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Applications of Biotechnology  
in Kiwifruit (Actinidia) 

Tianchi Wang and Andrew P. Gleave 
The New Zealand Institute for Plant & Food Research Limited 

New Zealand 

1. Introduction 

Actinidia is a genus of 55 species and about 76 taxa native to central China and with a wide 
geographic distribution throughout China and South Eastern Asia (X. Li et al., 2009). 
Palaeobiological studies estimate Actinidia to be at least 20–26 million years old (Qian & Yu, 
1991). Actinidia species are vigorous and long-lived perennial vines, producing oblong or 
spherical berries that vary considerably in shape and colour (Fig. 1). Actinidia are normally 
dioecious, but occasional plants have perfect flowers (A. R. Ferguson, 1984). The basic 
chromosome number in Actinidia is X=29, with a diploid number of 58. During evolution a 
chromosome may have duplicated (McNeilage & Considine, 1989), followed by an 
aneuploid event, such as breakage of a centromere, to give an additional chromosome (He et 
al., 2005). The genus has a reticulate polyploidy structure, with diploids, tetraploids, 
hexaploids and octaploids occurring in diminishing frequency (A. R. Ferguson et al., 1997). 
The genus has unusual inter- and intra-taxal variation in ploidy (A. R. Ferguson & Huang, 
2007; A. R. Ferguson et al., 1997), with, for example, A. chinensis found as both diploid and 
tetraploid and A. arguta as usually tetraploid, but also found as diploid, hexaploid or 
octaploid. In this chapter, we will describe advances in Actinidia plant tissue culture and 
molecular biology and the present and future applications of these biotechnology 
techniques in kiwifruit breeding and germplasm improvement. 

2. Global significance of kiwifruit 

Actinidia species were introduced to Europe, the U.S.A., and New Zealand in the late 19th 
and early 20th century (A.R. Ferguson & Bollard, 1990). New Zealand was largely 
responsible for the initial development and commercial growing of kiwifruit, with the first 
commercial orchards established in the 1930s. Domestication and breeding of firstly 
Actinidia deliciosa, and more recently, A. chinensis, from wild germplasm has resulted in 
varieties now cultivated commercially in a number of continents. The inherent qualities of 
novel appearance, attractive flesh colour, texture and flavour, high vitamin C content and 
favourable handling and storage characteristics make kiwifruit a widely acceptable and 
popular fruit crop for producers and consumers.  

Commercial kiwifruit growing areas have expanded rapidly and consistently since the 
1990s. By 2010, the global kiwifruit planting area had reached over 150,000 ha. China (70,000 
ha), Italy (27,000 ha), New Zealand (14,000 ha) and Chile (14,000 ha) account for about 83% 
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of world kiwifruit plantings, and global kiwifruit production represents about 0.22% of total 
production for major fruit crops, with the majority of kiwifruit consumed as fresh fruit. 
Science has made a significant contribution to the success of the New Zealand kiwifruit 
industry, particularly in developing excellent breeding programmes and technologies for 
optimal plant growth, orchard management, fruit handling and storage, and transport to the 
global market, to ensure high quality premium fruit reach the consumer.  

 

Fig. 1. Fruit of the Actinidia genus showing variation in flesh colour, size and shape 

Kiwifruit have a reputation for being a highly nutritious food. A typical commercial A. 
deliciosa ‘Hayward’ kiwifruit contains about 85 mg/100 g fresh weight of vitamin C, which is 
50% more than an orange, or 10 times that of an apple (A. R. Ferguson & Ferguson, 2003). 
The fruit of some Actinidia species, such as A. latifolia, A. eriantha and A. kolomikta, have in 
excess of 1000 mg of vitamin C per 100 g fresh weight (A. R. Ferguson, 1990; A. R. Ferguson 
& MacRae, 1992). Kiwifruit are also an excellent source of potassium, folate and vitamin E 
(Ferguson & Ferguson, 2003), and are high amongst fruit for their antioxidant capacity (H. 
Wang et al., 1996).  

2.1 Breeding and commercial cultivars 

The extensive Actinidia germplasm resources, with tremendous genetic and phenotypic 

diversity at both the inter- and intra-specific levels, offer kiwifruit breeders infinite 

opportunities for developing new products. Since its development in the 1920s, A. deliciosa 

‘Hayward’ has continued to perform extraordinarily well on the global market in terms of 

production and sales; it remains the dominant commercial kiwifruit cultivar. Advances in 

Actinidia breeding have seen the appearance of a number of new commercial kiwifruit 

varieties. In 1999 an A. chinensis cultivar named ‘Hort16A’, developed in New Zealand by 

HortResearch (now Plant & Food Research), entered the international market, with fruit sold 

under the name of ZESPRI® GOLD Kiwifruit, reflecting the distinctive golden-yellow fruit 

flesh. ‘Hort16A’ fruit are sweet tasting and the vine is more subtropical than ‘Hayward’. 

Subsequently, a range of new cultivars were commercialised in China and Japan, some of 

which have become significant internationally. Jintao®, a yellow-fleshed cultivar selected in 
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Wuhan, China (H.W. Huang et al., 2002b), is now widely planted in Italy (Ferguson & 

Huang, 2007) and more recently, the A. chinensis cultivar ‘Hongyang’ selected in China, 

and with a distinctive yellow-fleshed fruit with brilliant red around the central core, is 

widely cultivated for the export market, particularly Japan (M. Wang et al., 2003). Most 

cultivars to date have been selected from A. chinensis and A. deliciosa; however, A. arguta 

are now commercially cultivated in USA, Chile and New Zealand (Ferguson & Huang, 

2007). The fruit of A. arguta are small, smooth-skinned, with a rich and sweet flavour, and 

can be eaten whole (Williams et al., 2003). Internationally, kiwifruit breeding programmes 

are directed primarily at producing varieties mainly from A. deliciosa and A. chinensis, 

with large fruit size, good flavour, novel flesh colour, variations in harvest period, 

improved yield and growth habit, hermaphroditism, tolerance to adverse conditions and 

resistance to disease (A. R. Ferguson et al., 1996). Although kiwifruit cultivars currently 

on the commercial market have been developed using traditional breeding techniques 

(MacRae, 2007), the expansion of genetic, physiological and biochemical knowledge and 

the application of biotechnology tools are being used increasingly to assist breeders in the 

development of novel cultivars.  

3. Tissue culture and crop improvement 

Although the genetic diversity of Actinidia provides tremendous potential for cultivar 

improvement, there are features (including the vigorous nature of climbing vines, the 3- to 

5-year juvenile period, the dioecious nature and the reticulate polyploidy structure) that 

make Actinidia less amenable to achieving certain breeding goals, compared with many 

other agronomic crops. Plant tissue culture, the in vitro manipulation of plant cells, tissues 

and organs, is an important technique for plant biotechnology, and a number of plant tissue 

culture techniques have been employed to overcome some of the limitations that Actinidia 

presents to classical breeding.  

3.1 Multiplications  

Plant tissue culture for kiwifruit propagation was first reported by Harada (1975), followed 

by numerous reports using a range of explant types and genotypes (Gui, 1979; M. Kim et al., 

2007; Kumar & Sharma, 2002; Q.L. Lin et al., 1994; Monette, 1986). Murashige & Skoog (MS) 

basal salts are the most widely used media for shoot regeneration and callus formation. 

However, other media have been used successfully, including Gamborg B5 medium 

(Barbieri & Morini, 1987) and N6 medium (Q.L. Lin et al., 1994).  

Multiplication protocols essentially follow three steps: (1) surface sterilization of explants 
with 0.5–1.5% sodium hypochlorite; (2) shoot multiplication from explants (e.g. buds, nodal 
sections or young leaves) on MS medium, supplemented with 2–3% sucrose, 0.1–1.0 mg/l 
zeatin and 0.01–0.1 mg/l naphthalene acetic acid (NAA), solidified with 0.7% agar, at pH 
5.8; and (3) rooting on half strength MS medium containing 0.5–1.0 mg/l indole-3-butyric 
acid (IBA). Generally, cultures are incubated at 24±2ºC under a 16 h photoperiod (20–30 
µmol/m2/s of light intensity applied). Shoot proliferation rates vary depending upon 
species, cultivar, explant type, plant growth regulator combinations and culture conditions. 
Standardi & Catalano (1984) achieved a multiplication rate of 5.3 shoots per bud explant 
using a 30-day subculture period, and 90% of shoots rooted after three weeks, developing 
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into 150–200 mm high plantlets, with 6–10 leaves within 60 days. A multiplication rate of 
2.61 at seven weeks was achieved using 800 µm or 1200 µm transversal micro-cross section 
(MCS) of A. deliciosa ‘Hayward’ explants, cultured on ½ MS medium supplemented with 3% 
(w/v) sucrose, 4.5 x 10-3 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.6 x 10-1 µM zeatin 
in 0.8% agar (w/v), pH 5.8 (Kim et al., 2007).  

3.2 Protoplast culture and somatic hybridization 

As dioecy and polyploidy of Actinidia can often restrict breeding possibilities, somatic 

hybridization provides an approach to combine different genetic backgrounds of the same 

gender or to overcome inter-specific incompatibility, to produce valuable material with 

desirable traits from two species. Somatic hybridization is generally achieved through 

protoplast fusion, and methods of protoplast isolation from callus, suspension cultures, leaf 

mesophyll and cotyledons of various Actinidia genotypes and species have been developed. 

Tsai (1988) isolated protoplasts from calli derived from A. deliciosa leaves and stems and 

used TCCM medium with 0.23 µM 2,4-D, 0.44 µM 6-benzylaminopurine (BAP), 2% coconut 

milk, 10 g/l sucrose, 1 g/l glucose, 0.3 M mannitol and 0.1 M sorbitol, for preconditioning. 

Enzymatic degradation of cell walls was achieved in 2% Cellulase Onozuka R-10, 0.5% 

Macerozyme R-10, 0.5 M mannitol and 3 mM MES. A. eriantha protoplasts were isolated 

from newly growing leaves of in vitro culture seedlings, by preconditioning in MS liquid 

(without NH4NO3), supplemented with 1.0 mg/l 2,4-D and 0.4 M glucose and isolated using 

1% Cellulase R-10, 0.5% Macerozyme R-10, 0.05% Pectolyase Y-23 and 3 mM MES (Y.J. 

Zhang et al., 1998). Plating efficiency after 3 weeks of culture was 19.4%, and calli 

subsequently recovered and regenerated shoots when cultured on MS media containing 2.28 

µM zeatin and 0.57 µM indole-3-acetic acid (IAA).  

Xiao & Han (1997) reported successful protoplast fusion of A. chinensis and A. deliciosa, 

demonstrating the potential of using this technique to aid breeding programmes. Isolated 

protoplasts from cotyledon-derived calli for A. chinensis (2n = 2x = 58) and A. deliciosa (2n = 

6x = 174) were fused, using a PEG (polyethylene glycol) method and plantlets were 

regenerated from the fused calli. Xiao et al. (2004), in an attempt to introduce the chilling 

tolerance characteristics of A. kolomikta into A. chinensis, fused protoplasts isolated from 

cotyledon-derived calli of A. chinensis (2n = 2x = 58) and the mesophyll cells of A. kolomikta 

(2n = 2x = 58). A number of techniques were employed to confirm that the regenerated 

plantlets were an inter-specific somatic hybrid (2n = 4x = 116) and assessment of the chilling 

tolerance of in vitro leaves suggested that the somatic hybrid was more similar to A. 

kolomikta, with a higher capacity of cold resistance than A. chinensis.  

3.3 Other culture techniques 

Embryo culture techniques, for embryo rescue were developed to recover hybrids from 
inter-specific crosses in Actinidia. From an A. chinensis (2x) × A. melanandra (4x) cross, 
embryo rescue was used successfully to transfer hybrid embryos to in vitro culture at an 
early stage of their development (Mu et al., 1990). Nutrient and hormone requirements were 
dependent on the stage of embryo development and the endosperm, and nursing tissue was 
beneficial when globular embryos were cultured. Embryo size and their genetic background 
are major factors in determining the success of the procedure (Harvey et al., 1995; Kin et al., 
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1990). Hirsch et al. (2001) carried out inter-specific hybridizations of different Actinidia 
species and ploidy races, using embryo rescue to obtain hybrid plantlets of A. kolomikta X A. 
chinensis, A. polygama X A. valvata, A. arguta X A. polygama and A. kolomikta X A. deliciosa. 
When optimal media were used, the immature embryos that reached the torpedo stage 
could be rescued. A series of culture media were developed, which performed as the hybrid 
embryo’s deficient endosperm to ensure embryo survival at the globular and heart stages. 
Ovule culture has been used also to obtain hybrid plantlets from the inter-specific cross of A. 
chinensis X A. kolomikta (X. Chen et al., 2006).  

Endosperm culture is another approach to generating Actinidia inter-specific hybrids. 
Endosperms from F1 and F2 seeds from three inter-specific hybrids (A. chinensis X A. 
melanandra; A. arguta X A. melanandra; and an open pollinated A. arguta X A. deliciosa) were 
induced to form calli, from which plants were recovered by induction of organogenesis or 
embryogenesis. Media for callus induction and differentiation varied with genotype, and 
chromosome counts showed evidence of extensive mixoploidy in all hybrids (Mu et al., 1990).  

Recently, in vitro chromosome doubling using colchicine treatment was reported (J. Wu et 

al., 2009; 2011). Petiole segments of five diploid A. chinensis genotypes, including ‘Hort16A’, 

were cultured on half-strength MT basal salt medium, supplemented with 3.0 mg/l BAP, 0.4 

mg/l zeatin and 0.5 mg/l IBA for four weeks. Resulting microshoots were treated with 0.05–

0.1% colchicine, and over one-third of the regenerated shoots were confirmed as tetraploid 

by flow cytometry, with orchard-grown autotetraploid ‘Hort16A’ plants showing polyploid 

characteristics such as thicker leaves and flatter flowers, and some plants producing fruit 

almost double the weight of the original diploid ‘Hort16A’ fruit (J. Wu et al., 2009).  

Cryopreservation is an excellent means of preserving germplasm for long-term storage, and 

various techniques and methods have been investigated for Actinidia germplasm (Bachiri et al., 

2001; Hakozaki et al., 1996; Jian & Sun, 1989; Y. Wu et al., 2001; X. Xu et al., 2006; Zhai et al., 

2003). Shoot tips from in vitro culture of a dwarf A. chinensis genotype were pre-cultured in MS 

medium containing 5% dimethyl sulfoxide (DMSO) and 5% sucrose for four days, followed by 

dehydration with PVP2 solution (30% glycerol, 15% DMSO, 15% PEG and 13.7% sucrose) for 

40 min at 0ºC, and then transferred to liquid nitrogen for storage, with a survival rate of 56.7% 

upon defrosting shoots (X. Xu et al., 2006). Encapsulation-dehydration protocols used for the 

preservation of in vitro cultured hybrids of A. arguta X A. deliciosa, A. chinensis and A. eriantha 

gave even higher survival rates, of 85–95% (Bachiri et al., 2001; Y. Wu et al., 2001).  

4. Transformation systems 

Since the first report of a transgenic Actinidia plant two decades ago (Matsuta et al., 1990), six 
Actinidia species having been transformed, almost exclusively by Agrobacterium-mediated 
transformation. Initially, the development of Actinidia transformation focused on the 
integration into the plant genome of reporter and selectable marker genes (Fraser et al., 1995; 
Janssen & Gardner, 1993; Uematsu et al., 1991), but transformation of various heterologous 
genes has followed. These include: A. rhizogenes rol genes (Rugini et al., 1991); a soybean ┚-1,3 
endoglucanase cDNA (Nakamura et al., 1999); a rice OSH1 homeobox gene (Kusaba et al., 
1999), and an Arabidopsis Na+/H+ antiporter gene (Tian et al., 2011), in attempts to improve 
kiwifruit disease resistance or drought tolerance; a synthetic gene encoding human epidermal 
growth factor (Kobayashi et al., 1996); and a grape stilbene synthase (Kobayashi et al., 2000), in 
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attempts to accumulate bioactive compounds; citrus geranylgeranyl diphosphate synthase, 
phytoene desaturase, ┚-carotene desaturase, ┚-carotene hydroxylase and phytoene synthase, 
to modify the lutein or ┚-carotene content of kiwifruit (MiSun Kim et al., 2010) and the A. 
tumefaciens isopentyl transferase (ipt) gene, to alter vine architecture (Honda et al., 2011). 

4.1 Agrobacterium-mediated transformation 

Agrobacterium-mediated transformation of Actinidia is a component of the Plant & Food 
Research functional genomics platform and has been used to introduce over 100 Actinidia 
genes into various Actinidia species. In general, Plant & Food Research Actinidia 
transformation protocols are as follows: Orchard-grown winter mature and dormant canes 
are maintained at 4°C for 4–6 weeks. To initiate bud break, one-third of a 40 cm cane (with 
>3 nodes) is immersed in water, and maintained at room temperature under normal light 
conditions. After four weeks, newly initiated shoots are removed from the canes and shoot 
sections with a single node (1–2 cm) are soaked in 70% ethanol for 30 s, then surface 
sterilized with 25% (v/v) commercial bleach (5% active chlorine). After a sterile water rinse, 

the node sections are cultured on MS media, supplemented with 0.1 mg/l IBA at 24°C ± 2, 
16 h photoperiod, with cool white fluorescent light (40 µmol/m2/s). Young leaves harvested 
from in vitro grown shoots are cut into 2 x 5 mm leaf strips. Agrobacterium tumefaciens 
EHA105, harbouring a pART27-derived binary vector (Gleave, 1992), is cultured in 50 ml 
MGL medium (Tingay et al., 1997) containing 100 mg/l spectomycin dihydrochloride, for 

16–20 h at 28°C, with shaking at 250 rpm. At an OD600 nm =1.0-1.5, the bacterial cells are 
pelleted by centrifugation (5000 g for 10 min) and re-suspended in 10 ml MS media, 

supplemented 100 µM acetosyringone. Leaf strips are immersed in the A. tumefaciens 
suspension culture for 10 min, blotted dry with sterile filter paper and transferred onto co-
cultivation media (MS supplemented with 3.0 mg/l zeatin, 0.1 mg/l naphthaleneacetic acid 

(NAA) and 50 µM of AS). After two days of co-cultivation, the leaf strips are transferred to 
regeneration and selection medium (MS supplemented with 3.0 mg/l zeatin, 0.1 mg/l NAA, 
150 mg/l kanamycin sulphate, 300 mg/l timentin, 30 g/l sucrose and 2.5 g/l Phytagel). The 
leaf strips produce calli along the cut edges at about four weeks and excised calli are 
transplanted onto fresh regeneration and selection media. Adventitious buds regenerated 
from the calli are excised individually and transferred to shoot elongation medium (MS 
supplemented with 0.1 mg/l IBA, 100 mg/l kanamycin sulphate and 300 mg/l timentin). 
When shoots reach 1–2 cm in height, they are transplanted onto rooting medium (½ MS 
basal salts and vitamins supplemented with 1.0 mg/l IBA, 150 mg/l timentin, 50 mg/l 
kanamycin sulphate, 20 g/l sucrose and 7 g/l agar). Rooted transgenic plants are potted in a 
½-litre pot and placed in a containment glasshouse facility. The utility of a plant 
transformation system is very much dependent upon its efficiency, and several factors that 
affect Actinidia transformation efficiency are discussed below. 

4.1.1 Agrobacterium tumefaciens strains 

A. tumefaciens strains are defined by their chromosomal background and resident Ti 
plasmid, and exhibit differences in their capacity to transfer T-DNA to various plant species 
(Godwin et al., 1991). A. tumefaciens LBA4404, A281, C58, EHA101 and EHA105 are the 
strains commonly used in Actinidia transformation. Fraser et al. (1995) reported no marked 
difference in efficiency of A. chinensis transformation between strains A281 (a virulent L,L-
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succinamopine strain) and C58 (a virulent strain carrying the nopaline Ti plasmid pTiC58), 
which both harbour the binary vector pKIWI105. However, Janssen and Gardner (1993) 
showed A281 produced slightly higher rates of gene transfer than C58 and EHA101 in A. 
deliciosa transformation, and noted that because of source material variability, strain 
comparisons need to be repeated several times. Strain A281 harbours a tumour-inducing 
plasmid pTiBo542 (Hood et al., 1986) and an extra copy of the transcription activator of 
virulence (vir) genes, which may account for the higher transformation efficiency. 

Comparison of A. chinensis callus formation using A. tumefaciens A281, GV3101, EHA105 

and LBA4404, all harbouring the pART27-10 binary vector, revealed that 27% of leaf strips 

produced calli using A281, compared with 22.2%, 18.1% or 13.9% when using EHA105, 

LBA4404 and GV3101, respectively (T. Wang et al., 2007). Both A281 and its non-

oncogenic derivative, EHA105, have the Ti-plasmid pTiBo542 in a C58 chromosomal 

background (Hood et al., 1993; 1986), and have been shown to be superior in gene transfer 

in other plant species, e.g. apple (Bondt et al., 1994). However, high rates of callus 

formation do not necessarily mean high efficiency of transgenic plant production, and 

Wang et al. (2007) also found differences in shoot regeneration related to whether co-

cultivation had been with strains harbouring an oncogenic Ti plasmid (A281) or a non-

oncogenic Ti plasmid (EHA105). Transformants derived from the use of the disarmed 

strains EHA105, LBA4404 and GV3101 had callus and regeneration patterns similar to 

those of control explants, not co-cultivated with A. tumefaciens, whereas the use of A281 

tended to result in large calli and take about two weeks longer to initiate adventitious 

buds. Less than 20% of the calli derived from A281 co-cultivation had subsequent shoot 

and root development, whereas over 70% of calli derived from EHA105, GV3101 and 

LBA4404 co-cultivation regenerated shoots and roots. Over-proliferation of calli derived 

from A281 co-cultivation was even more severe in A. eriantha and no regenerated shoots 

were obtained (T. Wang et al., 2006). It is likely that high callus formation and poor 

adventitious bud and root initiation from the A281 co-cultivated tissue is related to the co-

integration into plant genome of the oncogenes.  

4.1.2 Species  

Most Actinidia transformation systems have been developed for A. chinensis and A. deliciosa, 
though transformation of A. arguta, A. eriantha, A. kolomikta and A. latifolia has been reported. 
All Actinidia genotypes tested have been found to be responsive to a range of tissue culture 
conditions, and relatively amenable to regeneration protocols (Fraser et al., 1995). Compared 
with other woody species, e.g. apple (James et al., 1989), relatively high A. deliciosa 
transformation and regeneration rates have been achieved (Uematsu et al., 1991), and A. 
chinensis transformation efficiencies of up to 27.8% have been reported (T. Wang et al., 2007). 
However, A. arguta transformation was less successful when applying the transformation 
protocols developed for A. chinensis or A. eriantha, with co-cultivated explants suffering 
considerable browning and necrosis during callus induction and shoot regeneration stages. 
Minimizing the extent of explant browning and necrosis was achieved through reducing the 
basal salt concentration to ½ MS medium, combined with lower light intensity (3.4 
µmol/m2/s) during the callus induction and regeneration stages. This resulted in 
adventitious shoot development and an efficient and reproducible Agrobacterium-mediated 
transformation system for A. arguta (Han et al., 2010).  
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From the production of over 1000 transgenic Actinidia plants at Plant & Food Research, the 

salient features in comparing the transformation of four species are three-fold. A. arguta 

displays a relatively, low transformation efficiency of 1–10% compared with the 5–20% for 

A. deliciosa and A. eriantha and 5–30% for A. chinensis; the induction of A. eriantha callus is 

relatively high compared with other species; but the regeneration of A. eriantha kanamycin-

resistant shoots takes much longer than with the other three species.  

4.1.3 Co-cultivation conditions  

Agrobacterium-mediated DNA delivery to plant cells is initiated through a series of chemical 

signals exchanged between the host and pathogen, which may activate vir genes to signal 

the bacterium to enter virulence mode. Phenolics, sugars, temperature and pH can affect 

Agrobacterium virulence and presumably its capacity to transform plant cells (Alt-Moerbe et 

al., 1988). However, the degree to which these factors influence transformation efficiency 

varies with species and reports. Acetosyringone (AS), one of the phenolic compounds 

released by wounded plant tissue, and a signal molecule to ensure effective vir-induction 

and T-DNA transfer (Stachel et al., 1985; 1986), has been widely used to increase 

transformation efficiency in various crops (James et al., 1993; H. Wu et al., 2003). Janssen and 

Gardner (1993) found the addition of 20 µM AS to the A. tumefaciens growth and co-

cultivation medium increased DNA transfer approximately 2-fold in A. deliciosa leaf pieces, 

whereas highest levels of A. latifolia transformation were achieved using 200 µM in the co-

cultivation medium (Gao et al., 2007). Wang et al. (2006; 2007) used 100 µM AS in bacterial 

cultures for co-cultivation to improve the efficiency of A. chinensis and A. eriantha 

transformation. The inclusion of a suspension cell feeder layer during co-cultivation, 

separated from the explants by a layer of filter paper, has been used to improve Actinidia 

transformation frequency (Janssen & Gardner, 1993). In addition, as mentioned earlier, light 

intensity plays a role in the efficiency of A. arguta transformation (Han et al., 2010). 

4.1.4 Plant regeneration  

Selecting plant cell types or explants that have the ability to differentiate into whole plants is 

an essential step for the successful production of transgenic plants. Fortunately, A. deliciosa 

and A. chinensis callus induction and adventitious bud initiation are relatively 

straightforward after establishment in tissue culture if appropriate explant material is used. 

Young leaves, petioles and stem segments have been used successfully for Actinidia 

transformation, and, as with most other crops, the younger the explants, the easier 

regeneration will be. However, A. arguta transformation is one exception to this, as necrosis 

or browning occurs after A. tumefaciens co-cultivation if the explants used are too young 

(Han et al., 2010).  

To maintain Actinidia explants in active and amenable condition for co-cultivation with A. 

tumefaciens, it is essential to subculture in vitro shoots at 3- to 4-week intervals (Fraser et al., 

1995; Wang et al., 2006). MS basal medium has been used successfully for callus induction as 

well as regeneration in Actinidia (Kumar and Sharma 2002). However, optimum application 

of auxins and cytokinins, and combinations thereof, vary depending on the condition of the 

explant material used. Fraser et al. (1995) found that for A. chinensis regeneration, 

thidiazuron (TDZ) and kinetin, (0.1 and 10 mg/l) were clearly inferior to other cytokinins. 
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Differences between NAA and IAA (indole-3-acetic acid) were insignificant. The most 

satisfactory combination of growth regulator additives was found to be 5 mg/l zeatin 

combined with 0.1 mg/l of NAA, or 1 mg/l zeatin and 0.5 mg/l BAP combined with 0.1 mg/l 

of NAA. Zeatin was clearly superior to BAP, when either was used as the sole cytokinin, but a 

combination of the two cytokinins gave the best overall result, in terms of the numbers of 

normal-looking shoots produced. Wang et al. (2006) made similar observations with A. eriantha 

where the highest shoot regeneration rates were obtained using medium containing a 

combination of 2 mg/l zeatin and 3 mg/l BAP. Uematsu et al. (1991) reported that the 

regeneration frequency varied with the basal medium used, and B5 basal medium containing 

zeatin was most suitable for obtaining transformed A. deliciosa shoots. Using A. deliciosa MCS 

explants for transformation, Kim et al. (2010) used half-strength MS medium containing 0.001 

mg/l 2,4-D and 0.1 gm/l zeatin, for callus induction and shoot regeneration. Calli formed on 

the surface of MCS segments after two weeks of culturing on selection medium and shoots 

were regenerated after four weeks. The transformation efficiencies ranged from 2.9 to 22.1% 

depending on the gene being transformed into the cells. The high degree of callus formation 

and shoot regeneration of Actinidia material from tissue culture makes it possible to obtain 

transformed shoots at a reasonably high frequency, although it is desirable to minimize callus 

development and maximize shoot development, to minimize the occurrence of somaclonal 

variation during these processes. 

4.2 Particle bombardment 

As opposed to the biological Agrobacterium-mediated transformation process, particle 
bombardment is a purely physical method for DNA delivery, using DNA-coated 
microscopic metal particles accelerated towards a target tissue. Qiu et al. (2002) used particle 
bombardment of A. deliciosa suspension cells, with a CaMV 35S transcribed maize DHN1 
gene (induced in response to abiotic stress) fused to the green fluorescent protein (GFP) 
reporter gene. GFP expression was localized within the cell nucleus after 10 h and was 
visualized in the cytoplasm (mainly around the plasma membranes) in response to 
increased osmotic stress (Qiu et al., 2002). 

4.3 Other DNA transfer methods 

Although Agrobacterium- and particle bombardment-mediated DNA transfer are the most 
commonly used systems of gene transfer to plants, a polyethylene glycol (PEG)-mediated 
approach was frequently used in the early 1980s to deliver DNA into protoplasts. Oliveira et 
al. (1991) used the chloramphenicol acetyl transferase (CAT) gene as a reporter to optimize 
the conditions for PEG-mediated transfection of Actinidia protoplasts, finding that the 
greatest CAT activity was obtained using 30% PEG 4000 and submitting protoplasts to a 5-
min 45°C heat shock, prior to transfection. Using in vitro cultured A. deliciosa leaves, Raquel 
& Oliveira (1996) found protoplasts originating from the epidermis and leaf veins had cell 
division and regeneration ability, and displayed transient expression of a GUS gene 
introduced by PEG-mediated DNA transfer. Zhu et al. (2003) successfully transferred a GFP 
gene into A. arguta protoplasts by PEG-mediated transfer, with transient GFP expression 
detected in calli generated from the protoplasts. The physiological conditions of the 
protoplasts, the PEG concentration, and the time of heat stimulus are factors affecting the 
efficiency of DNA transfer using this approach. Because of the low yields of transformants 
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and the inability of many species to be regenerated from protoplasts into viable plants, 
direct DNA uptake methods of transformation are much less frequently adopted than 
Agrobacterium-mediated transformation. However, the successful regeneration of whole 
plants from A. chinensis, A. deliciosa and A. eriantha protoplasts has been published (see 
earlier). Future development of new commercial cultivars produced directly or indirectly 
via genetic manipulation may see a resurgence in direct DNA uptake methods and 
protoplast regeneration, as these approaches may be more amenable to some genetic 
manipulation technologies, such as Zinc finger nuclease targeted site-directed mutagenesis.  

5. Actinidia molecular biology  

Initial molecular studies of Actinidia concentrated on fruit tissue, with an emphasis on genes 

involved in ethylene biosynthesis, cell wall modification, and carbohydrate metabolism 

(Atkinson & MacRae, 2007 and references therein). The cloning and/or expression of 1-

aminocyclopropane-1 carboxylic acid (ACC) oxidase, S-adenosyl-L-methionine (SAM) 

synthase and ACC synthase identified some of the key genes involved in ethylene 

biosynthesis, a control point of fruit ripening. Molecular studies on genes encoding key 

enzymes in carbohydrate metabolism have included: polygalacturanase; xyloglucan 

endotransglycosylase/hydrolase; polygalacturonase inhibitor protein; sucrose phosphate 

synthase; and sucrose synthase. The most widely studied genes in these early forays into 

Actinidia molecular biology were those encoding the cysteine protease, actinidin, which can 

account for up to 50% of fruit soluble protein. Actinidin genes have been cloned, expressed 

in transgenic tobacco, the promoter sequenced, and studied in transgenic petunia.  

5.1 Expressed sequence tag (EST) databases 

A significant watershed in advancing Actinidia molecular biology was the generation of a 

database of 132,577 expressed sequence tags (EST), from a variety of Actinidia species, 

(Crowhurst et al., 2008). This provided a significant increase in the availability of Actinidia 

transcriptomic data, which prior to this publication were represented by 511 sequences in 

GenBank (dbEST Jan. 2008). This genetic resource, derived primarily from four species (A. 

chinensis, A. deliciosa, A. arguta and A. eriantha), included a range of tissues and 

developmental time points (Table 1). The average sequence length of these EST sequences 

was 503 bases. As expected, a high frequency of redundancy was observed within the 

Actinidia EST dataset and clustering at a 95% threshold, resulting in 23,788 sequences 

remaining as singletons and 18,070 tentative consensus (TC) sequences, a combined total of 

41,858 non-redundant clusters (NRs). Analysis revealed that 28,345 NRs had sufficient 

homology to Arabidopsis sequences (E>1.0e-10) to be assigned a functional classification. 

Many of the NRs with no Arabidopsis homolog did however, have homologs in other crops. 

Crowhurst et al. (2008) also reported more specific analysis of ESTs of key genes related to 

distinctive features of Actinidia including flavour and aroma, colour, health-beneficial 

compounds, allergens, and cell wall structure. 

Codon usage analysis revealed that Actinidia shared many similarities with other 
dicotyledonous plants, and although codon usage was similar among three Actinidia species, 
it was not identical. A higher GC ratio was seen in coding than in non-coding regions, and 
this was more marked in A. deliciosa and A. eriantha than in A. chinensis. A modest degree of 
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CpG suppression was also evident in the three Actinidia species, with an XCG/XGG ratio of 
0.68–0.71. Analysis of overlapping regions of 3,901 TCs identified 32,764 bi-allelic single 
nucleotide polymorphisms (SNPs), with one SNP every 417 bp, although some of the SNPs 
were probably the result of homeologous or paralogous sequences, rather than allelic 
variation. The allelic SNPs have potential for the development of molecular markers for use 
in genetic mapping, population genetics and linkage disequilibrium studies or for marker-
assisted selection. The inter-specific SNPs, identified in orthologous loci from different 
Actinidia species represent species–species variation and have utility in kiwifruit breeding 
using crosses between different species. Further analysis revealed that over 30% of the 
Actinidia EST NRs had at least one SSR, with dinucleotide repeats, predominantly in the 5’ 
untranslated region, being twice as frequent as trinucleotide repeats, which were more 
evenly distributed across the gene.  

Actinidia sp. 
Tissue type  

Bud Fruit Leaf Petal Root Cell Stem Total 

A. deliciosa 34,519 13,282  9,950    57,751 
A. chinensis 15,689 8,453 17,325 1,061  4,851  47,379 
A. eriantha  11,259  1,388    12,647 
A. arguta  5,421  1,836    7,257 
A. hemsleyana     5,101   5,101 
A. polygama    1,348    1,348 
A. setosa       1,020 1,020 
A. indochinensis    74    74 

Total 50,208 38,415 17,325 15,657 5,101 4,851 1,020 132,577 

Table 1. Numbers of ESTs derived from various Actinidia species and tissues 

5.2 An Actinidia microarray platform 

Characterizing a gene’s temporal and spatial expression is critical to understanding its 

function. Early Actinidia molecular studies characterized the expression of a limited number 

of genes, identified as being differentially expressed during a particular developmental 

phase (Ledger & Gardner, 1994) or members of a particular gene family (Langenkamper et 

al., 1998). The Actinidia EST database provided a resource for more global gene expression 

analysis, through the development of a 17,472-feature oligonucleotide microarray of 

Actinidia genes. This microarray represented genes from a variety of species: A. chinensis 

(51%); A. deliciosa (38%); A. eriantha (6%); A. arguta (3%); and other Actinidia species (2%).  

Walton et al. (2009) used the Actinidia microarray to examine gene expression in A. deliciosa 

meristems and buds in response to the dormancy-breaking hydrogen cyanamide (HC) 

chemical treatment, over two growing seasons. Although most of the genes that responded 

early (1–3 days) to HC treatment differed between seasons, there was a high degree of 

commonality between seasons of genes that showed the greatest change in expression six 

days post treatment, with 123 genes up-regulated and 35 genes down-regulated at day 6 in 

both seasons. Quantitative PCR (qPCR) of 35 selected genes validated the microarray data 

for 97% of up-regulated and 60% of down-regulated genes. Genes that changed in 

expression upon HC-treatment were classified into distinct profiles, including: i) genes that 

reached a peak in expression at 3 or 6 days post treatment, then returned to baseline levels 
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by day 15; ii) genes that reached a peak in expression at 3 or 6 days post treatment, followed 

by a second burst of transcription at 25–40 day post treatment, iii) genes that decreased in 

expression prior to meristematic activity or external bud growth. Putative function of these 

HC-responsive Actinidia genes, based on homology to other plant genes, indicated that 

many had been identified in other plant stress-related studies, including a number of genes 

that had shown similar responses in HC-treated grape, suggesting similar mechanisms in 

response to HC-treatment in these two crops.  

Actinidia species are a climacteric fruit, showing a dramatic increase in ethylene production 
and a high respiration rate during fruit ripening. Generally, kiwifruit are harvested firm, 
and then enter a period of softening, which is followed by the onset of autocatalytic ethylene 
production, when fruit soften to “eating ripe” firmness and develop their characteristic 
flavours and aromas. The final step of the ethylene biosynthetic pathway is the conversion 
of 1-aminocyclopropane-1 carboxylic acid (ACC) to ethylene by ACC oxidase. Atkinson et 
al. (2011) examined gene expression changes during the ripening process, using an ACC 
oxidase-silenced transgenic Actinidia line, the fruit of which produce no detectable 
climacteric ethylene, but could be induced to undergo softening, aroma and flavour 
development through the application of exogenous ethylene. Using the Actinidia microarray, 
expression of 401 genes changed significantly within 168 h of ethylene treatment, with 25 
genes showing a response at 4 h, 81 genes at 12 h, and 183 genes 24 h after application. 
These ethylene-responsive genes could be grouped into functional categories, including: 
metabolism; oxidative stress; photosynthesis; regulation; cell wall; hormone; starch; other; 
and unknown functions. The expression patterns indicated that the majority of 
photosynthesis- and starch-related genes were down-regulated by ethylene, whereas up- 
and down-regulation of genes in other functional groups were observed in response to 
ethylene. Validation by qPCR confirmed significant changes in gene expression of a number 
of genes involved in cell wall modification in response to ethylene, including a 
polygalacturonase, a pectin lyase, a pectin methylesterase and a xylan-degrading enzyme, as 
well as genes involved in fruit flavour, ethylene production and perception.  

The microarray platform has provided a useful tool for genome-wide gene expression, as is 
evident from the studies above. However, microarrays have a limited dynamic range, lack 
the sensitivity required to detect subtle changes in expression, and are essentially a ‘closed’ 
platform, limited to examining the expression of only those genes represented on the array. 
Second-generation sequencing (2ndGS) is becoming the methodology of choice for many 
genome-wide expression studies (L. Wang et al., 2010), as this is an ‘open’ platform, capable 
of detecting any of the genes that are expressed within a particular tissue, organ or cell type 
at the time of RNA sampling. Analysis of Actinidia transcription has been initiated using 
Illumina 2ndGS, with mRNA-sequence data generated from a range of A. chinensis tissues 
and stages of fruit development (A.P. Gleave & Z. Luo, unpublished). 

5.3 Functional genomics in Actinidia and heterologous hosts 

Prior to the initiation of generating the Actinidia EST resource in 2000, reports of functional 
genomics through expression of Actinidia genes in either a heterologous or an Actinidia host 
were somewhat limited (Guo et al., 1999; Lay et al., 1996; Paul et al., 1995; Schroder et al., 
1998; Z.C. Xu et al., 1998). The EST resource has facilitated a significant increase in Actinidia 
functional genomics, through expression of genes in various microbial and plant hosts.  
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Actinidia genes encoding: a pectin methylesterase inhibitor, with applications in fruit juice 
production (Hao et al., 2008); Bet v 1 and profilin-homologous allergens (Bublin et al., 2010; 
Oberhuber et al., 2008); an L-galactose-1-phosphate phosphatase and l-galactose 
guanyltransferase, (Laing et al., 2004; 2007) and L-galactose dehyrogenase (Shang et al., 
2009), involved in vitamin C production; a lycopene beta-cyclase, involved in carotenoid 
production (Ampomah-Dwamena et al., 2009); three xyloglucan endotransglucosylase/ 
hydrolases involved in cell wall structure (Atkinson et al., 2009); two terpene synthases, 
involved in the production of floral sesquiterpenes (Nieuwenhuizen et al., 2009); and three 
glycosyltransferases of the anthocyanin pathway (Montefiori et al., 2011), have all been 
successfully expressed in Escherichia coli, with the recombinant proteins being used to study 
protein/enzyme function. The yeast species, Pichia pastoris or Saccharomyces cerevisiae, have 
also been used to express recombinant Actinidia proteins, a pectin methylesterase inhibitor 
(Mei et al., 2007), and three alcohol acyltransferases, involved in the production of volatile 
esters (Gunther et al., 2011) and actinidin, which was found to have a negative effect on S. 
cervesiae growth (Yuwono, 2004). 

In planta functional genomics of Actinidia genes has been used to study genes involved in a 
variety of processes. Paul et al. (1995) expressed A. deliciosa preproactinidin in transgenic 
Nicotiana tabacum, showing that the protein was correctly processed and detrimental to plant 
growth when it accumulated to high levels. Yin et al. (2010) showed that expression of the A. 
deliciosa ETHYLENE INSENSITIVE3-like EIL2 and EIL3 transcription factor cDNAs in 
Arabidopsis thaliana stimulated ethylene production, and up-regulation of host ACC synthase 
and ACC oxidase gene family members, as well as a number of xyloglucan 
endotransglycoylase (XET) genes. Yin et al. (2010) also used the N. benthamiana transient 
expression system, described by Hellens et al. (2005), to demonstrate transactivation of A. 
deliciosa ripening-related ACO1 and XET5 promoters by EIL2 and EIL3, confirming their role 
in the signal transduction pathway connecting ethylene signalling and ripening processes.  

To understand the role of Actinidia lipoxygenase (LOX) genes, which in other plants are 
involved in a range of processes, including senescence and fruit ripening, B. Zhang et al. 
(2006) used transient expression of A. deliciosa LOX1 and LOX2 genes in N. benthamiana. 
qPCR had shown that LOX1 increased in expression in ethylene-treated fruit, in contrast to 
LOX2 expression, which was repressed by ethylene. The transient expression studies 
revealed that LOX1 significantly accelerated chlorophyll degradation and chlorophyll 
fluorescence, whereas LOX2 had no apparent effect on senescence. 

Varkonyi-Gasic et al. (2011) expressed cDNAs of nine Actinidia MADS-box genes in A. 

thaliana, to determine their role in floral meristem and floral organ fate. Resulting transgenic 

plants showed a variety of phenotypes. FUL-like expression promoted floral transition in 

both long day (LD) and short day (SD) conditions, with a terminal flower phenotype evident 

in plants showing high levels of transgene expression. Expression of FUL promoted 

flowering, but less efficiently than FUL-like, and the floral phenotype was as wild-type. SEP4 

expression also promoted floral transition, with many plants showing small and curled 

leaves, and a reversion to vegetative growth and aerial rosettes during SD conditions. SEP3 

expression had a mild effect on floral transition under LD conditions and PI and AP3-1 

expression showed no effect. A. thaliana expressing the kiwifruit AG flowered earlier than 

the wild-type under SD conditions, and showed reduced height, curled leaves and a loss of 

inflorescence indeterminancy. Coupled with information on the patterns of expression of 
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these genes in Actinidia vegetative tissue and both normal and aberrant floral organs, these 

studies gave considerable insights into the role of these MADS-box transcription factors in 

the specification of Actinidia floral organs, phase change and flowering time. 

Vitamin C is an essential metabolite for plants and animals, and the inability of some 

animals, including humans, to synthesize vitamin C means that they are dependent upon 

a dietary source. The L-galactose pathway is a significant route for vitamin C production 

in plants, although the enzyme responsible for the conversion of GDP-L-galactose to L-

galactose-1-phosphate remained elusive until Laing et al. (2007) identified homologous 

genes from Arabidopsis and A. chinensis encoding a GDP-L-galactose guanyltransferase 

(GGT) capable of carrying out this function. Transient expression of the A. chinensis GGT 

gene in N. benthamiana leaves showed a 3-fold increase in vitamin C levels, and coupled 

with the biochemical studies, confirmed GGT’s role in the L-galactose pathway. Further 

studies of Actinidia vitamin C production via the L-galactose pathway also made use of in 

planta functional genomics. As qPCR results had indicated GGT and GDP-mannose-3’,5’-

epimerase (GME) were key enzymes involved in the high vitamin C content of A. eriantha, 

Bulley et al. (2009) expressed the A. eriantha GGT in Arabidopsis, identifying plants with 

over four times the amount of vitamin C in leaves. In N. benthamiana leaves, transient GGT 

expression increased vitamin C levels 4.2 fold, a 20% increase resulted from transient 

GME expression, and simultaneous expression of GGT and GME gave an average increase 

of 8.6-fold in vitamin C.  

Biochemical and gene expression studies on the production ┚-linalool, an acyclic 

monoterpene alcohol, were supplemented by transient expression of putative (S)-linalool 

synthase cDNAs from A. eriantha and A. polygama, to further understand their role in floral 

aroma (X.Y. Chen et al., 2010). The production of large amounts of linalool in N. benthamiana 

leaves transiently expressing these cDNAs confirmed their function as linalool synthases. A 

biochemical study of A. deliciosa ‘Hayward’ and its male pollinator ‘Chieftain’ identified the 

sesquiterpene (E,E)-┙-farnesene as the major terpene floral volatile, with germacrene D, (E)-

┚-ocimene, (Z,E)-┙-farnesene, also present (Nieuwenhuizen et al., 2009). Transient 

expression in N. benthamiana leaves of two A. deliciosa cDNAs encoding putative terpene 

synthases (AFS1 and GDS1), followed by dynamic headspace sampling and GC-MS 

analyses, showed that expression of AFS1 resulted in the production of large quantities of 

(E,E)-┙-farnesene and smaller quantities of (Z,E)-┙-farnesene and (E)-┚-ocimene. GDS1 

expression resulted in production of germacrene D.  

Glycosyltransferases are responsible for much of the diversity of anthocyanins, a subgroup 
of the flavonoids that give much of the red, purple and blue pigmentation to plants. 
Montefiori et al. (2011) characterized two glycosyltransferases (F3GT1 and F3GGT1) from a 
red-fleshed A. chinensis. Recombinant F3GT1 produced in E. coli catalyzed the addition of 
galactose to the 3-OH position in cyanidin, whilst recombinant F3GGT1 catalyzed the 
addition of UDP-xylose to cyanadin-3-galactosidase. Confirmation of the roles of these 
genes in the red pigmentation of fruit flesh was demonstrated firstly through establishing 
that transient expression of Arabidopsis PAP1 and TT8 transcription factors in A. eriantha 
fruit resulted in red pigmentation, localized mainly around the fruit core, and with the 
major accumulated anthocyanin being cyanidin 3-O-xylo-galactoside. Concomitant transient 
expression of the two Arabidopsis genes with an F3GT1 RNAi construct resulted in little or 
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no visible red colour in A. eriantha fruit, indicating the F3GT1 gene’s critical role in 
anthocyanin biosynthesis. Concomitant transient expression of PAP1 and TT8 with an 
F3GGT1 RNAi construct greatly reduced the amount of the major anthocyanin, cyanidin 3-
O-xylo-galactoside.  

Despite the availability of Actinidia transformation systems, to date there has been little 
published research on functional genomics of Actinidia genes through over-expression or 
silencing of genes in Actinidia. Such research is ongoing at Plant & Food Research and 
elsewhere, and the lack of published information is probably because many of these 
studies are related to fruit characteristics, and the time from initiating transformation to 
fruiting is at least three years. Of the few reports that have been published, one using 
gene silencing of ACC oxidase (Atkinson et al., 2011) has been discussed earlier in this 
chapter. Other studies have involved the over-expression of an Actinidia Lfy transcription 
factor cDNA, in an attempt to enhance early fruit set (Guo et al., 1999) and the silencing of 
ACC synthetase or ACC oxidase genes in A. deliciosa and A. chinensis (Li et al., 2003). In 
both these studies, only the production of transgenic plants was reported, with no 
analysis of their phenotype. Ledger et al. (2010), however, describe the use of transgenic 
A. chinensis plants to examine the role of carotenoid cleavage dioxgenase (CCD) genes in 
branching and vine architecture. The involvement of CCD genes, or their orthologs, in 
branching has been shown through the characterization of branching mutants in a range 
of annual plant species. Ledger et al. (2010) showed that expression of A. chinensis CCD7 
and CCD8 cDNAs was able to complement their corresponding Arabidopsis branching 
mutants max3 and max4. In A. chinensis plants transformed with a CCD8 gene silencing 
construct, a number of plants showed greatly reduced CCD8 expression levels at eight 
and 13 months of growth in the glasshouse. The CCD8-silenced plants showed 
significantly more primary and higher order branches, and a higher incidence of short 
branches, compared with control plants, but no difference in internode length on the main 
stem. Another finding was that leaves on some CCD8-silenced plants were slower to 
senesce and had a greater chlorophyll content than leaves of control plants. This study 
confirmed the role of CCD8 in branching, and identified that CCD8 plays a role in 
senescence in a deciduous woody perennial plant.  

The studies described above give some valuable insights into the enzymatic or structural 

function of proteins encoded by these Actinidia genes and the roles they may play in the plant’s 

phenotypic characteristics. However, in assigning a definitive function to a gene, it is essential 

also to understand the temporal and spatial regulation of its expression. In many of the studies 

described above, microarray and/or qPCR analysis were used to determine the transcriptional 

level of these genes in various tissues and in some cases at different developmental phases of 

the plant. Another approach to gain insights into the regulation of a gene’s expression has 

been the analysis of promoter-reporter gene fusions in transgenic systems. Lin et al. (1993) 

fused an upstream region of an actinidin coding region to the ┚-glucuronidase (GUS) coding 

region and observed GUS expression during the later stages of transgenic petunia seed pod 

development, resembling the induction of actinidin in Actinidia fruit tissues. Similar promoter-

GUS fusions were used to analyse an A. chinensis polygalacturonase promoter, and at the 

breaker stage of transgenic tomato fruit development, GUS expression was observed 

throughout the inner and outer pericarp, the columella and seeds, and became restricted to the 

inner pericarp and seeds at the later stages of ripening (Z.Y. Wang et al., 2000).  
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General Process 
Metabolic pathway, process or 

gene classification 

No. of 
over-

expression 

No. of 
silencing 
constructs 

Flavour & Aroma 
Terpenoid Biosynthesis 9 3 
Ester Biosynthesis 12 1 
Cytochrome P450 22 3 

Sugars & Acids 
Sugar metabolism 2  
Aromatic amino acid 4  

Fruit Ripening 
Cell wall structure 5 1 
Ethylene biosynthesis and 2 1 

Colour 

Chlorophyll degradation 3 1 
Carotenoid biosynthesis 2 2 

Anthocyanin biosynthesis 1  
Phenylpropenoid biosynthesis 1 3 

Vitamin C Ascorbate biosynthesis 24 6 
Protein 
Degradation  

Ubiquitination 2 1 
Actinidin 3 2 

Allergenicity Allergens 2 1 

Plant 
Development 

Branching 1 1 
Phase change 2 1 
Hormone response 5 4 
Cell signalling 1  

Defence Antimicrobial peptides 2  

DNA and 
Replication 

Cell cycle 1 

Nucleotide synthesis & DNA 2 
Chromatin remodelling 1 5 

Transport Transporters 3 1 
Unknown Sex-linked 3 

Transcription  

Transcriptional machinery 2  
miRNA 4  

Transcription 
factors 

Myb & Myb- 35 3 
bZIP 19 2 
MADS-box 15 7 
bHLH 13 1 
C2-C2 Dof 9  
C2-C2 CO- 8  
NAC Domain 5  
AP2-EREB 2 1 
WRKY 1 1 
BZR 1 1 
WD40 1  

Total 224 59 

Table 2. Plant & Food Research’s Actinidia in planta cDNA over-expression and gene 
silencing construct collection. Over-expression constructs of full length cDNAs cloned into 
pART27-derived vectors (Gleave, 1992) and gene silencing constructs of hairpin cDNA 
structures cloned into pTKO2 (Snowden et al., 2005). cDNAs are under the control of the 
CaMV35S promoter. 
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Transcription factors play a central role in regulating gene expression, through activation or 
repression of target promoters, and are able to regulate complex developmental processes or 
entire metabolic pathways co-ordinately. The dual-luciferase reporter vector system, 
developed to identify transcription factor activation of promoters (Hellens et al., 2005), has 
been applied to studying transactivation of promoters of Actinidia ripening-related ACO1 
and XET5 genes, by EIL2 and EIL3 (Yin et al., 2010). Exploiting this promoter activation tool 
is reliant on having a cloned Actinidia transcription factors; Plant & Food Research has 
developed such a resource, which includes Actinidia cDNA over-expression and RNAi gene 
silencing constructs, including 109 Actinidia transcription factors for use in many of the in 
planta functional genomics approaches described above (Table 2). 

5.4 Molecular markers and mapping 

Molecular markers have been used to carry out genetic characterization of the Actinidia 

genus. They allow germplasm enhancement through systematic crossing of plants, selected 

on the basis of their intra- and inter-specific phylogenic relationships and patterns of allelic 

diversity, and the selection of parent plants with desirable alleles for use in breeding 

programmes. Markers are also used to determine hybridity, pedigree, and for quality 

control during crossing. The development and application of molecular markers closely 

linked to desirable traits has the potential to assist kiwifruit breeding greatly through the 

early selection of those progeny, with a high probability of carrying the genetic information 

for the desired trait. Various genetic markers have been developed in Actinidia using 

restriction fragment length polymorphisms (RFLPs) (Crowhurst et al., 1990), amplified 

fragment length polymorphisms (AFLPs) (Novo et al., 2010; Testolin et al., 2001; X.G. Xiao et 

al., 1999), random amplified polymorphic DNAs (RAPDs) (Gill et al., 1998; H.W. Huang et 

al., 2002a; Shirkot et al., 2002), SSRs (Fraser et al., 2004; W.G. Huang et al., 1998; Korkovelos 

et al., 2008) or SNPs (Zhou et al., 2011). Much of the early molecular marker development 

was primarily to investigate the molecular phylogeny of Actinidia species, which in general 

was consistent with the traditional morphology-based classification. Studies were aimed 

also at sex determination, and molecular markers confirmed that the dioecious nature in 

Actinidia was a consequence of sex-determining genes localized on a pair of chromosomes 

that function like an XX/XY system (Gill et al., 1998; Harvey et al., 1997; Testolin et al., 

1995). Although the genetic basis for sex determination in kiwifruit remains unknown, 

RAPD markers linked to this trait led to the development of sequence-characterized 

amplified regions (SCARs) (Gill et al., 1998). These are  now deployed routinely in marker-

assisted kiwifruit breeding, to eliminate male plants from crosses at the seedling stage, to 

select males when breeding for pollinizers, or to ensure a desirable male-to-female ratio of 

progeny are planted when characterizing families. 

A framework Actinidia linkage map was first constructed using SSRs and the pseudo-test 
cross mapping strategy, often used for mapping out-crossing species, followed by the 
integration of AFLP markers (Testolin et al., 2001). Markers were screened over 94 
individuals from a population generated from an inter-specific cross of a diploid A. chinensis 
female and a diploid A. callosa male. Linkage maps were produced for each parent, with the 
female framework map having 160 loci, 38 linkage groups and covering 46% of the 
estimated genome length, and the male framework map having 116 loci, 30 linkage groups, 
and covering 34% of the estimated genome length. The maps were produced with LOD 
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scores ≥2 (as an indication of coinheritance of loci). Continued progress in Actinidia mapping 
led to a significant advancement in Actinidia genetics, with the generation of a gene-rich 
linkage map of A. chinensis, constructed using 644 SSRs, and defining the 29 chromosomes of 
the haploid genome (Fraser et al., 2009). Again, SSRs were the marker of choice, owing to 
their abundance, distribution in coding and non-coding regions, reproducibility, Mendelian 
mode of inheritance and co-dominant nature. The inherent variability of SSRs, because of 
the high mutation rate, makes SSRs highly informative genetic markers. The linkage maps 
were produced using a mapping population of 272 individuals, created through an intra-
specific cross of diploid A. chinensis parents, selected from two very distinct geographical 
locations in China, and exhibiting a diversity of fruiting characteristics. Resulting 
comprehensive genetic linkage maps of the male and female parents were produced and an 
integrated map of the cross was generated, using co-dominant SSR markers. The female 
and male linkage maps were composed of 464 and 365 markers, respectively, with 
markers estimated to be within 10 cM of each other in over 96% of the female genome and 
94% of the male genome. The robustness of the maps was reflected by the LOD scores of 
4–10. Using sex-linked SCAR markers, linkage group 17 was identified as the putative X 
and Y chromosomes. The sex-determining locus appeared to be sub-telomeric, occupying 
only a small portion of the chromosome, with little evidence of recombination in this 
region. These genetic linkage maps provide a valuable resource for the supply of markers 
for the breeding of novel cultivars, as tools for comparative and quantitative trait 
mapping. They will contribute to further investigations on the evolution and function of 
genetic control mechanisms in kiwifruit. They are an essential part of assembling the 
genome sequence of Actinidia. 

5.5 Genome sequencing 

Although the Actinidia EST database is a useful resource, it at best represents only 50–60% of 
the genes within the Actinidia genome, and contains no information on elements such as  
promoters, terminators and introns that play important roles in controlling gene expression. 
In addition, EST libraries, by the nature of their construction, under-represent genes that are 
expressed at relatively low levels and yet could play a critical role in a particular trait. 
Understanding key traits requires detailed information of not only the transcribed regions of 
a genome but also the intergenic and intron sequences, information that can be gained from 
the whole genome sequence (WGS) and its subsequent annotation. The advent of second-
generation sequencing (2ndGS) and advances in data handling and assembly software have 
now made it feasible to determine the WGS of a plant species at a fraction of the cost of the 
Sanger technology used to generate the WGS of Arabidopsis, for example (The Arabidopsis 
Genome Initiative, 2000). Plant & Food Research has recently initiated a research effort to 
determine the WGS of a diploid A. chinensis genotype, the haploid genome of which is 
predicted to be 650 Mbp. With no di-haploid or homozygous Actinidia genotypes available, 
the heterozygosity of the diploid A. chinensis may create some problems in WGS assembly. 
To minimize this, a genotype that has undergone two generations of sib-crossing and has an 
inbreeding coefficient of 0.375 has been selected. Genome sequencing is being carried out 
using an Illumina sequencing platform, using a variety of libraries and resulting sequencing 
data assembled into scaffolds. WGS assembly is being complemented by BAC-end 
sequencing, using an A. chinensis BAC library (Hilario et al., 2007), and use of the genetic-
linkage map discussed earlier.  
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6. Future perspectives and challenges 

Completion of the A. chinensis WGS will be the first within the Ericales, a large and diverse 
order that includes persimmon, blueberry, cranberry and tea, and the benefits to be gained 
in having the Actinidia WGS are enormous. Genome annotation is a key to the utility of any 
WGS, and the advances in transcriptome sequencing will greatly aid the defining and 
delineating of genes. Building on the availability of the genome sequence, characterization 
of the interrelationships between the Actinidia genome, transcriptome, proteome and 
metabolome, and functional genomics of alleles, will greatly aid in the understanding of 
biological processes, phenotypes and traits of kiwifruit. The annotated A. chinensis WGS will 
also provide a reference genome for the sequencing of genomes of other Actinidia species, to 
examine inter-species variability, and to identify SNPs. The knowledge gained from these 
efforts will open up greater opportunities for molecular breeding in kiwifruit, allowing the 
use of molecular markers for selective and accelerated introgression of desirable traits from 
the diverse Actinidia germplasm, to create new and novel cultivars.  

As detailed in this chapter, much of the molecular research in Actinidia has targeted traits 
such as fruit flavour, aroma, ripening and colour, which could be exploited in the 
development of new cultivars with novel fruit characteristics. There has been very little 
molecular research in Actinidia targeted towards pathogens and disease. However, the 
recent devastating effect on commercial kiwifruit orchards in parts of Italy, due to kiwifruit 
canker, caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), may well change 
the emphasis of the immediate future of kiwifruit research. Although Psa was identified in 
Italy in 1992 (Scortichini, 1994), the bacterium caused little problem, until severe disease 
outbreaks in both A. deliciosa and A. chinensis cultivars in 2009. The presence of Psa has now 
been reported in most of the major kiwifruit growing regions of the world, although there 
appear to be a number of haplotypes, differing in their virulence. Minimizing the impact of 
Psa on the global kiwifruit industry will require a coordinated effort by pathologists, 
physiologists, breeders and growers. Many of the molecular tools, the knowledge and the 
Actinidia resources described in this chapter will aid in the understanding of the plant–
pathogen interactions, the plant’s response to infection, the identification and mapping of 
Actinidia genes offering Psa resistance, and ultimately the development of kiwifruit cultivars 
resistant to Psa, through breeding or genetic manipulation.  
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