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1. Introduction

Compelling evidence suggests that dietary intakes directly influence colorectal cancer (CRC)

risk. Initial observations that CRC incidence is not ubiquitous worldwide, with incidence

rates varying up to twenty-five fold between populations (Parkin et al., 2005), indicate the

large degree to which this cancer type is influenced by diet and environment. Additionally,

observations that migration of individuals confers rapid (within one generation) adoption of

the CRC incidence of the host population (Boyle & Langman, 2000; McMichael & Giles, 1988),

suggest that dietary and environmental factors determine the risk of colorectal neoplasia to a

degree similar to, or in excess of, genetic predisposition.

As diagnosis and treatment of CRC have improved, the study of the pathogenesis of colorectal

neoplasia has increased. The most frequent precursor of CRC is the adenoma. As a proportion

of adenomas, those of large size, with villous architecture and high grade dysplasia often

progress to invasive adenocarcinoma, and this progression is associated with accumulation

of mutations and other genetic and epigenetic changes. In the effort to understand

the mechanisms and causes of colorectal cancer development, molecular genetic analyses

have identified a variety of molecular changes and protein targets involved in colorectal

tumourigenesis. The greater understanding of genetic, epigenetic and expression changes

that occur during the development and progression of CRC has shown that these neoplasms

do not comprise a single disease. Instead, colorectal cancers comprise a collection of distinct

and independent neoplastic pathways, such as those pathways displaying chromosomal

instability (CIN), microsatellite instability (MSI) or gene promoter activity changes due to the

epigenetic phenomenon of methylation at CG dinucleotides (referred to as CIMP: CpG island

methylation phenotype, whereby CpG describes dinoculeotides of cytosine and guanosine,

separated by the characteristic phosphate group in the DNA structure). Each pathway

subtype is characterised by individual genetic and molecular characteristics (Poulogiannis,

9

www.intechopen.com



2 Colorectal Cancer

Ichimura, Hamoudi, Luo, Leung, Yuen, Harrison, Wyllie & Arends, 2010; Poulogiannis,

McIntyre, Dimitriadi, Apps, Wilson, Ichimura, Luo, Cantley, Wyllie, Adams & Arends, 2010).

Dietary constituents have been studied in relation to the major genetic and molecular changes

occurring in CRC development, including alterations in the proto-oncogenes, K-RAS and

BRAF and the tumour suppressor genes p53 and APC. Many studies have analysed a wide

variety of dietary components in an effort to elucidate which, if any, dietary constituents may

contribute to their mutation in CRC progression. Furthermore, in addition to these genetic

lesions, the epigenetic phenomenon of CIMP and MSI have similarly been analysed in relation

to dietary constituents.

This review is intended to summarise the currently available literature describing the

associations between the molecular genetic changes seen most prevalently in colorectal cancer

and dietary intakes. This report does not attempt to assess dietary associations with total

CRC incidence. The objective is to highlight consensus observations, where several sources

of data exist, suggestive of causative or protective effects of dietary constituents regarding

specific molecular genetic changes frequently observed in colorectal neoplasia. Throughout,

an emphasis is placed on the number of cases analysed in individual studies, but notably

absent are descriptions of odds ratios, hazard ratios or p-values. Throughout, all associations

discussed are statistically significant (all p�0.05). However, due to the varying methodology

of data collection and statistical analysis across studies, the inclusion of differing variables

in adjusted models and the lack of consensus regarding the degree to which analyses should

be adjusted following multiple statistical tests, detailed statistical aspects are not discussed.

In order for an assessment to be made of the potential statistical power of each analysis, the

number of cases involved in each study is instead highlighted when a statistically significant

association is discussed. Full details of all statistical analyses can be found in the original

reports, referenced in the text and listed at the end of the chapter.

2. Dietary influences on the major genetic and epigenetic perturbations leading to

colorectal cancer development and progression

2.1 K-RAS and BRAF in colorectal cancer: the MAPK signalling pathway

Mitogen activated protein kinase (MAPK) signal transduction pathways are present in

all eukaryotes, six versions of which have been distinguished in mammals (Robinson &

Cobb, 1997). MAPK signal propagation is responsible for regulating a variety of cellular

processes, which include potentially pro-tumourignenic properties such as proliferation,

apoptosis and transformation (Arends et al., 1993; 1994; Peyssonnaux & Eychene, 2001;

Robinson & Cobb, 1997). The best characterised of these pathways is the LIGAND

RECEPTOR-RAS-RAF-MEK-ERK pathway (Figure 1), which consists of core modules

including the RAS and RAF proteins. Although three RAS genes have been identified (H-RAS,

N-RAS and K-RAS), the K-RAS gene is the only one mutated at significant frequency in CRC

(Bos, 1989). Similarly, of the three RAF genes identified (ARAF, BRAF and CRAF/RAF-1), only

the BRAF gene is mutated at significant frequencies in human cancers (Fransen et al., 2004).

Experimental mouse models have provided direct evidence that mutated K-RAS genes

expressed in the intestinal epithelium do not significantly initiate intestinal adenoma growth,

but they can cooperate either with other mutant genes or carcinogens to accelerate intestinal

tumour formation (Luo et al., 2007; 2009; Luo, Poulogiannis, Ye, Hamoudi & Arends, 2011;
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Fig. 1. RAS, RAF and the MAPK signalling pathway: frequently perturbed in colorectal
neoplasms. Initially, RAS is inactive in a RAS-GTP bound state. I: Initiation of signalling
through the MAPK pathway occurs at the plasma membrane. Upon extracellular ligand
binding to membrane receptor tyrosine kinases (RTK), such as epidermal growth factor
binding to the epidermal growth factor receptor (IA), receptor conformational change gives
rise to receptor autophosphorylation. Subsequently, src-homology 2 (SH2) domains present
in the GRB2 adaptor protein bind the phosphate moieties on the activated receptor (IB).
Src-homology 3 (SH3) domains in GRB2 bind proline-rich motifs present in son of sevenless
(SOS), localising SOS to the inner surface of the plasma membrane. SOS, a guanine
nucleotide exchange factor (GEF) interacts with RAS proteins, catalysing the exchange of
GDP for GTP, thus activating RAS to a RAS-GTP state (IC). II: Upon activation, RAS
phosphorylates cytosolic RAF. The resulting activation of RAF in turn phosphorylates
cytosolic MEK, which then phosphorylates ERK, leading to induction and repression of
distinct transcription programmes, promoting cell proliferation and modulating cell death by
apoptosis, among other processes. The vast majority of mutations in the K-RAS or BRAF
genes are in distinct hotspot regions: K-RAS at codons 12 and 13, and also, but much more
infrequently at codons 61 and 146 (Forbes et al., 2008). Additionally, mutations observed at
lower prevalences at other sites in the gene have been described and their functional
significance determined (Naguib, Wilson, Adams & Arends, 2011). Mutations in BRAF occur
most frequently at codons 463-468 and codon 600 (Forbes et al., 2008). Activating mutations
in the K-RAS and BRAF genes render their protein products constitutively active, leading to
increased transduction through this signalling axis. Additionally, mutationally active K-RAS
can also propogate signalling through other pathways, including the PI3K/AKT axis.

Luo, Poulogiannis, Ye, Hamoudi, Zhang, Dong & Arends, 2011). K-RAS mutations are

observed 20-50% of sporadic human CRC and BRAF mutations are observed in 5-15% of CRC

(Forbes et al., 2008). The high frequencies at which K-RAS and BRAF mutations are observed

in CRC has prompted several analyses of dietary intakes in relation to these genetic lesions.

2.1.1 K-RAS mutation and meat consumption

Specific types of meat consumption have been identified as associated with general CRC

incidence (Norat et al., 2005; Santarelli et al., 2008) with plausible mechanisms postulated as to

the manner in which these consumptions may influence colorectal carcinogenesis (Kuhnle &

Bingham, 2007; Kuhnle et al., 2007). Consequently, several studies have attempted to identify

175The Molecular Genetic Events in Colorectal Cancer and Diet
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4 Colorectal Cancer

the nature of these associations in relation to K-RAS mutations. Some reports have identified

associations with meat consumption and K-RAS mutation, although not all.

A single study analysing 390 K-RAS wildtype and 218 K-RAS mutated CRC identified an

increased consumption of beef with higher incidence of K-RAS wildtype colonic cancers

(Brink, Weijenberg, de Goeij, Roemen, Lentjes, de Bruïne, Goldbohm & van den Brandt,

2005). In this same report, a reduction in pork consumption was found to be linked to

reduced frequency of both colonic and rectal cancers harbouring mutated K-RAS. Another

report, assessing K-RAS mutations and diet in 155 K-RAS wildtype and 41 K-RAS mutated

CRC, identified an increased white meat consumption associated with higher incidence of

K-RAS mutated CRC (Naguib et al., 2010). Although positive associations were identified in

these two analyses, there appears to be little consistency between these independent findings.

The report by Naguib and colleagues also analysed red and processed meat consumption in

relation to mutation status and found no statistically significant association between the two,

although, beef consumption was not tested independently of other meat types, as in the report

by Brink and co-workers. The study by Naguib and colleagues did not test pork consumption

in isolation: this meat type was included in the ’red’ or ’processed’ meat categories. Similarly,

Brink and coworkers did not identify an association between white meat and increased

incidence of K-RAS mutations. This analysis tested the consumption of chicken in isolation,

not in a combined ’white meat’ category containing other meat types, such as turkey etc.

Notwithstanding the identified statistically significant associations between meat

consumption and K-RAS mutation status described above, the majority of studies which

have attempted to address this question have failed to identify any link between meat intake

and the mutation status of this gene. An analysis testing 67 K-RAS wildtype and 39 K-RAS

mutated CRC assessed animal protein intake and found no link between this and K-RAS

mutation status (Bautista et al., 1997) although clearly, ’animal protein’ as a variable makes

no distinction between meat types and is an assessment of protein, not animal product,

consumption. A large analysis testing 971 K-RAS wildtype and 457 K-RAS mutated CRC

(Slattery et al., 2000) identified no assocaition between total K-RAS mutations and meat

intake. A small study (28 wildtype, 15 mutated rectal cancers) failed to identify an association

between red meat intake and K-RAS mutation (O’Brien et al., 2000). An assessment of a

larger cohort of rectal cancers (535 K-RAS wildtype and 215 K-RAS mutated) corroborated

this observation of lack of association with red meat intake and rectal cancer (Slattery, Curtin,

Wolff, Herrick, Caan & Samowitz, 2010).

In addition to colorectal cancers, pre-cancerous adenomas have also been tested in order to

identify dietary assocaitions with K-RAS mutation status in the early stages of colorectal

neoplasia. An assessment of 558 K-RAS wildtype and 120 K-RAS mutated adenomas failed

to identify an association between red meat intake and mutation status (Martínez et al., 1999).

Another study, testing 453 K-RAS wildtype and 81 K-RAS mutated adenomas also failed to

identify a statistically significant association between red meat, processed meat or poultry

and K-RAS mutation status (Wark et al., 2006).

Published reports assessing K-RAS mutation status in CRC in relation to meat intakes provide

limited evidence to suggest that total K-RAS mutations are either positively or negatively

associated with meat consumption. The majority of studies have categorised meat types

according to shared properties (such as haem content or preservation methods) and have

generally failed to identify links between these groups and K-RAS mutation status. It is

176 Colorectal Cancer – From Prevention to Patient Care
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Study
K-RAS WT K-RAS mutated dietary

CRC/RC/adenomas CRC/RC/adenomas association

Bautista et al 1997 CRC: 67 CRC: 39 ↑ MUFA with K-RAS mutation, ↓ calcium with K-RAS mutation
Bongaerts et al 2006 CRC: 385 CRC: 193 no association between alcohol and K-RAS mutated or wildtype cancers

Brink et al 2004 CRC: 390 CRC: 218 ↑ PUFA (specifically linoleic acid) with K-RAS mutated colonic, but not rectal, cancers
Brink et al 2005 CRC: 390 CRC: 218 ↑ folate reduced risk of K-RAS mutated rectal, not colonic, cancer in men only
Brink et al 2005 CRC: 390 CRC: 218 ↑ beef, ↓ pork with K-RAS wildtype colonic tumours, ↓ pork with K-RAS wildtype rectal tumours
Laso et al 2004 CRC: 68 CRC: 49 K-RAS codon 12 mutation was associated with ↓ vitamin A, B1, D and iron

Martinez et al 1999 Adenomas: 558 Adenomas: 120 ↑ folate reduced risk of developing K-RAS mutated adenomas
Naguib et al 2010 CRC: 155 CRC: 41 ↑ white meat consumption with K-RAS mutation
O’Brien et al 2000 RC: 28 RC: 15 no association between red meat consumption and K-RAS mutation

Schernhammer et al 2008 CRC: 427 CRC: 242 no association between folate intake and prevalence of K-RAS mutated or wildtype cancers
Slattery et al 2000 CRC: 971 CRC: 457 ↓ cruciferous vegetables with reduced risk of K-RAS mutation
Slattery et al 2010 RC: 535 RC: 215 no association between calcium and vitamin D and K-RAS mutation
Slattery et al 2010 RC: 535 RC: 215 ↑ vegetables and dietary fibre with a reduced risk of K-RAS mutations

Wark et al 2006 Adenomas: 453 Adenomas: 81 ↓ MUFA and ↑ vitamin B2 associated with K-RAS mutation

Table 1. Summarised description of literature analysing K-RAS mutations in colorectal
neoplasms (case numbers provided) in relation to dietary intakes and the statistically
significant findings described. WT: wildtype, CRC: colorectal cancer, RC: rectal cancer,
MUFA: monunsaturated fatty acid, PUFA: polyunsaturated fatty acid, ↑ and ↓ denote an
increase or decrease in consumption respectively.

plausible that if specific meat types, as suggested in at least one study (Brink, Weijenberg,

de Goeij, Roemen, Lentjes, de Bruïne, Goldbohm & van den Brandt, 2005), are linked to the

incidence of K-RAS mutated CRC, that grouping of meat types together may have failed to

identify associations where they existed. However, in practical terms, it should be noted that

similarities in the composition of meat types, such as in terms of haem content, a postulated

carcinogen intermediate (Kuhnle & Bingham, 2007), justify a grouping of types in order to

minimise multiple statistical testing and to test consumption levels large enough to be likely

to affect bowel carcinogenesis.

Several reports have analysed the relationship between base changes at specific positions in

the K-RAS gene, types of mutations (i.e. transition versus transversion) or specific types of

base changes (i.e. G→A) in relation to meat intakes. It is entirely plausible that the nature of

the mutation, not the gene in which it arises, is linked to dietary constituents. However, due

to the very limited number of studies instigated with objectives of such an analysis, and the

often low numbers of different mutation subgroups existent in the studies which do attempt

such an assessment rendering lower statistical power, such analyses are not discussed in this

review.

2.1.2 K-RAS mutation and folate consumption

Several studies have described an association between folate intake and the prevalence of

K-RAS mutations in CRC. A report analysing 390 K-RAS wildtype and 218 K-RAS mutated

CRC identified an increased consumption of folate associated with a reduced prevalence of

K-RAS mutated rectal, but not colonic, cancers in males only (Brink, Weijenberg, de Goeij,

Roemen, Lentjes, de Bruïne, van Engeland, Goldbohm & van den Brandt, 2005). Testing in this

study demonstrated that in the male participants of this cohort, increased intake of folate was

linked to reduced prevalence of rectal cancer incidence, however, this link, when considering

mutation status, seemed only to reduce the risk of K-RAS mutated rectal cancers. A large

analysis of colorectal adenomas (558 wildtype, 120 K-RAS mutated) also identified increased

folate intake associated with a reduced incidence of K-RAS mutation (Martínez et al., 1999).

However, in addition to these positive associations in relatively large cohorts, several other

studies have failed to identify a link between folate intake and K-RAS mutation status in

177The Molecular Genetic Events in Colorectal Cancer and Diet
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6 Colorectal Cancer

colorectal neoplasms. Reports describing the testing of 67 K-RAS wildtype and 39 K-RAS

mutated CRC (Bautista et al., 1997), 68 K-RAS wildtype, 49 K-RAS mutated CRC (Laso et al.,

2004), 155 K-RAS wildtype, 41 K-RAS mutated CRC (Naguib et al., 2010), 427 K-RAS wildtype,

242 K-RAS mutated CRC (Schernhammer, Giovannuccci, Fuchs & Ogino, 2008), 971 K-RAS

wildtype 457 K-RAS mutated CRC (Slattery et al., 2000) and 453 K-RAS wildtype, 81 K-RAS

mutated adenomas (Wark et al., 2006) failed to identify folate intake as associated with K-RAS

mutation status.

Increased consumption of folate offering some degree of protection against K-RAS mutation

was observed in two independent studies. The failure to confirm this link in many other

reports may potentially be explained several ways. Firstly, many of the studies described

which identified no link between K-RAS mutation and folate intake contained relatively few

mutated samples (<100). It is plausible that in these instances too few cases were analysed

to detect any association, although this does not explain the studies which failed to identify

a link using relatively large sample sets (Schernhammer, Giovannuccci, Fuchs & Ogino, 2008;

Slattery et al., 2000). Secondly, some dietary constituents have been described to affect folate

utilisation, such as alcohol (Eichholzer et al., 2001; Freudenheim et al., 1991). It may be

possible that the protective effect of folate against K-RAS mutation is only prevalent in the

context of certain dietary patterns, possibly explaining why associations are not observed

in all epidemiological studies. Finally, Martinez and colleagues identified an increased

protective effect against K-RAS mutation as provided by supplement derived intake relative

to natural dietary intake of this macronutrient (Martínez et al., 1999). The nature of folate

consumption, i.e. bioavailablilty, may also determine the degree to which it offers a protective

effect in colorectal carcinogenesis.

Although not observed in every analysis, increased intake of folate is associated with a

reduced prevalence of total CRC incidence, which is observed in approximately half of the

analyses testing this link (Eichholzer et al., 2001). It is probable, that at least to a limited

degree and in certain circumstances, that this may be due to the ability of folate to protect

against K-RAS mutation during development of colorectal neoplasia.

2.1.3 K-RAS mutation and fat consumption

Consumption of several forms of fat intake have been described to affect the prevalence

of K-RAS mutations in CRC. However, there is no consensus in the literature to date,

regarding both the manner of the association and type of fat involved. Independent studies

have identified monounsaturated fatty acid (MUFA) consumption as associated with the

prevalence of K-RAS mutations in CRC. One report, analysing 67 K-RAS wildtype and 39

K-RAS mutated CRC, identified an increased MUFA consumption as linked to an increased

prevalence of K-RAS mutated CRC (Bautista et al., 1997). MUFA, mostly derived from olive

oil in this population, reduced the risk of CRC harbouring wildtype K-RAS, but offered no

protection against K-RAS mutated cancers. However, contradictory findings of an increased

MUFA consumption being associated with a higher prevalence of K-RAS wildtype neoplasia

in a study assessing adenomas (453 wildtype, 81 mutated) (Wark et al., 2006) challenges the

observation made by Bautista and co-workers. Other published reports have failed to identify

any link between K-RAS mutation status and MUFA intake (Brink et al., 2004; Laso et al., 2004;

Naguib et al., 2010; Slattery et al., 2000; Slattery, Curtin, Wolff, Herrick, Caan & Samowitz,

2010).
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www.intechopen.com



The Molecular Genetic Events

in Colorectal Cancer and Diet 7

In addition to these observations, one report describes an increase in polyunsaturated fatty

acids (PUFA), specifically linoleic acid, as associated with increased prevalence of K-RAS

mutated colonic, but not rectal, cancers (Brink et al., 2004). However, this association with

PUFA has not been identifed in any other report (Bautista et al., 1997; Laso et al., 2004; Naguib

et al., 2010; Slattery et al., 2000; Slattery, Curtin, Wolff, Herrick, Caan & Samowitz, 2010; Wark

et al., 2006).

Taken together, the published data describing the association of dietary fats with K-RAS

mutations have failed to identify a convincing association, and have generated conflicting

results. Presently, the evidence suggesting that the K-RAS mutation status of colorectal

neoplasia may be affected by fat intakes is weak: the limited data available suggest that the

mutation status of this gene is largely independent of this dietary consumption. It should be

noted however, that although fat intake itself is probably not associated with this mutation

type, increased body mass index (BMI), which may be associated with fat intake, is associated

with overall CRC risk.

2.1.4 K-RAS mutation and other dietary constituents

The mutation status of K-RAS in CRC has also been linked to several other dietary variables in

addition to meat, folate and fat. Testing of 971 K-RAS wildtype and 457 K-RAS mutated CRC

identified an increased risk of K-RAS mutations with reduced consumption of cruciferous

vegetables (Slattery et al., 2000). Another analysis of rectal cancers (535 wildtype, 215 mutated)

identified a reduced incidence of K-RAS mutated rectal cancers with increased vegetable and

fibre intake (Slattery, Curtin, Wolff, Herrick, Caan & Samowitz, 2010). Although corroborative,

these two analyses were performed on the same test cohort and are yet to be identified in other

independent populations. In this cohort at least, the data of Slattery and colleagues suggest

that increased vegetable intake reduced the prevalence of K-RAS mutations in CRC, with an

overt association identified in rectally located neoplasia.

Increased vitamin B2 intake has been identified to reduce the prevalence of adenomas

harbouring K-RAS mutations. In an analysis of 453 K-RAS mutated and 81 K-RAS wildtype

pre-cancerous adenomas an inverse association suggested a protective effect against K-RAS

mutated adenomas. This protection was not found in relation to the prevalence of K-RAS

wildtype adenomas (Wark et al., 2006). This association has not been identified in cohorts

testing colorectal cancers.

Some dietary intakes have been repeatedly tested with no link to the prevalence of

K-RAS mutation in CRC having been identified, notably alcohol. Many studies have

included assessment of this dietary factor, with some studies analysing alcohol consumption

independent of any other dietary factors (Bongaerts et al., 2006).

In summary, current literature describing the assessment of K-RAS mutation status in

colorectal neoplasia has identified many associations with dietary intakes (summarised in

Table 1). Very few of these associations have been repeatedly identified in independent

cohorts, making assessment of their general validity challenging. Presently, few dietary

components seem to be strongly linked to K-RAS mutation status in CRC across many

populations, environments and genetic backgrounds. Furthermore, it is problematic to

directly compare different studies. Other than folate, which has been described by the World

Cancer Research Fund as having a ’limited’ protective effect against CRC, which may impart

this limited protection through reduced prevalence of K-RAS mutation, there is a lack of strong

179The Molecular Genetic Events in Colorectal Cancer and Diet
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evidence to firmly suggest any other dietary intakes affect the prevalence of K-RAS mutations

in CRC.

2.1.5 BRAF mutations and dietary associations

Relative to K-RAS, far fewer data exist describing the association between BRAF mutations

in CRC and dietary influences. A prospective study involving 186 colorectal cancers, of

which 29 harboured BRAF mutations, analysing meat, fruit and vegetable, fat, vitamin and

macronutrient intakes identified no potential dietary associations with BRAF mutation in CRC

(Naguib et al., 2010).

Other analyses have centred on analysing dietary constituents which may act as methyl

group donors, such as folate, or vitamins, such as B6 and B2, which function as co-factors

in the pathway responsible for DNA methylation (de Vogel et al., 2008; Kim, 2005). Based

on observations that BRAF mutation has been linked previously to the CIMP phenotype

(Lee et al., 2008; Samowitz et al., 2005; Velho et al., 2008) and has been linked to 60-80% of

CRC demonstrating the highest levels of CIMP with concurrent MSI (Kambara et al., 2004;

Samowitz et al., 2005), this mutation type may be influenced by dietary factors thought

to influence DNA methylation. One such analysis used data and tissue samples from 648

individuals, of which 101 harboured CRC with mutations in the BRAF gene. This report

identified a positive association between BRAF mutation in males and the highest tertile

of folate consumption (de Vogel et al., 2008). This same report also identified an inverse

correlation between methionine intake, as well as no association between vitamin B2 and

alcohol consumption and BRAF mutations in the male portion of the cohort. In the female

cohort members, no dietary consumptions were identified which were associated with BRAF

mutations. An additional assessment of 86 BRAF mutated and 300 BRAF wildtype colonic

cancers failed to identify an association between alcohol, folate, vitamins B6 and B12 or

methionine consumption and BRAF mutation status (Schernhammer et al., 2011).

Another study population, of which 1108 cases of CRC were assessed for the presence of

BRAF mutations, identified no associations between the 114 cancers harbouring this genetic

lesion and intake of either vitamins B6, B12, folate, methionine or fibre consumptions, when

compared with non-cancerous controls (Slattery et al., 2007). Similarly, the determination of

BRAF mutation status in 189 CRC cases in another study cohort identified no associations

between mutations in this gene and plasma levels of folate, vitamin B12 and homocysteine

(Van Guelpen et al., 2010).

At present, few analyses of dietary intake in relation to the incidence of BRAF mutations in

CRC have been attempted, and the majority of the limited data which do exist generally fail

to identify strong associations between CRC harbouring BRAF mutations and any dietary

constituent. In only one study to date, limited, sex specific dietary associations with BRAF

mutation have been identified (de Vogel et al., 2008), but these observations are yet to be

validated and corroborated in other studies.

The lack of identification of any of dietary component associated with BRAF mutation in CRC

may have several causes. Primarily, only one study, analysing a very limited number of BRAF

mutated tumours (n=29) has attempted a broad analysis of many dietary factors (Naguib et al.,

2010). The remaining limited data has involved anlaysis of only a selected spectrum of dietary

components hypothesised to be involved in the DNA methylation process. The limited scope

of these studies in terms of dietary factors tested does not exclude the possibility that other

180 Colorectal Cancer – From Prevention to Patient Care
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dietary factors may be associated with BRAF mutated CRC. Secondly, BRAF is identified

at higher frequency in CRC demonstrating CIMP and MSI. Definitive evidence is yet to be

provided describing the order in which tumours displaying CIMP and MSI acquire these

instabilities and when BRAF mutations are acquired during progression. It is plausible that

mutation in the BRAF gene is secondary to the acquisition of these global genomic alterations.

As such, the question of diet and any relationships with this mutation may be redundant, if

following the acquisition of CIMP and MSI status, BRAF mutation may arise independent of

dietary influences. Thirdly, the limited number of studies available addressing the question

of dietary associations and BRAF mutation may be too few in number to identify any dietary

associations with this lesion, or, the majority of the studies performed are correct and that in

this instance, dietary components do not affect the prevalence of BRAF mutations in CRC.

2.2 p53 mutations in colorectal cancer

The p53 tumour suppressor gene is the most commonly mutated gene in all human cancers,

mutated in approximately 50% of human malignancies, including 50-60% of CRC (Forbes

et al., 2008). Subsequent to its activation following DNA damage, oxidative stress or

other cellular insults, wildtype p53 protein accumulates in the cell nucleus and acts as a

transcription factor, capable of activating and suppressing transcription programmes leading

to cell cycle arrest, DNA damage repair and apoptosis (Aylon & Oren, 2011; Bourdon et al.,

2003). As such, perturbation of the normal role of p53 is highly selected for in cancer cells.

The high prevalence of p53 mutation in CRC, notably in later stage cancers, has led to various

studies of mutations of this gene in the context of dietary consumptions.

2.2.1 p53 mutations and dietary associations

Mutations in the p53 gene have been linked to a variety of dietary intakes. Low folate and

vitamin B6 intakes have been linked to p53 over-expressing cancers (Schernhammer, Ogino

& Fuchs, 2008). This report, analysing 143 p53 over-expressing and 256 colonic cancers

demonstrating low or absent p53 expression used an immunohistochemical (IHC) analysis

to assess p53 accumulation following mutation. p53 over-expression or accumulation is the

result of reduced protein degradation, mostly due to point mutations in the p53 gene, greatly

increasing the half-life of the gene’s protein product (Melhem et al., 1995). This fast method

of assessment of a range of activating p53 mutations should be interpreted with some caution

however, as less commonly observed mutations giving rise to truncated protein, such as those

introducing premature stop codons, are not identified using this method. The observation

linking low folate intake to an increased prevalence of cancers of the colon exhibiting

over-expression of p53 is yet to be corroborated. Two reports using DNA sequencing, testing

62 p53 mutated and 123 p53 wildtype CRC (Park et al., 2010) and 686 p53 mutated and 772

p53 wildtype colonic cancers (Slattery et al., 2002), identified no link between p53 status and

folate intakes. Little or no apparent other data exist describing vitamin B6 intakes and possible

relationships with p53 mutation status.

Specific meat intakes have been linked to p53 mutation status in several independent studies.

One report by Park and colleagues identified an increased consumption of red and total meat

(all types, including poultry) as associated with increased prevalence of p53 mutations in CRC,

however, this was only present in advanced stage CRC (Dukes’ C or D), not in those of less

advanced stages (Dukes’ A or B) (Park et al., 2010). In addition to this, an assessment by
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Slattery and co-workers identified high glycaemic load, increased red meat, increased fast

food and increased trans fatty acid intakes as associated with increased prevalence of p53

mutations in colonic cancers (Slattery et al., 2002). These two independent studies suggest

that red meat in particular may promote mutations in p53 in neoplasia of the large intestine.

However, these data do not completely overlap: the study by Park and colleagues only

found this association in advanced stage cancers and the report by Slattery and co-workers

assessed only colonic, not rectal cancers. Opposed to the above observations of meat intakes

promoting p53 mutations in CRC, an IHC based analysis (73 p53 over-expressing, 90 p53

absent CRC) identified increased beef consumption as associated with reduced prevalence

of p53 over-expressing cancers (Freedman et al., 1996). Further data are needed to evaluate

the potential association of meat, and meat types, with p53 mutations in CRC, with particular

emphasis on cancer location and stage.

In a study of colonic cancers assessing both p53 expression and p53 gene mutations, total and

saturated fats were identified as linked to tumours not over-expressing p53 or harbouring

gene mutations (Voskuil et al., 1999). Of the 185 colonic cancers tested in this study, 81

displayed p53 overexpression by IHC, of which 59 were found to harbour mutations in the

sequenced region (exons 5-8) of these cancers. Mutations in p53 were not found to be linked

to total fat intake in other reports assessing either CRC as a general subgroup (Park et al.,

2010) or rectal cancers in particular (Slattery, Curtin, Wolff, Herrick, Caan & Samowitz, 2010).

An analysis of 340 p53 mutated and 410 p53 wildtype rectal cancers reported an increased

consumption of vegetables, whole grains and fibre associated with reduced prevalence of

p53 mutation (Slattery, Curtin, Wolff, Herrick, Caan & Samowitz, 2010). Conversely, a high

intake of refined grains was found to increase the prevalence of rectal cancer harbouring

p53 mutations. Increased intakes of cruciferous vegetables have also been described to be

associated with reduced prevalence of p53 over-expressing CRC (73 p53 over-expressing CRC,

90 p53 absent CRC) (Freedman et al., 1996). The observation of increased vegetable intakes

associated with reduced frequency of p53 mutations in CRC was not observed in another

study analysing general CRC (Park et al., 2010). Fibre was not observed to be associated

with a protective effect in analyses combining colonic and rectal cancers (Park et al., 2010) or

assessing colonic cancers in isolation (Slattery et al., 2002; Voskuil et al., 1999).

Alcohol intakes and p53 mutation status in CRC have been assessed in several reports. A

study analysing 340 p53 mutated and 410 p53 wildtype rectal cancers identified increased beer

consumption as being associated with higher prevalence of p53 mutations when compared

with non-beer drinkers (Slattery, Wolff, Herrick, Curtin, Caan & Samowitz, 2010). No

associations between alcohol intakes and p53 mutation status have been identified in several

analyses of colonic cancers (Schernhammer, Ogino & Fuchs, 2008; Voskuil et al., 1999),

however, neither of these studies assessed specific alcoholic beverages, just total alcohol

intake. Total alcohol intake was found to be linked to increased prevalence of p53 mutations

in CRC of advanced Dukes’ stage (C and D), but not in CRC of less advanced stage (Dukes’

A or B) (Park et al., 2010). Another report analysing Dukes’ stage C cancers by IHC (42 p53

over-expressing CRC, 65 p53 absent CRC) did not identify total alcohol intake as linked to p53

expression status (Zhang et al., 1995).

Presently, the limited data on p53 mutation status in CRC and dietary intakes are inconsistent.

As a result, several consumptions have been linked to p53 mutation status but none have

been corroborated by other studies performing a similar assessment in an independent cohort.
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Further evidence is needed to substantiate these isolated observations. Future studies should

focus on the analysis of the potential association of vegetable and meat intakes in relation

to p53 status as several data exist suggesting a possible link between these intakes and p53

aberrations, although contrary observations have been published.

2.3 APC mutations in colorectal cancer

The adenomatous polyposis coli (APC) gene is one of the most frequently mutated genes in

colorectal cancer (Sjöblom et al., 2006; Wood et al., 2007), with some studies reporting 50-80%

of CRC harbouring mutations in this gene (Forbes et al., 2008). The majority of mutations

identified in CRC in the APC gene are located in exon 15 in the central third of the coding

sequence, the mutation cluster region, which corresponds to the β-catenin-binding region of

the protein (Goss & Groden, 2000). Mutations in APC most frequently result in truncation of

the protein, corresponding with a reduction in the ability of APC to bind β-catenin (Figure

2). In addition to its role as a modulator of WNT pathway signalling, APC also has a role

in mitosis and cytokinesis: cells harbouring truncated APC undergo abnormal chromosomal

segregation and may develop aneuploidy (Ceol et al., 2007). Wildtype APC functions as a

regulator of apoptosis, differentiation and migration and functions during cell division (Ceol

et al., 2007; Fodde et al., 2001; Goss & Groden, 2000).

Although mutations in other genes, such as p53, may be almost as frequent as those in

APC in CRC, APC mutations seem to be particularly prevalent from the earliest stages

of CRC initiation and progression. Dysplastic aberrant crypt foci (ACF), monocryptal or

oligocryptal adenomas, which are the lesions considered to be the earliest forms of colorectal

neoplasia, frequently display APC mutations (Jen et al., 1994) and can develop into CRC

through the adenoma-carcinoma sequence (Suehiro & Hinoda, 2008; Takayama et al., 1998).

Intriguingly, the more frequently occurring heteroplastic ACF, which possess limited, if

any, potential to develop to malignancy, very rarely harbour APC mutations but frequently

exhibit K-RAS mutations (Jen et al., 1994). These data suggest that initiating genetic lesions

in CRC determine malignant potential, and that if the initial mutations occur in the APC

gene, there is a high probability of subsequent adenoma formation. In concordance with

observations in dysplastic ACF, APC mutations are very frequently observed in colorectal

adenomas (Kinzler & Vogelstein, 1996) and when inherited as germline APC mutations allow

formation of hundreds of colorectal adenomas in the Familial Adenomatous Polyposis Coli

syndrome. Hence, there have been several analyses of APC mutations in CRC relation to

dietary intakes, with the purpose of identifying links between this early genetic lesion and

dietary carcinogens.

2.3.1 APC mutations and dietary associations

APC mutations have been linked to several dietary constituents. One report, analysing 121

APC wildtype and 63 APC mutated colonic cancers, identified alcohol as inversely associated

with APC mutated and positively associated with APC wildtype cancers (Diergaarde, van

Geloof, van Muijen, Kok & Kampman, 2003). Additionally, red meat, fish and fat, notably

unsaturated fat, were shown to be associated with development of APC mutated colonic

cancers. Conversely, another report assessing 347 APC wildtype CRC and 184 APC mutated

CRC identified increased consumption of saturated fat, but not unsaturated fats, as associated

with APC mutated rectal cancers (Weijenberg et al., 2007). Furthermore, the analysis by
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Fig. 2. APC and the WNT signalling pathway. A: In the absence of WNT signal, free
β-catenin is bound by APC, in a complex with axin/conductin and glycogen synthase kinase
3β (GSK3β) and this complex acts as a scaffold, bringing β-catenin into close proximity with
GSK3β. This results in GSK3β mediated phosphorylation of β catenin. B: Phosphorylated
β-catenin is recognised by the SCF complex and is polyubiquitinated. C: Polyubiquitinated
β-catenin is recognised by the proteasome and degraded. In the absence of WNT signalling,
β-catenin is largely degraded, thus preventing β-catenin nuclear accumulation and
subsequent co-activation of transcription programs. Upon binding of WNT ligand to
membrane-located receptors, a subsequent signalling cascade prevents formation of the
APC-axin-conductin-GSK3β complex. As a result, β-catenin avoids degradation and can
translocate to the nucleus where it co-activates transcription of target genes, such as c-myc.

Weijenberg and co-workers identified specific types of APC wildtype CRC (i.e. those

harbouring K-RAS mutations and showing no loss of MLH1 expression [see 2.4.2]) as being

linked to increased intake of linoleic acid, a polyunsaturated fatty acid.

A further study has identified increased consumption of folate associated with reduced

prevalence of APC wildtype colonic cancer, but increased prevalence of APC mutated colonic

cancers in males (de Vogel et al., 2006). These associations were not observed in rectal cancers

of men or in either colonic or rectal female cancer cases. This analysis, studying 347 APC

wildtype CRC and 182 APC mutated CRC, also identified increased vitamin B2 and iron

intakes in men associated with colonic cancers harbouring APC mutations compared with

those men with colonic cancer not harbouring APC mutations.

These analyses are difficult to compare, notably as Diergaarde and colleagues did not

stratify cases by sex or cancer location, which may possibly explain the lack of association

between folate intake and APC mutation status in their report. The study by Diergaarde and

co-workers did not analyse iron or vitamin B2, and de Vogel and colleagues did not assess

meat and fish intakes. Alcohol association with APC mutation status was not observed in the

testing by de Vogel and co-workers. Assessed in conjunction, these studies do not corroborate

each other as direct comparisons are difficult to make.

Further analysis of APC mutation status has been performed in the context of specific meat

intakes. In a study of 347 APC wildtype CRC and 184 APC mutated CRC, increased processed

meat consumption was linked to an increased prevalence of APC mutated colonic cancers

(Lüchtenborg et al., 2005). Additionally, increased beef consumption was linked to increased

frequency of APC wildtype colonic cancers. Rectal cancers without APC mutations were

found to be more prevalent amongst those with increased consumption of other meat types,

which included horsemeats, lamb and mutton among other products. This detailed analysis

of APC mutation status in the context of very specific meat types, with both positive and

negative associations having been identified, is yet to be corroborated by similarly detailed

meat-type subgroups testing in additional studies. This report does suggest however, that

meat classification is important when testing for associations with APC mutations. In this
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context, these observations partially confirm the increased consumption of general red meat

that was observed to be associated with an increased risk of APC mutated CRC in the report

by Diergaarde and co-workers.

In addition to reports assessing APC mutation status relative to dietary intakes in CRC, a

single study has assessed these relationships in colorectal adenomas (Diergaarde et al., 2005).

This analysis of 117 APC wildtype adenomas and 161 APC mutated colorectal adenomas

identified a high intake of red meat and fat as associated with increased prevalence of

APC wildtype adenomas. These observations are intriguing as identification of increased

consumptions of certain red meat types being specifically associated with certain APC

wildtype CRC has been described previously (Lüchtenborg et al., 2005).

Taken together, the available data describing APC mutations in CRC in relation to dietary

intakes are too few and inconsistent to draw any strong conclusions. However, several

analyses have identified certain meat consumptions as linked to either colonic or rectal cancers

with a particular APC mutation status. These observations, although not in full agreement,

indicate that certain red meat types, determined by both animal origin and preparation

method, may affect the prevalence of mutation in APC in CRC. Further assessment of these

particular dietary associations are warranted to determine the relationship between APC

mutation status and specific red meat consumptions. Based on these somewhat conflicting

data, some associations do seem plausible.

2.4 Microsatellite instability (MSI) and CpG island methylator phenotype (CIMP) in

colorectal cancer

2.4.1 MSI and CIMP as genomic instabilities in colorectal cancer

Acquired variation in length of repetitive DNA sequences (microsatellites) can be detected as

microsatellite instability (MSI) and is prevalent in approximately 15% of sporadic CRC and

in almost all CRC in Lynch/Hereditary Non-Polyposis Colorectal Cancer syndrome (Soreide

et al., 2006). MSI arises as a result of DNA replication errors that produce a change in length

of repetitive sequences, which if not repaired (by the DNA mismatch repair (MMR) system),

accumulate with increasing frequency (Martin et al., 2010; Soreide et al., 2006). In sporadic

CRC, the most frequent inactivating cause of MMR is the methylation of the MLH1 promoter

on one or both alleles (Herman et al., 1998; Wheeler et al., 2000).

The MMR process is responsible for the correction of DNA replication errors which result in

small insertions or deletions in the genome; these are especially prevalent at microsatellites

due to increased frequency of DNA polymerase slippage at repetitive sequences. In humans,

two major components comprise the MMR pathway: MutS (which is present in two

heterodimers of MSH2/MSH6 and MSH2/MSH3) and MutL (which is also present in several

heterodimer forms:- MLH1/PMS2, MLH1/PMS1 and MLH1/MLH3) (Martin et al., 2010).

Disruption of the formation of the MutS and MutL dimers (by abrogation of the component

proteins due to acquired promoter methylation or mutation) leads to a limited or defective

MMR pathway, giving rise to genomic instability whereby DNA regions, most frequently

repetitive sequences, increase or decrease in length (MSI). Such instability can lead to gene

mutations, frequently of frameshift type, which can contribute to cancer progression.

CIMP is observed in 30-40% of proximal colonic and 3-12% of distal/rectal cancers (Curtin

et al., 2011; Ibrahim et al., 2011). The exact causes of excessive methylation in DNA

regions harbouring high levels of adjacent cytosine and guanine bases (CpG islands) are
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unknown, although some evidence exists which suggest that such an increase in methyl group

incorporation at these sites occurs during ageing in normal epithelial cells in the gut, and this

is elevated in cancer (Toyota et al., 1999). Hypermethylation of gene promotors, in addition

to or independent of methylation of other local DNA sequences, leads to transcriptional

silencing of those genes. Such transcriptional silencing can be considered as one mechanism

by which genes can be ’knocked out’, in addition to mutation and deletion, in Knudson’s

model of tumour suppressor gene inactivation (Kondo & Issa, 2004). In this way, the aberrant

methylation of genes can contribute to their inactivation in cancer epigenetically, such that

in the absence of inactivating genetic changes tumour suppressor gene activity can be lost,

leading to cancer progression.

2.4.2 MSI and dietary associations

MSI in CRC has been assessed in relation to dietary intakes in several reports, many of

which did not identify a link between this type of genomic instability in CRC and specific

dietary intakes (Chang et al., 2007; de Vogel et al., 2008; Jensen et al., 2008; Schernhammer,

Giovannuccci, Fuchs & Ogino, 2008) (Table 2). However, a limited number of studies have

described links between dietary intakes and MSI in colorectal neoplasms. An analysis of

144 microsatellite stable (MSS) and 40 MSI colonic cancers described an increased intake of

red meat as associated with increased prevalence of MSS cancers (Diergaarde, Braam, van

Muijen, Ligtenberg, Kok & Kampman, 2003). However, an assessment of 437 MSS and 49

MSI colonic cancers, failed to identify a similar association with red meat and MSS status

(Satia et al., 2005). Additionally, a further report, testing 238 MSS and 35 MSI colonic cancers

also failed to identify red meat intake as associated with MSI or MSS status (Wu et al.,

2001). However, in the study performed by Wu and colleagues, heterocyclic amines were

found to be associated with increased prevalence of MSI CRC. Heterocyclic amines can be

produced during certain high-temperature methods of cooking of meats (Santarelli et al.,

2008). Consequently, it is plausible that cooking method, independent of, or in conjunction

with, certain meat types, may be associated with MSI status in CRC, potentially explaining

the inconsistent observations between MSI and meat intakes.

Alcohol intake has been described as associated with MSI status in CRC. One report, analysing

1337 MSS and 227 MSI CRC identified increased alcohol intake as associated with a higher

prevalence of MSS cancers (Poynter et al., 2009). Discordantly, a second analysis of 1244 MSS

and 266 MSI colonic cancers identified increased alcohol consumption as linked to increased

prevalence of MSI cancers (Slattery et al., 2001).

Folate intake has also been assessed relative to MSI status in CRC. Increased levels of plasma

folate were associated with MSI cancer prevalence in a report assessing 166 MSS and 24 MSI

CRC (Van Guelpen et al., 2010). However, assessment of dietary intake of folate in studies

testing 179 MSS and 16 MSI CRC (Chang et al., 2007), 572 MSS and 76 MSI CRC (de Vogel et al.,

2008), 111 MSS and 19 MSI CRC (Jensen et al., 2008) and 542 MSS and 127 MSI colonic cancers

(Schernhammer, Giovannuccci, Fuchs & Ogino, 2008) all identified no association between

folate intake and MSI status in CRC.

Presently, the data describing dietary associations and MSI status in CRC are contradictory

and difficult to interpret. No strong associations have been identified and corroborated in

independent cohorts. The difficulty in identification of plausible dietary constituents which

may affect MSI prevalence in CRC may be due to the lack of such a relationship existing. It
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Study
MSS/MSI-low MSI/MSI-high dietary

CRC/CC CRC/CC association

Chang et al 2007 CRC: 179 CRC: 16 no statistically significant association between folate or vitamin B12 and MSI status
de Vogel et al 2008 CRC: 572 CRC: 76 no statistically significant association between folate, vitamin B2, methionine or alcohol and MSI status

Diergaarde et al 2003 CC: 144 CC: 40 ↑ red meat associated with MSS cancers
Jensen et al 2008 CRC: 111 CRC: 19 no association between MSI and folate or vitamin B12

Poynter et al 2009 CRC: 1337 CRC: 227 ↑ alcohol associated with MSS cancers
Satia et al 2005 CC: 437 CC: 49 no association between diet and MSI status [some associations comparing MSI/MSS cases vs controls]

Schernhammer et al 2008 CC: 542 CC: 127 no statistically significant association between folate, vitamin B6, B12, methionine or alcohol and MSI status
Slattery et al 2001 CC: 1244 CC: 266 ↑ alcohol associated with MSI cancers

Van Guelpen et al 2010 CRC: 166 CRC: 24 Increased levels of plasma folate associated with MSI cancers
Wu et al 2001 CC: 238 CC: 35 ↑ heterocyclic aromatic amines associated with MSI cancers

Table 2. Summarised description of literature analysing microsatellite instability (MSI) in
colorectal neoplasia in relation to dietary intakes with the statistically significant associations
described. MSS: microsatellite stability, WT: wildtype, CRC: colorectal cancer, CC: colonic
cancer, ↑ and ↓ denote an increase or decrease in consumption respectively.

may also be plausible that such relationships exist and are particularly subtle. Methylation

of the MLH1 promoter, leading to gene silencing and subsequent DNA MMR deficiency,

occurs in the vast majority, but not all, of MSI CRC (Kuismanen et al., 2000); suggesting

that other components of the MMR system can be disrupted, such as mutations to the MSH2

or MSH6 genes, and that MSI may develop from a group of distinct initial aberrations in a

small proportion of CRC. Furthermore, subsequent instability at microsatellites as a result

may depend on other promoting factors. As such, it appears that a series of molecular events

takes place leading to the MSI phenotype, which may arise from different epigenetic silencing

or mutational events in different cancers. The multiple causes of MSI, and the different

associated factors, may explain, at least in part, the lack of consistently identified dietary

constituents which have been associated with this type of genomic instability. Alternatively,

age-related susceptibility to promoter methylation, including the MLH1 promoter, may be the

predominant risk factor for MSI in CRC rather than dietary factors.

2.4.3 CIMP and dietary associations

Studies assessing dietary associations with CIMP in CRC have centred largely on testing

intakes of those compounds which may act as methyl group donors, or which function

in the biochemical pathways responsible for methylation processes. Vitamin B6 has been

described as associated with an increased prevalence of CIMP in CRC in one study assessing

496 CIMP-low/absent and 152 CIMP-high cancers (de Vogel et al., 2008). However, several

other reports, assessing 288 CIMP-low/absent and 87 CIMP-high (Schernhammer et al., 2011)

and 824 CIMP-low/absent and 330 CIMP-high (Slattery et al., 2007) colonic cancers failed to

identify a similar association.

A similar lack of consensus has been observed when assessing vitamin B12. A single study

assessing 107 CIMP-low/absent and 44 CIMP-high colonic cancers described an increased

serum vitamin B12 concentration as associated with CIMP in this cohort (Mokarram et al.,

2008). Schernhammer and colleagues (Schernhammer et al., 2011) and Slattery and co-workers

(Slattery et al., 2007) did not identify a similar association in their studies. A report assessing

163 CIMP-low/absent and 27 CIMP-high CRC also identified no association between vitamin

B12 intakes and CIMP status (Van Guelpen et al., 2010). Assessment of folate intake in

relation to CIMP status has consistently failed to identify associations between the two in

both colorectal and colonic cancer studies (Schernhammer et al., 2011; Slattery et al., 2007;

Van Guelpen et al., 2010).
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A single report, assessing 167 CIMP-low/negative and 17 CIMP-high colonic cancers

identified reduced fruit intake as associated with an increased prevalence of CIMP-high

colonic cancer (Diergaarde, Braam, van Muijen, Ligtenberg, Kok & Kampman, 2003). In an

independent study, reduced consumption of vitamin A was identified as associated with

increased prevalence of CIMP-high CRC (98 CIMP-low/absent CRC and 22 CIMP-high CRC)

(Mas et al., 2007). These observations are yet to be corroborated in other studies. An additional

report, assessing 776 CIMP-low/absent and 74 CIMP-high rectal cancers (Slattery, Curtin,

Wolff, Herrick, Caan & Samowitz, 2010) failed to identify fruit intakes as associated with

CIMP-high rectal cancer prevalence. Little additional data exists describing vitamin A intakes

relative to CIMP status in CRC.

A limited number of additional associations have been observed relating CIMP status to

certain dietary patterns. One report, assessing broad dietary patterns in addition to specific

nutrient and foodstuff intakes identified increased fat-rich dairy products and omega-3 fatty

acid consumption as associated with increased frequency of CIMP-high rectal cancers (776

CIMP-low/absent cancers and 74 CIMP-high cancers) (Slattery, Curtin, Wolff, Herrick, Caan

& Samowitz, 2010). In an additional analysis, using this same patient cohort, long-term

liquor/spirit intake was also found to be associated with an increased prevalence of

CIMP-high status (Slattery, Wolff, Herrick, Curtin, Caan & Samowitz, 2010). Very few studies

have assessed alcohol intake in terms of beverage consumed, as such, this observation awaits

confirmation in an independent study. Additional data do not exist at present which validate

the observed associations between increased consumption of fat-rich dairy products and

omega-3 fatty acid with CIMP-high status.

There is no dietary intake which has been identified in several cohorts as associated with

CIMP-high colorectal neoplasia. This may be due to the variety of methodologies used

to assess CIMP status and the different criteria used to define CIMP-high status in these

cancers, with no consensus method and definition having been used across studies (see Table

3). Furthermore, CIMP itself is the resulting phenotype of precursor genetic and epigenetic

aberrations. As such, it may be plausible that this CRC subtype may not be linked to dietary

risk factors, but instead diet may be linked to the causative precursor events, such as MLH1

promoter methylation and MSI. Assessment of large study cohorts, in which CIMP-high

cancers are categorised by causative lesions or processes, would in part help to understand

dietary intakes and causation in the context of this phenotype.

3. Review limitations

This review has attempted to assess the available data describing the relationship between

dietary factors and the molecular genetic events occurring during the development and

progression of CRC. Published analyses have been summarised and where consensus between

studies exists, this has been highlighted. Although providing a synopsis of the available

information, several limitations are inherent in such a general discussion.

No detailed analysis or discussion of the methods of statistical analysis in each report has

been provided. The wide range of methodology employed for this purpose across studies

makes such a discussion in the present chapter impractical. Opinions on statistical methods

vary across reports in terms of adjustment for multiple testing, inclusion of confounding

variables in statistical models and the requirement for power calculations. In this context, no

discussion or comparison of statistical methods has been attempted; notably, hazard and odds
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Study
CIMP-low/absent CIMP-high dietary

CRC/CC/RC CRC/CC/RC association

de Vogel et al 2008 CRC: 496* CRC: 152* ↑ vitamin B6 associated with MLH1 promoter methylation in males only
Diergaarde et al 2003 CC: 167** CC: 17** ↓ fruit associated with MLH1 promoter methylation and concurrent absence of MLH1 protein

Mas et al 2007 CRC: 98* CRC: 22* ↓ vitamin A associated with MLH1 promoter methylation
Mokarram et al 2008 CC: 107∓ CC: 44∓ increased levels of serum B12 associated with CIMP

Schernhammer et al 2011 CC: 288† CC: 87† no association between folate, vitamin B6, B12, methionine or alcohol consumption and CIMP
Slattery et al 2007 CC: 824†† CC: 330†† no association between folate, vitamin B6, B12, methionine or alcohol consumption and CIMP
Slattery et al 2010 RC: 776†† RC: 74†† no association between calcium and vitamin D consumption and CIMP
Slattery et al 2010 RC: 776†† RC: 74†† ↑ fat-rich dairy products and ↑ omega-3 fatty acids associated with CIMP
Slattery et al 2010 RC: 776†† RC: 74†† long-term ↑ spirits/liquor with CIMP

Van Guelpen et al 2010 CRC: 163‡ CRC: 27‡ no association between plasma folate or plasma vitamin B12 and CIMP

Table 3. Summarised description of literature analysing CpG island methylator phenotype
(CIMP) in colorectal neoplasia in relation to dietary intakes with the statistically significant
associations described. WT: wildtype, CRC: colorectal cancer, CC: colonic cancer, RC: rectal
cancer, ↑ and ↓ denote an increase or decrease in consumption respectively. * CIMP positive
status defined by MLH1 promoter methylation. ** CIMP positive status defined by MLH1
promoter methylation and concurrent loss of MLH1 expression as determined by
immunohistochemistry. ∓ CIMP positive status defined by methylation of one or more of the
p16, MLH1 or MSH2 promoters. † CIMP positive status defined by methylation at 11 of 16
tested markers. †† CIMP positive status defined by methylation at 2 of 5 tested markers. ‡
CIMP positive status defined by methylation at 6 of 8 tested markers.

ratios should be further analysed in order to interpret the relative ‘strength’ of the associations

highlighted here.

In addition to statistical methods, the methodology of dietary assessment in each individual

report has not been discussed. Dietary intakes can be measured in a variety of ways, including

person-to-person interview, food frequency questionnaires, food diaries and biomarker

assessment. Such an assessment is beyond the scope of this chapter. Outside of this review,

several specific reports have been published describing the merits, limits and practicality of

some of the available options for dietary assessment (Bingham et al., 1995; Day et al., 2001).

To fully interpret dietary associations identified in different studies, although not discussed

herein, an appreciation of dietary assessment methodology, and the relative accuracy of such

techniques, should be taken into account.

Further to the limits inherent in the compilation of this review, consideration of the nature

of assessment of dietary intakes relative to characteristics of colorectal cancers is required.

For example, considerably more data exist describing the relationship between mutations

in K-RAS and diet than for APC. An ’assessment bias’ exists, presumably due to the

significantly simpler task of examining hotspot mutation regions of the K-RAS proto-oncogene

compared with the longer lengths of sequencing required for mutational assessment of

tumour suppressor genes. As a result, the molecular genetic changes which occur during

CRC development have not been assessed at equal frequencies. Such ’assessment bias’ should

be noted when considering such a broad view, as presented in this chapter. This should be

particularly considered when trying to interpret the genetic or molecular changes which have

been tested in relation to diet in only a small number of studies.

It should also be understood that in many reports assessing dietary associations in CRC

broad definitions are employed, in order to maintain the practicality and feasibility of studies.

For example, often reports describing mutations in BRAF are actually describing mutations

only in exons 11 and 15; reports describing p53 mutations are frequently only describing

mutational analyses of exons 5-8. Such limited analyses of coding regions is justified, with

the significant majority of mutations in these examples being present in the regions described.
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Furthermore, such limitations increase the practicality of these studies, in terms of both

financial support and time investments required. Additionally, these limited regions of

analyses are frequently selected based on biological evidence. Although justified, the limited

extent to which genes are searched for the presence of mutations should be appreciated, and

such variability between studies may in part explain inconsistent observations. In conjunction

with this, different methods of mutational assessment provide different levels of sensitivity.

For example, hotspot mutational assessment has been demonstrated to be more sensitively

performed using pyrosequencing compared with dideoxysequencing (Naguib et al., 2010;

Ogino et al., 2005). Such discrepancies between different reports were not discussed in this

chapter, but should be considered when making side-by-side comparisons of studies.

In addition to the genetic and epigenetic changes giving rise to CRC development and

progression described in this chapter, additional events occur during progression of these

neoplasms. Furthermore, these events may be associated with dietary intakes, and data exist

describing their associations with dietary consumptions; for example, loss of PTEN expression

has also been tested for association with dietary intakes in CRC (Naguib, Cooke, Happerfield,

Kerr, Gay, Luben, Ball, Mitrou, McTaggart & Arends, 2011). Studies of genetic and epigentic

events beyond those discussed here were omitted due to the current low number of studies

assessing their relationship with diet.

4. Future directions of the field

Next generation sequencing technology now affords the practical and accurate sequencing

of entire genomes, with such strategies being employed to assess the genetic changes in

several cancer types (Stratton et al., 2009). Furthermore, genomewide single nucleotide

polymorphism analyses are being employed in a variety of settings. With these tools it is now

possible to ask different questions relating diet to cancer. Are certain chemicals in the diet

associated with an increased prevalence of any type of base change across the genome? Are

transitions or transversions associated with intakes of specific compounds? The prospect of

such investigations greatly expand the potential to understand the biochemical implications

of certain dietary intakes, and provide an attractive avenue by which the identification of

initiating factors in colorectal carcinogenesis might be pursued.

At present, a moderate number of studies have attempted to assess what impact, if any,

dietary factors may have on CRC and the molecular subtypes of tumours which comprise

this disease. With new technologies becoming available which have the power to expand this

field of study, the underlying question of the purpose of such analyses should be clarified.

Simply identifying dietary links to disease is only of limited use: how can this understanding

be employed to reduce cancer-related mortality? It may be unrealistic to expect that if

dietary constituents can be shown to be associated with increased prevalence of any particular

molecular subtypes of colorectal cancer that these may be eliminated from the diet. The

overwhelming evidence describing the strong association between tobacco use and cancer

mortality fails to deter a significant number of smokers; although, the identification of such a

link has undoubtedly provided individuals with knowledge upon which informed decisions

have been made to refrain from tobacco use. Instead, a more ’protective’ approach might

be endorsed, such that dietary constituents which are found to confer protection against

certain types of CRC might be promoted. This may be particularly useful in the attempt

to lower the number of diagnoses of the molecular subtypes of CRC which confer a poor
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prognosis. Some have suggested that excessive administration of dietary advice may prove

to be counterproductive: advice should be administered sparsely and where the greatest

potential to reduce cancer-related deaths exists. It is in this context that the understanding

of diet and the molecular subtypes of CRC has the greatest potential and will provide the

greatest impact in the effort to reduce the number of CRC-related deaths.

5. Conclusions and summary

At present, although data exist describing the association of particular dietary factors with the

specific molecular genetic changes in CRC, very few consistently reproducible associations

have been described. Several factors may contribute to this, including variations in study

methodologies (dietary intake assessment, sequencing strategies), statistical assessment

(variation in the statistical power/number of samples, inclusion of different confounding

variables in models) and features of study design.

Assessment of the presently available data do describe some associations which warrant

further study: K-RAS mutation appears to be less frequent in CRC in individuals consuming

a high folate diet. Furthermore, APC mutation appears to be associated with meat intakes to

some degree, although this exact relationship is unclear.

At present, the study of diet in relation to the specific subtypes of CRC is at an exciting stage.

Sequencing technology advancements now provide an avenue by which the total genetic

composition of CRC, and the specific molecular subtypes, can be assessed. Using such tools,

detailed understanding of genomewide events can be correlated with dietary intakes. Such

modern approaches, coupled with renewed efforts to improve, validate and employ the most

reliable and accurate methods of dietary intake assessment, provide the keys to the success of

this field, which will help to provide the sought after end goal of a reduction in the number of

CRC-related deaths.

6. Acknowledgments

This work was supported by EPIC Norfolk and the Medical Research Council Centre for

Nutritional Epidemiology in Cancer Prevention and Survival. Furthermore, the dedication

and support of Professor Kay-Tee Khaw and the late Professor Sheila Bingham were essential

in the completion of this chapter.

7. References

Arends, M. J., McGregor, A. H., Toft, N. J., Brown, E. J. & Wyllie, A. H. (1993). Susceptibility

to apoptosis is differentially regulated by c-myc and mutated Ha-ras oncogenes and

is associated with endonuclease availability, Br J Cancer 68(6): 1127–1133.

Arends, M. J., McGregor, A. H. & Wyllie, A. H. (1994). Apoptosis is inversely related to

necrosis and determines net growth in tumors bearing constitutively expressed myc,

ras, and HPV oncogenes, Am J Pathol 144(5): 1045–1057.

Aylon, Y. & Oren, M. (2011). New plays in the p53 theater, Curr Opin Genet Dev 21(1): 86–92.

Bautista, D., Obrador, A., Moreno, V., Cabeza, E., Canet, R., Benito, E., Bosch, X. & Costa, J.

(1997). Ki-ras mutation modifies the protective effect of dietary monounsaturated

191The Molecular Genetic Events in Colorectal Cancer and Diet

www.intechopen.com



20 Colorectal Cancer

fat and calcium on sporadic colorectal cancer, Cancer Epidemiol Biomarkers Prev

6(1): 57–61.

Bingham, S. A., Cassidy, A., Cole, T. J., Welch, A., Runswick, S. A., Black, A. E., Thurnham,

D., Bates, C., Khaw, K. T. & Key, T. J. (1995). Validation of weighed records and other

methods of dietary assessment using the 24 h urine nitrogen technique and other

biological markers, Br J Nutr 73(4): 531–550.

Bongaerts, B. W. C., de Goeij, A. F. P. M., van den Brandt, P. A. & Weijenberg, M. P. (2006).

Alcohol and the risk of colon and rectal cancer with mutations in the K-ras gene,

Alcohol 38(3): 147–154.

Bos, J. L. (1989). Ras oncogenes in human cancer: a review., Cancer Res 49(17): 4682–4689.

Bourdon, J. C., Laurenzi, V. D., Melino, G. & Lane, D. (2003). p53: 25 years of research and

more questions to answer., Cell Death Differ 10(4): 397–399.

Boyle, P. & Langman, J. S. (2000). ABC of colorectal cancer: Epidemiology., BMJ

321(7264): 805–808.

Brink, M., Weijenberg, M. P., de Goeij, A. F. P. M., Roemen, G. M. J. M., Lentjes, M. H. F. M.,

de Bruïne, A. P., Goldbohm, R. A. & van den Brandt, P. A. (2005). Meat consumption

and K-ras mutations in sporadic colon and rectal cancer in The Netherlands Cohort

Study, Br J Cancer 92(7): 1310–1320.

Brink, M., Weijenberg, M. P., de Goeij, A. F. P. M., Roemen, G. M. J. M., Lentjes, M. H. F. M.,

de Bruïne, A. P., van Engeland, M., Goldbohm, R. A. & van den Brandt, P. A. (2005).

Dietary folate intake and k-ras mutations in sporadic colon and rectal cancer in The

Netherlands Cohort Study, Int J Cancer 114(5): 824–830.

Brink, M., Weijenberg, M. P., De Goeij, A. F. P. M., Schouten, L. J., Koedijk, F. D. H., Roemen, G.

M. J. M., Lentjes, M. H. F. M., De Bruïne, A. P., Goldbohm, R. A. & Van Den Brandt,

P. A. (2004). Fat and K-ras mutations in sporadic colorectal cancer in The Netherlands

Cohort Study, Carcinogenesis 25(9): 1619–1628.

Ceol, C. J., Pellman, D. & Zon, L. I. (2007). APC and colon cancer: two hits for one., Nat Med

13(11): 1286–1287.

Chang, S.-C., Lin, P.-C., Lin, J.-K., Yang, S.-H., Wang, H.-S. & Li, A. F.-Y. (2007). Role

of MTHFR polymorphisms and folate levels in different phenotypes of sporadic

colorectal cancers, Int J Colorectal Dis 22(5): 483–489.

Curtin, K., Slattery, M. L. & Samowitz, W. S. (2011). CpG island methylation in colorectal

cancer: past, present and future, Patholog Res Int 2011: 902674.

Day, N., McKeown, N., Wong, M., Welch, A. & Bingham, S. (2001). Epidemiological

assessment of diet: a comparison of a 7-day diary with a food frequency

questionnaire using urinary markers of nitrogen, potassium and sodium, Int J

Epidemiol 30(2): 309–317.

de Vogel, S., Bongaerts, B. W. C., Wouters, K. A. D., Kester, A. D. M., Schouten, L. J., de Goeij,

A. F. P. M., de Bruïne, A. P., Goldbohm, R. A., van den Brandt, P. A., van Engeland, M.

& Weijenberg, M. P. (2008). Associations of dietary methyl donor intake with MLH1

promoter hypermethylation and related molecular phenotypes in sporadic colorectal

cancer, Carcinogenesis 29(9): 1765–1773.

de Vogel, S., van Engeland, M., Lüchtenborg, M., de Bruïne, A. P., Roemen, G. M. J. M.,

Lentjes, M. H. F. M., Goldbohm, R. A., van den Brandt, P. A., de Goeij, A. F. P. M.

192 Colorectal Cancer – From Prevention to Patient Care

www.intechopen.com



The Molecular Genetic Events

in Colorectal Cancer and Diet 21

& Weijenberg, M. P. (2006). Dietary folate and APC mutations in sporadic colorectal

cancer, J Nutr 136(12): 3015–3021.

Diergaarde, B., Braam, H., van Muijen, G. N. P., Ligtenberg, M. J. L., Kok, F. J. & Kampman,

E. (2003). Dietary factors and microsatellite instability in sporadic colon carcinomas,

Cancer Epidemiol Biomarkers Prev 12(11 Pt 1): 1130–1136.

Diergaarde, B., Tiemersma, E. W., Braam, H., van Muijen, G. N. P., Nagengast, F. M., Kok, F. J.

& Kampman, E. (2005). Dietary factors and truncating APC mutations in sporadic

colorectal adenomas, Int J Cancer 113(1): 126–132.

Diergaarde, B., van Geloof, W. L., van Muijen, G. N. P., Kok, F. J. & Kampman, E. (2003).

Dietary factors and the occurrence of truncating APC mutations in sporadic colon

carcinomas: a Dutch population-based study, Carcinogenesis 24(2): 283–290.

Eichholzer, M., Luthy, J., Moser, U. & Fowler, B. (2001). Folate and the risk of

colorectal, breast and cervix cancer: the epidemiological evidence., Swiss Med Wkly

131(37-38): 539–549.

Fodde, R., Smits, R. & Clevers, H. (2001). APC, signal transduction and genetic instability in

colorectal cancer., Nat Rev Cancer 1(1): 55–67.

Forbes, S. A., Bhamra, G., Bamford, S., Dawson, E., Kok, C., Clements, J., Menzies, A., Teague,

J. W., Futreal, P. A. & Stratton, M. R. (2008). The Catalogue of Somatic Mutations in

Cancer (COSMIC), Curr Protoc Hum Genet Chapter 10: Unit 10.11.

Fransen, K., Klintenas, M., Osterstrom, A., Dimberg, J., Monstein, H.-J. & Soderkvist, P.

(2004). Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal

adenocarcinomas., Carcinogenesis 25(4): 527–533.

Freedman, A. N., Michalek, A. M., Marshall, J. R., Mettlin, C. J., Petrelli, N. J., Black, J. D.,

Zhang, Z. F., Satchidanand, S. & Asirwatham, J. E. (1996). Familial and nutritional

risk factors for p53 overexpression in colorectal cancer, Cancer Epidemiol Biomarkers

Prev 5(4): 285–291.

Freudenheim, J. L., Graham, S., Marshall, J. R., Haughey, B. P., Cholewinski, S. & Wilkinson,

G. (1991). Folate intake and carcinogenesis of the colon and rectum., Int J Epidemiol

20(2): 368–374.

Goss, K. H. & Groden, J. (2000). Biology of the adenomatous polyposis coli tumor suppressor,

J Clin Oncol 18(9): 1967–1979.

Herman, J. G., Umar, A., Polyak, K., Graff, J. R., Ahuja, N., Issa, J. P., Markowitz, S., Willson,

J. K., Hamilton, S. R., Kinzler, K. W., Kane, M. F., Kolodner, R. D., Vogelstein, B.,

Kunkel, T. A. & Baylin, S. B. (1998). Incidence and functional consequences of

hMLH1 promoter hypermethylation in colorectal carcinoma, Proc Natl Acad Sci U

S A 95(12): 6870–6875.

Ibrahim, A. E. K., Arends, M. J., Silva, A.-L., Wyllie, A. H., Greger, L., Ito, Y., Vowler,

S. L., Huang, T. H.-M., Tavaré, S., Murrell, A. & Brenton, J. D. (2011). Sequential

DNA methylation changes are associated with DNMT3B overexpression in colorectal

neoplastic progression, Gut 60(4): 499–508.

Jen, J., Powell, S. M., Papadopoulos, N., Smith, K. J., Hamilton, S. R., Vogelstein, B. & Kinzler,

K. W. (1994). Molecular determinants of dysplasia in colorectal lesions., Cancer Res

54(21): 5523–5526.

193The Molecular Genetic Events in Colorectal Cancer and Diet

www.intechopen.com



22 Colorectal Cancer

Jensen, L. H., Lindebjerg, J., Crüger, D. G., Brandslund, I., Jakobsen, A., Kolvraa, S. & Nielsen,

J. N. (2008). Microsatellite instability and the association with plasma homocysteine

and thymidylate synthase in colorectal cancer, Cancer Invest 26(6): 583–589.

Kambara, T., Simms, L. A., Whitehall, V. L., Spring, K. J., Wynter, C. V., Walsh, M. D., Barker,

M. A., Arnold, S., McGivern, A., Matsubara, N., Tanaka, N., Higuchi, T., Young, J.,

Jass, J. R. & Leggett, B. A. (2004). BRAF mutation is associated with DNA methylation

in serrated polyps and cancers of the colorectum, Gut 53(8): 1137–1144.

Kim, Y.-I. (2005). Nutritional epigenetics: impact of folate deficiency on DNA methylation

and colon cancer susceptibility, J Nutr 135(11): 2703–2709.

Kinzler, K. W. & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer, Cell

87(2): 159–170.

Kondo, Y. & Issa, J.-P. J. (2004). Epigenetic changes in colorectal cancer, Cancer Metastasis Rev

23(1-2): 29–39.

Kuhnle, G. G. & Bingham, S. A. (2007). Dietary meat, endogenous nitrosation and colorectal

cancer, Biochem Soc Trans 35(Pt 5): 1355–1357.

Kuhnle, G. G. C., Story, G. W., Reda, T., Mani, A. R., Moore, K. P., Lunn, J. C. & Bingham, S. A.

(2007). Diet-induced endogenous formation of nitroso compounds in the GI tract.,

Free Radic Biol Med 43(7): 1040–1047.

Kuismanen, S. A., Holmberg, M. T., Salovaara, R., de la Chapelle, A. & Peltomäki, P.

(2000). Genetic and epigenetic modification of MLH1 accounts for a major share

of microsatellite-unstable colorectal cancers, Am J Pathol 156(5): 1773–1779.

Laso, N., Mas, S., Jose Lafuente, M., Casterad, X., Trias, M., Ballesta, A., Molina, R., Salas,

J., Ascaso, C., Zheng, S., Wiencke, J. K. & Lafuente, A. (2004). Decrease in specific

micronutrient intake in colorectal cancer patients with tumors presenting Ki-ras

mutation, Anticancer Res 24(3b): 2011–2020.

Lee, S., Cho, N. Y., Choi, M., Yoo, E. J., Kim, J. H. & Kang, G. H. (2008). Clinicopathological

features of CpG island methylator phenotype-positive colorectal cancer and its

adverse prognosis in relation to KRAS/BRAF mutation, Pathol Int 58(2): 104–113.

Lüchtenborg, M., Weijenberg, M. P., de Goeij, A. F. P. M., Wark, P. A., Brink, M., Roemen, G. M.

J. M., Lentjes, M. H. F. M., de Bruïne, A. P., Goldbohm, R. A., van ’t Veer, P. & van den

Brandt, P. A. (2005). Meat and fish consumption, APC gene mutations and hMLH1

expression in colon and rectal cancer: a prospective cohort study (The Netherlands),

Cancer Causes Control 16(9): 1041–1054.

Luo, F., Brooks, D. G., Ye, H., Hamoudi, R., Poulogiannis, G., Patek, C. E., Winton, D. J. &

Arends, M. J. (2007). Conditional expression of mutated K-ras accelerates intestinal

tumorigenesis in Msh2-deficient mice, Oncogene 26(30): 4415–4427.

Luo, F., Brooks, D. G., Ye, H., Hamoudi, R., Poulogiannis, G., Patek, C. E., Winton, D. J. &

Arends, M. J. (2009). Mutated K-ras(Asp12) promotes tumourigenesis in Apc(Min)

mice more in the large than the small intestines, with synergistic effects between

K-ras and Wnt pathways, Int J Exp Pathol 90(5): 558–574.

Luo, F., Poulogiannis, G., Ye, H., Hamoudi, R. & Arends, M. J. (2011). Synergism between

K-rasVal12 and mutant Apc accelerates murine large intestinal tumourigenesis, Oncol

Rep 26(1): 125–133.

194 Colorectal Cancer – From Prevention to Patient Care

www.intechopen.com



The Molecular Genetic Events

in Colorectal Cancer and Diet 23

Luo, F., Poulogiannis, G., Ye, H., Hamoudi, R., Zhang, W., Dong, G. & Arends, M. J. (2011).

Mutant K-ras promotes carcinogen-induced murine colorectal tumourigenesis, but

does not alter tumour chromosome stability, J Pathol 223(3): 390–399.

Martin, S. A., Lord, C. J. & Ashworth, A. (2010). Therapeutic targeting of the DNA mismatch

repair pathway, Clin Cancer Res 16(21): 5107–5113.

Martínez, M. E., Maltzman, T., Marshall, J. R., Einspahr, J., Reid, M. E., Sampliner, R., Ahnen,

D. J., Hamilton, S. R. & Alberts, D. S. (1999). Risk factors for Ki-ras protooncogene

mutation in sporadic colorectal adenomas, Cancer Res 59(20): 5181–5185.

Mas, S., Lafuente, M. J., Crescenti, A., Trias, M., Ballesta, A., Molina, R., Zheng, S., Wiencke,

J. K. & Lafuente, A. (2007). Lower specific micronutrient intake in colorectal cancer

patients with tumors presenting promoter hypermethylation in p16(INK4a), p4(ARF)

and hMLH1, Anticancer Res 27(2): 1151–1156.

McMichael, A. J. & Giles, G. G. (1988). Cancer in migrants to Australia: extending the

descriptive epidemiological data., Cancer Res 48(3): 751–756.

Melhem, M. F., Law, J. C., el Ashmawy, L., Johnson, J. T., Landreneau, R. J., Srivastava,

S. & Whiteside, T. L. (1995). Assessment of sensitivity and specificity of

immunohistochemical staining of p53 in lung and head and neck cancers, Am J Pathol

146(5): 1170–1177.

Mokarram, P., Naghibalhossaini, F., Saberi Firoozi, M., Hosseini, S. V., Izadpanah, A., Salahi,

H., Malek-Hosseini, S. A., Talei, A. & Mojallal, M. (2008). Methylenetetrahydrofolate

reductase C677T genotype affects promoter methylation of tumor-specific genes in

sporadic colorectal cancer through an interaction with folate/vitamin B12 status,

World J Gastroenterol 14(23): 3662–3671.

Naguib, A., Cooke, J. C., Happerfield, L., Kerr, L., Gay, L. J., Luben, R. N., Ball, R. Y., Mitrou,

P. N., McTaggart, A. & Arends, M. J. (2011). Alterations in PTEN and PIK3CA in

colorectal cancers in the EPIC Norfolk study: associations with clinicopathological

and dietary factors, BMC Cancer 11: 123.

Naguib, A., Mitrou, P. N., Gay, L. J., Cooke, J. C., Luben, R. N., Ball, R. Y., McTaggart, A.,

Arends, M. J. & Rodwell, S. A. (2010). Dietary, lifestyle and clinicopathological factors

associated with BRAF and K-ras mutations arising in distinct subsets of colorectal

cancers in the EPIC Norfolk study, BMC Cancer 10: 99.

Naguib, A., Wilson, C. H., Adams, D. J. & Arends, M. J. (2011). Activation of K-RAS by

co-mutation of codons 19 and 20 is transforming, J Mol Signal 6: 2.

Norat, T., Bingham, S., Ferrari, P., Slimani, N., Jenab, M., Mazuir, M., Overvad, K., Olsen, A.,

Tjonneland, A., Clavel, F., Boutron-Ruault, M.-C., Kesse, E., Boeing, H., Bergmann,

M. M., Nieters, A., Linseisen, J., Trichopoulou, A., Trichopoulos, D., Tountas, Y.,

Berrino, F., Palli, D., Panico, S., Tumino, R., Vineis, P., Bueno-de Mesquita, H. B.,

Peeters, P. H. M., Engeset, D., Lund, E., Skeie, G., Ardanaz, E., Gonzalez, C., Navarro,

C., Quiros, J. R., Sanchez, M.-J., Berglund, G., Mattisson, I., Hallmans, G., Palmqvist,

R., Day, N. E., Khaw, K.-T., Key, T. J., San Joaquin, M., Hemon, B., Saracci, R., Kaaks,

R. & Riboli, E. (2005). Meat, fish, and colorectal cancer risk: the European Prospective

Investigation into cancer and nutrition., J Natl Cancer Inst 97(12): 906–916.

O’Brien, H., Matthew, J. A., Gee, J. M., Watson, M., Rhodes, M., Speakman, C. T., Stebbings,

W. S., Kennedy, H. J. & Johnson, I. T. (2000). K-ras mutations, rectal crypt cells

195The Molecular Genetic Events in Colorectal Cancer and Diet

www.intechopen.com



24 Colorectal Cancer

proliferation, and meat consumption in patients with left-sided colorectal carcinoma,

Eur J Cancer Prev 9(1): 41–47.

Ogino, S., Kawasaki, T., Brahmandam, M., Yan, L., Cantor, M., Namgyal, C., Mino-Kenudson,

M., Lauwers, G. Y., Loda, M. & Fuchs, C. S. (2005). Sensitive sequencing method for

KRAS mutation detection by Pyrosequencing., J Mol Diagn 7(3): 413–421.

Park, J. Y., Mitrou, P. N., Keen, J., Dahm, C. C., Gay, L. J., Luben, R. N., McTaggart, A.,

Khaw, K.-T., Ball, R. Y., Arends, M. J. & Rodwell, S. A. (2010). Lifestyle factors

and p53 mutation patterns in colorectal cancer patients in the EPIC-Norfolk study,

Mutagenesis 25(4): 351–358.

Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. (2005). Global cancer statistics, 2002., CA Cancer J

Clin 55(2): 74–108.

Peyssonnaux, C. & Eychene, A. (2001). The Raf/MEK/ERK pathway: new concepts of

activation, Biol Cell 93(1-2): 53–62.

Poulogiannis, G., Ichimura, K., Hamoudi, R. A., Luo, F., Leung, S. Y., Yuen, S. T., Harrison,

D. J., Wyllie, A. H. & Arends, M. J. (2010). Prognostic relevance of DNA copy number

changes in colorectal cancer, J Pathol 220(3): 338–347.

Poulogiannis, G., McIntyre, R. E., Dimitriadi, M., Apps, J. R., Wilson, C. H., Ichimura, K., Luo,

F., Cantley, L. C., Wyllie, A. H., Adams, D. J. & Arends, M. J. (2010). PARK2 deletions

occur frequently in sporadic colorectal cancer and accelerate adenoma development

in Apc mutant mice, Proc Natl Acad Sci U S A 107(34): 15145–15150.

Poynter, J. N., Haile, R. W., Siegmund, K. D., Campbell, P. T., Figueiredo, J. C., Limburg,

P., Young, J., Le Marchand, L., Potter, J. D., Cotterchio, M., Casey, G., Hopper,

J. L., Jenkins, M. A., Thibodeau, S. N., Newcomb, P. A., Baron, J. A. & Colon

Cancer Family Registry (2009). Associations between smoking, alcohol consumption,

and colorectal cancer, overall and by tumor microsatellite instability status, Cancer

Epidemiol Biomarkers Prev 18(10): 2745–2750.

Robinson, M. J. & Cobb, M. H. (1997). Mitogen-activated protein kinase pathways, Curr Opin

Cell Biol 9(2): 180–186.

Samowitz, W. S., Albertsen, H., Herrick, J., Levin, T. R., Sweeney, C., Murtaugh, M. A.,

Wolff, R. K. & Slattery, M. L. (2005). Evaluation of a large, population-based

sample supports a CpG island methylator phenotype in colon cancer, Gastroenterology

129(3): 837–845.

Santarelli, R. L., Pierre, F. & Corpet, D. E. (2008). Processed meat and colorectal cancer: a

review of epidemiologic and experimental evidence, Nutr Cancer 60(2): 131–144.

Satia, J. A., Keku, T., Galanko, J. A., Martin, C., Doctolero, R. T., Tajima, A., Sandler, R. S. &

Carethers, J. M. (2005). Diet, lifestyle, and genomic instability in the North Carolina

Colon Cancer Study, Cancer Epidemiol Biomarkers Prev 14(2): 429–436.

Schernhammer, E. S., Giovannuccci, E., Fuchs, C. S. & Ogino, S. (2008). A prospective study of

dietary folate and vitamin B and colon cancer according to microsatellite instability

and KRAS mutational status, Cancer Epidemiol Biomarkers Prev 17(10): 2895–2898.

Schernhammer, E. S., Giovannucci, E., Baba, Y., Fuchs, C. S. & Ogino, S. (2011). B vitamins,

methionine and alcohol intake and risk of colon cancer in relation to BRAF mutation

and CpG island methylator phenotype (CIMP), PLoS One 6(6): e21102.

Schernhammer, E. S., Ogino, S. & Fuchs, C. S. (2008). Folate and vitamin B6 intake and risk of

colon cancer in relation to p53 expression, Gastroenterology 135(3): 770–780.

196 Colorectal Cancer – From Prevention to Patient Care

www.intechopen.com



The Molecular Genetic Events

in Colorectal Cancer and Diet 25

Sjöblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., Mandelker, D., Leary,

R. J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P., Markowitz,

S. D., Willis, J., Dawson, D., Willson, J. K. V., Gazdar, A. F., Hartigan, J., Wu, L., Liu,

C., Parmigiani, G., Park, B. H., Bachman, K. E., Papadopoulos, N., Vogelstein, B.,

Kinzler, K. W. & Velculescu, V. E. (2006). The consensus coding sequences of human

breast and colorectal cancers, Science 314(5797): 268–274.

Slattery, M. L., Anderson, K., Curtin, K., Ma, K. N., Schaffer, D. & Samowitz, W. (2001). Dietary

intake and microsatellite instability in colon tumors, Int J Cancer 93(4): 601–607.

Slattery, M. L., Curtin, K., Anderson, K., Ma, K. N., Edwards, S., Leppert, M., Potter, J.,

Schaffer, D. & Samowitz, W. S. (2000). Associations between dietary intake and Ki-ras

mutations in colon tumors: a population-based study, Cancer Res 60(24): 6935–6941.

Slattery, M. L., Curtin, K., Ma, K., Edwards, S., Schaffer, D., Anderson, K. & Samowitz, W.

(2002). Diet activity, and lifestyle associations with p53 mutations in colon tumors.,

Cancer Epidemiol Biomarkers Prev 11(6): 541–548.

Slattery, M. L., Curtin, K., Sweeney, C., Levin, T. R., Potter, J., Wolff, R. K., Albertsen,

H. & Samowitz, W. S. (2007). Diet and lifestyle factor associations with CpG

island methylator phenotype and BRAF mutations in colon cancer, Int J Cancer

120(3): 656–663.

Slattery, M. L., Curtin, K., Wolff, R. K., Herrick, J. S., Caan, B. J. & Samowitz, W. (2010).

Diet, physical activity, and body size associations with rectal tumor mutations and

epigenetic changes, Cancer Causes Control 21(8): 1237–1245.

Slattery, M. L., Wolff, R. K., Herrick, J. S., Curtin, K., Caan, B. J. & Samowitz, W. (2010). Alcohol

consumption and rectal tumor mutations and epigenetic changes, Dis Colon Rectum

53(8): 1182–1189.

Soreide, K., Janssen, E. A., Soiland, H., Korner, H. & Baak, J. P. (2006). Microsatellite instability

in colorectal cancer, Br J Surg 93(4): 395–406.

Stratton, M. R., Campbell, P. J. & Futreal, P. A. (2009). The cancer genome, Nature

458(7239): 719–724.

Suehiro, Y. & Hinoda, Y. (2008). Genetic and epigenetic changes in aberrant crypt foci and

serrated polyps., Cancer Sci 99(6): 1071–1076.

Takayama, T., Katsuki, S., Takahashi, Y., Ohi, M., Nojiri, S., Sakamaki, S., Kato, J., Kogawa,

K., Miyake, H. & Niitsu, Y. (1998). Aberrant crypt foci of the colon as precursors of

adenoma and cancer., N Engl J Med 339(18): 1277–1284.

Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J. G., Baylin, S. B. & Issa, J. P. (1999).

CpG island methylator phenotype in colorectal cancer, Proc Natl Acad Sci U S A

96(15): 8681–8686.

Van Guelpen, B., Dahlin, A. M., Hultdin, J., Eklöf, V., Johansson, I., Henriksson, M. L.,

Cullman, I., Hallmans, G. & Palmqvist, R. (2010). One-carbon metabolism and

CpG island methylator phenotype status in incident colorectal cancer: a nested

case-referent study, Cancer Causes Control 21(4): 557–566.

Velho, S., Moutinho, C., Cirnes, L., Albuquerque, C., Hamelin, R., Schmitt, F., Carneiro, F.,

Oliveira, C. & Seruca, R. (2008). BRAF, KRAS and PIK3CA mutations in colorectal

serrated polyps and cancer: primary or secondary genetic events in colorectal

carcinogenesis?, BMC Cancer 8: 255.

197The Molecular Genetic Events in Colorectal Cancer and Diet

www.intechopen.com



26 Colorectal Cancer

Voskuil, D. W., Kampman, E., van Kraats, A. A., Balder, H. F., van Muijen, G. N., Goldbohm,

R. A. & van’t Veer, P. (1999). p53 over-expression and p53 mutations in colon

carcinomas: relation to dietary risk factors, Int J Cancer 81(5): 675–681.

Wark, P. A., Van der Kuil, W., Ploemacher, J., Van Muijen, G. N. P., Mulder, C. J. J.,

Weijenberg, M. P., Kok, F. J. & Kampman, E. (2006). Diet, lifestyle and risk of K-ras

mutation-positive and -negative colorectal adenomas, Int J Cancer 119(2): 398–405.

Weijenberg, M. P., Luchtenborg, M., de Goeij, A. F., Brink, M., van Muijen, G. N., de Bruine,

A. P., Goldbohm, R. A. & van den Brandt, P. A. (2007). Dietary fat and risk of colon

and rectal cancer with aberrant MLH1 expression, APC or KRAS genes, Cancer Causes

Control 18(8): 865–879.

Wheeler, J. M., Loukola, A., Aaltonen, L. A., Mortensen, N. J. & Bodmer, W. F. (2000). The

role of hypermethylation of the hMLH1 promoter region in HNPCC versus MSI+

sporadic colorectal cancers, J Med Genet 37(8): 588–592.

Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M.,

Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T.,

Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis,

J., Dawson, D., Shipitsin, M., Willson, J. K., Sukumar, S., Polyak, K., Park, B. H.,

Pethiyagoda, C. L., Pant, P. V., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith,

D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G.,

Kinzler, K. W., Velculescu, V. E. & Vogelstein, B. (2007). The genomic landscapes of

human breast and colorectal cancers, Science 318(5853): 1108–1113.

Wu, A. H., Shibata, D., Yu, M. C., Lai, M. Y. & Ross, R. K. (2001). Dietary heterocyclic

amines and microsatellite instability in colon adenocarcinomas, Carcinogenesis

22(10): 1681–1684.

Zhang, Z. F., Zeng, Z. S., Sarkis, A. S., Klimstra, D. S., Charytonowicz, E., Pollack, D., Vena,

J., Guillem, J., Marshall, J. R., Cordon-Cardo, C., Cohen, A. M. & Begg, C. B. (1995).

Family history of cancer, body weight, and p53 nuclear overexpression in Duke’s C

colorectal cancer, Br J Cancer 71(4): 888–893.

198 Colorectal Cancer – From Prevention to Patient Care

www.intechopen.com



Colorectal Cancer - From Prevention to Patient Care

Edited by Dr. Rajunor Ettarh

ISBN 978-953-51-0028-7

Hard cover, 538 pages

Publisher InTech

Published online 17, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The projections for future growth in the number of new patients with colorectal cancer in most parts of the

world remain unfavorable. When we consider the substantial morbidity and mortality that accompanies the

disease, the acute need for improvements and better solutions in patient care becomes evident. This volume,

organized in five sections, represents a synopsis of the significant efforts from scientists, clinicians and

investigators towards finding improvements in different patient care aspects including nutrition, diagnostic

approaches, treatment strategies with the addition of some novel therapeutic approaches, and prevention. For

scientists involved in investigations that explore fundamental cellular events in colorectal cancer, this volume

provides a framework for translational integration of cell biological and clinical information. Clinicians as well as

other healthcare professionals involved in patient management for colorectal cancer will find this volume

useful.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Adam Naguib, Laura J Gay, Panagiota N. Mitrou and Mark J. Arends (2012). The Molecular Genetic Events in

Colorectal Cancer and Diet, Colorectal Cancer - From Prevention to Patient Care, Dr. Rajunor Ettarh (Ed.),

ISBN: 978-953-51-0028-7, InTech, Available from: http://www.intechopen.com/books/colorectal-cancer-from-

prevention-to-patient-care/diet-and-the-molecular-genetic-changes-of-colorectal-cancer



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


