge, redox potential and lipophic-hydrophylic properties. 

Eventually these physico-chemical properties translate into different catalytic activities and 

different abilities to penetrate into cells and cellular compartments. These compounds are 

capable of catalyzing not only the reaction of O2-˙ dismutation, but also the reduction or 

disproportionation of other reactive oxygen and nitrogen species, like H2O2, HO˙, NO and 

ONOO- (Patel and Day 1999). 

Manganese complexes of porphyrins were employed in studies of a number of biological 

models of oxidative stress (Batinic-Haberle et al. 2011). In an animal model of STZ-diabetic 

rats, Mn-porphyrin MnTM-2-PyP5+, administered after the dose of STZ, counteracted the 

oxidative stress as judged by decreased levels of lipid peroxidation in blood plasma and 

erythrocytes (MDA products). Though it did not normalize blood glucose, it still decreased 

mortality of STZ-treated animals and increased their life span (Benov and Batinic-Haberle 

2005). The data suggested that application of this antioxidant after a major STZ-induced 

oxidative stress did not restore islet function, but rather ameliorated following 

hyperglycemia-related complications. In the other experimental settings, the animals were 

preconditioned with Mn-porphyrin (MnTE-2PyP4+, FBC-007), possessing a higher catalytic 

activity and a better ability to penetrate into cells. The animals were also given regular 

injections after STZ administration. Such treatment prevented development of diabetes in 

mice as monitored up to 120 days (Sklavos et al. 2010). It appears, therefore, that a 

preventive measure may play an important role in successful diabetes treatment.  

In vitro, Mn-porphyrins showed a protective action also on the models of cultured isolated 
human and rodent islets as well as on insulin producing cell lines (INS-1 cells) subjected to 
oxidative insult. Bottino and co-workers demonstrated that the presence of MnTE-2PyP5+ 
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(AEOL10113) and MnTDE-2-ImP5+ (AEOL10150) as supplement to media during islet 
isolation resulted in up to three-fold increase of the viable mass of human islets, the fact of 
vital importance for transplantation medicine (Bottino et al. 2002). In a consequent 
publication a cascade of stressful events triggered by the procedure of islet isolation from 
the whole pancreas was studied in detail (Bottino et al. 2004). The islet isolation is a lengthy 
procedure that causes, apart of hypoxia-reoxygenation, mechanical and chemical stress to 
the cells. This results in activation of stress-related signals NF-κB and poly(ADP-ribose) 
polymerase (PARP) as well as increased levels of proinflamatory cytokines (Bottino et al. 
2004). Mn-porphyrin effectively decreased NF-κB binding to DNA, PARP activation and 
release of cytokines and chemokines in islet cells, eventually resulting in higher survival and 
better insulin release(Bottino et al. 2004). Compound MnTE-2PyP5+ protected human islets 
from STZ-induced cell death and ensured better islet function after transplantation into 
immunodeficient diabetic mice. This holds true for transplantation of islets from the same 
mice strain (syngeneic), different strain (allogeneic) or in case of transplantation of human 
islets into mice (xenogeneic) (Sklavos et al. 2010).  

Due to the complexity of metabolic and signal pathways, which vary in different cell types 

and physiological conditions, a possible protective effect of a Mn-porphyrin may depend on 

the cell type and the type of oxidative insult. Thus, it was reported that MnTMPyP 

preserved INS-1 cell viability and insulin secretion upon exposure to both NO and O2-, 

while human islets were protected by this compound only from NO, but not from 

superoxide anion radical (Moriscot et al. 2007). 

5.6 Polyphenolic compounds 

Polyphenolic compounds, naturally occurring in plants, were extensively studied in recent 

years as potential remedies against many diseases like cancer, cardio-vascular disorders and 

diabetes. They can be found in numerous dietary and medicinal plants and comprise an 

important part of the human diet, though they are generally viewed as nonnutrients. 

Particularly rich in polyphenols are red grapes, berries, tea leaves and some spices. These 

polyphenols comprise several types of compounds, i.e. phenolic acids, stilbenes, lignans and 

flavonoids, the latter are oxygen heterocycles (chromenes, for structures and more detailed 

classification see review by (Pandey and Rizvi 2009)). Flavonoids are formed in plants from 

aromatic amino acids phenylalanine and tyrosine, and malonate (Pietta 2000). 

Polyphenols act as mild reductants in alkali and neutral pH by reducing common inorganic 

and organic oxidants and react with radicals both in reversible and irreversible ways, 

depending on their particular structure, thus, exerting direct antioxidant capacity (Pietta 

2000; Pandey and Rizvi 2009). There are also other ways how polyphenols can chemically 

intervene into oxidative processes as shown in experiments in vitro: polyphenols can chelate 

transition metals like copper and iron, which catalyze propagation of radical chain reactions 

(Afanas'ev et al. 1995; Korkina and Afanas'ev 1997; Brown et al. 1998) and inhibit the 

enzymes responsible for superoxide anion production, such as xanthine oxidase (Arimboor 

et al. 2011) and protein kinase C (Ursini et al. 1994). However, interaction of flavonoids with 

isolated beef heart mitochondria in vitro caused an additional production of ROS due to 

inhibition of respiratory complex I (Hodnick et al. 1986; Hodnick et al. 1988; Hodnick, 

Duval, and Pardini 1994).  
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Several papers reported the protective effects of polyphenols in vitro on islets or cultured 
insulin-producing cells against oxidative challengers. It was also shown that polyphenols 
from olive leaves protected INS-1 cells from H2O2 toxicity (Cumaoglu et al. 2011). Cells pre-
incubated with whole leaf extract or individual polyphenol compound oleuropein, followed 
by peroxide treatment, showed a lower percentage of necrotic and apoptotic death 
compared to untreated controls. Polyphenols stimulated activity of catalase, which resulted 
in a lower level of cellular ROS, along with improvement in insulin production. In this study 
it was suggested that polyphenols act through a redox-modulating mechanism rather than 
through direct free radical scavenging. Supplementation of cultured media with 
polyphenols from green tea increased recovery rates of isolated human and nonhuman 
primate islets. Polyphenols from tea extracts preserved islets by increasing the level of anti-
apoptotic Bcl-2 and decreasing level of pro-apoptotic BAX (Zhang et al. 2004). 

In animal models of both T1D and T2D, polyphenols of different origin were reported to 
lower blood glucose levels (Al-Awwadi et al. 2004; Su, Hung, and Chen 2006; Ciocoiu et al. 
2009; Dixit and Kar 2010; Ong et al. 2011). The hypoglycemic effect can be caused by 
multiple mechanisms. Polyphenols can decrease glucose absorption from intestine as they 
inhibit amylase, a polysaccharide-hydrolyzing enzyme (Ong et al. 2011). On the other hand, 
some studies show that polyphenols enhance glucose uptake by muscle cells via increasing 
expression of glucose transporter Glut4 (Cao et al. 2007; Ong et al. 2011). The third possible 
mechanism of lowering blood glucose by these compounds could be an inhibition of 
gluconeogenesis in liver by inhibiting glucose-6-phosphatase, a key enzyme in this process 
(Ong et al. 2011). Lowering blood glucose itself alleviates excessive metabolic burden on 
islets and undoubtedly plays a positive role in preserving their mass and function, a notion 
which was confirmed by (Coskun et al. 2005; Hahm, Park, and Son 2011).  

Administration of polyphenols to diabetic animals resulted in a lower level of markers of 
oxidative stress as judged by lower levels of products of lipid peroxidation in pancreatic 
homogenates (Coskun et al. 2005), kidneys (Lee, Wang, et al. 2009) and blood plasma 
(Ciocoiu et al. 2009; Hininger-Favier et al. 2009) of STZ-rats. This may be a result of direct 
antioxidant activity of polyphenols, as well as a result of their ability to upregulate 
expression of antioxidant-defense enzymes: glutathione peroxidase (GSHPx) superoxide 
dismutase and catalase activities (Ciocoiu et al. 2009; Lee, Wang, et al. 2009; Dixit and Kar 
2010). It is well known that oxidative stress plays a substantial role in the destruction of 
beta-cells by infiltrated self macrophages and lymphocytes. The fact that administration of 
polyphenols to NOD mice, a model for autoimmune diabetes, significantly decreased 
incidence of the disease is evidence of a direct redox modulation by polyphenols (Zunino, 
Storms, and Stephensen 2007).  

Numerous publications were devoted to study effects of polyphenols on a number of 
health-related functions. However, it should be noted that the effective therapeutic dose of 
natural polyphenols is rather high varying from 15 to 500mg/kg of animal body weight. 
This translates into 1 to 20g of polyphenols a day for a human patient of 65 kg of weight; the 
amount seems to be unfeasible to get as a part of regular diet or acute therapeutic treatment. 
However, studies on the effect of polyphenol-rich diets with much lower doses on human 
patients mostly of T2D report improvement in several metabolic responses, like blood 
glucose and lipid content, insulin sensitivity and markers of oxidative stress (Banini et al. 
2006; Dembinska-Kiec et al. 2008; Stote and Baer 2008; Zunino 2009; Fenercioglu et al. 2010). 

www.intechopen.com



 
Chemical Biology 

 

150 

6. Concluding remarks 

According to the current hypothesis, the lack of anti-ROS defense capacity in pancreatic 

beta-cells is related to the signaling role of oxidants in glucose sensing and insulin release. 

In normal physiological conditions the levels of oxidants are low and mitochondria play 

an essential role in the chain of signaling events by releasing ROS in a controlled manner. 

Redox reactions in beta-cells are in fine balance, but this balance can be destroyed by 

persistent hyperglycemia and hyperlipidemia. In conditions of diabetes beta-cells are 

imposed to a burden of free radicals not considered in evolution and, therefore, 

antioxidants administered in a proper way can alleviate the oxidative burden and offset 

the destruction of beta-cells. 
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