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1. Introduction 

A Fiber Bragg Grating (FBG) is a periodic variation of the refractive index of the core in the 
fiber optic along the length of the fiber. The principal property of FBGs is that they reflect 
light in a narrow bandwidth that is centered about the Bragg wavelength, B (A. Orthonos 
and K. Kalli, 1999). FBGs are simple intrinsic devices that are made in the fibre core by 
imaging an interference pattern through the side of the fibre. They are used as flexible and 
low cost in-line components to manipulate any part of the optical transmission and 
reflection spectrum. FBG is formed by the periodic variations of the refractive index in the 
fiber core. Several techniques have been established to inscribe them with UV-lasers. 
However, these technologies are limited to photosensitive fiber core material, which are 
unsuitable for high power applications. Only recently modifications have been 
demonstrated in a non photosensitive fiber but at the expense of longer exposure times (K. 
W. Chow et al., 2008). FBGs have all the advantages of an optical fibre, such as electrically 
passive operation, lightweight, high sensitivity with also unique features for self-referencing 
and multiplexing capabilities. This gives them a distinct edge over conventional devices 
(Nahar Singh et. al, 2006, Govind P. Agrawal 2002). Therefore, FBGs in optical fibers have a 
wide range of applications, such as for sensors, dispersion compensators, optical fibre filters, 
and all-optical switching and routing (T. Sun et. al,2002). An UV laser source is used to form 
FBG’s in fiber optics either through internal writing or external writing technique (A. 
Orthonos et al, 1995). The novel idea of using soliton is introduced for FBG.  
Solitons are particle-like waves that propagate in dispersive or absorptive media without 
changing their pulse shapes and can survive after collisions. Various types of optical soliton 
phenomenon have been studied extensively in the area of nonlinear optical physics. These 
include the nonlinear Schrӧedinger solitons in dispersive optical fibers, spatial and vortex 
solitons in photorefractive material, waveguides and cavity solitons in resonators (Y. S. 
Kivshar and G. P. Agrawal, 2003).  
The principal objective of this topic is to investigate the soliton in FBG showing potential 
energy. The theory involved in the modelling of soliton is based on the coupled-mode 
theory including the Kerr nonlinearity, group velocity dispersion (GVD) and self phase 
modulation (SPM) The motion of a particle moving in FBG represents the pulse propagation 
in the grating structure of fiber optics exhibiting the existence of optical fiber. In order to 
describe the photon motion, the function of potential energy is depicted. 
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2. Properties of Fiber Bragg Grating 

A simple form of Fiber Bragg Grating (FBG) in Figure 1 consists of a periodic modulation of 
the refractive index in the core of a single-mode optical fiber (Phing, H.S.et al, 2008) . These 
types of uniform fiber gratings, where the phase fronts are perpendicular to the fiber 
longitudinal axis with grating planes have a constant grating period, . 

 2B effN     (1) 

where    is the spatial period (or pitch) of the periodic variation  and Neff  is the effective 
index for light propagating in a single mode fiber. 
The Bragg condition is a manifestation of both energy and momentum conservation. Energy 
conservation requires that the frequency of the incident radiation and the reflected radiation 
is the same, means 

   f i     (2) 

Momentum conservation requires that the incident wave vector, ki, plus the grating wave 
vector, K, equal the wave vector of the scattered radiation, kf. This leads to an equation in 
which, 

 i fk K k     (3) 

where the grating wave vector, K, has a direction normal to the grating planes with a 

magnitude 
2


. The diffracted wave vector is equal in magnitude, but opposite in direction 

to the incident wave vector.  
 

 

Fig. 1. A basic diagram of Fiber Bragg Grating (A. Orthonos and K. Kalli, 1999). 



 

 
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Hence, the momentum conservation becomes 

 
2 2

2
eff

B

n 


 
    

 (4) 

Equation (4) simplifies to the first-order Bragg condition 

 2B effn     (5) 

B  is the Bragg wavelength. This is the free space center wavelength of the input light that 
will be back-reflected from the Bragg grating region). neff  is the effective refractive index of 
the fiber core at free space center wavelength. 

3. Optical soliton in FBG 

The existence of optical solitons in lossless fiber was theoretically demonstrated first by 
Hasegawa and Tappert in 1973. Bright and dark solitons appear in anomalous and normal 
dispersion regime respectively. The existence of an optical soliton in fibers is made by 
deriving the evolution equation for the complex light wave envelope via the slowly varying 
Fourier amplitude by retaining the lowest order of the group dispersion. This lower order is 
taken from the variation of the group velocity as a function of light frequency and the 
nonlinearity. For a glass fiber it is cubic and originates from the Kerr effect (K. Porsezian, 
2007). The one soliton solution of the nonlinear Schrödinger equation is given by a sech T 
function which is characterized by four parameters, the amplitude, the pulsewidth, the 
frequency, time position and the phase. In particular, the soliton speed is a parameter 
independent of the amplitude unlike the case of Kortweg de Vries (KdV) soliton. This is 
important fact in the use of optical soliton as a digital signal. Originally in 1980, L. F. 
Mollenauer and his colleagues at Bell Laboratories succeeded in observing optical soliton in 
fiber. During the 1990’s, many other kinds of optical soliton were discovered such as 
spatiotemporal solitons and quadratic solitons (Y. S. Kivshar and G. P. Agrawal, 2003). 
Soliton in fibers is formed after the exact balancing of group velocity dispersion (GVD) 

arising as a combination of material and waveguide dispersion with that of the self-phase 

modulation (SPM) due to the Kerr nonlinearity. Due to this, a similar soliton-type pulse 

formation in Fiber Bragg Grating where the strong grating-induced dispersion is exactly 

counterbalanced by the Kerr nonlinearity through the SPM and cross-phase modulation 

(CPM) effects. As a result, there is a formation of slowly travelling localized envelope in 

FBG structures known as Bragg grating solitons. They are often referred to as gap solitons if 

their spectra lies well within the frequency of the photonic bandgap if the frequency of 

incident pulse matches the Bragg frequency. Thus based on the pulse spectrum with respect 

to the photonic bandgap,  solitons in FBG can be classified into two categories as either 

Bragg grating solitons or gap solitons.  

There are basically two conditions that one can determine the formation of solitons in FBG. 
First is based on high intensity pulse propagation in which the refractive index modulation 
is weak in FBG where nonlinear coupled-mode (NCM) equations are used to describe a 
coupling between forward and backward propagating modes. The other conditions deals 
with the low intensity pulse propagation in FBG where the peak intensity of the pulse is 
assumed to be small enough so that the nonlinear index change, n2I is much smaller than the 
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maximum value of n. Under the low intensity limit, the NCM equations can be reduced to 
the nonlinear Schrödinger equation by using multiple scale analysis. 

4. Coupled-mode theory for FBG 

Several methods have been adopted to study and analyze the reflection and transmission 
properties of FBG (R. Kasyhap, 2004, M. Liu and P. Shum, 2006). The pulse propagation in 
FBG and its effect on Bragg grating affect the wave propagation in optical fibers can be 
examined using the coupled-mode theory (CMT) and Bloch wave technique. However, in 
this chapter we take CMT only into consideration. 
One of the standard methods of analysis of FBG is using the coupled-mode theory (K. 
Thyagarajan and A. Ghatak and, 2007). According to this theory, the total field at any value 
of z can be written as a superposition of the two interacting modes and the coupling process 
results in a z-dependent amplitude of the two coupled modes. It is assumed that any point 
along the grating within the single-mode fiber has a forward propagating mode and a 
backward propagating mode. Thus the total field within the core of the fiber is given  by  

              , , , , ,
i t z i t z

x y z t A z x y e B z x y e
         (6) 

where x, y, z refers to space while t refers to variation of time, A(z) and B(z) represents the 
amplitudes of the forward and backward propagating modes (assumed to be the same order 

mode),  ,x y  represents the transverse modal field distribution,  refers to frequency and 

 is the propagation constant of the mode. The total field given by Equation (6) has to satisfy 
the wave equation given by  

  2 2 2
0 , , 0gk n x y z      (7) 

where  2 , ,gn x y z  represents the refractive index variation along the fiber. For an FBG it is 

given by 

        2 2 2, , , , singn x y z n x y n x y Kz    (8) 

where 2 /K   represents the spatial frequency of the grating and 2n represents the 

index modulation of the grating. For a uniform grating K is independent of z; when K 
depends on z, such gratings are referred to as chirped gratings. However, now we further 
focused on uniform gratings. 
Substituting Equation (6) and Equation (7) into Equation (8) and making some simplifying 
approximations, we can obtain the following coupled-mode equations: 

 i zdA
Be

dz
     and    i zdB

Ae
dz

     (9) 

where 2 K    and  represents the coupling coefficient given by 

  * 20 ,
8

n x y dxdy


      (10) 
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Fig. 2. Cross-section of an optical fiber with the corresponding refractive index profile (R. 
Kasyhap, 1999). 

If the perturbation in the refractive index shown in Figure 2 is constant and finite only 
within the core of the fiber, then 

  2 2,n x y n   ,  r a  (11) 

                      0 ,  r a   

and we  obtain 

 
B

n
l





  (12) 

where B is the Bragg wavelength and 

 

2

0

2

0

a

rdr

l

rdr








 (13) 

The coupled-mode Equations (9) can be solved using the boundary conditions of 

 A (z = 0) = 1   and   B (z = L) = 0 (14) 

where L is the length of the grating. Equation (14) implies that the incident wave has unit 
amplitude at z = 0 and the amplitude of the reflected wave at z = L is zero because there is 
no reflected wave beyond z = L. We defined the reflectivity of the FBG by the ratio of the 
reflected power at z = 0 to the incident power at z = 0. Solving the coupled-mode equations 
and using the boundary conditions we obtain the reflectivity of the grating as follows: 
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 

   

2 2

2
2 2 2

sinh

cosh sinh
4

L
R

L L

 



   

   (15) 

where  

 
2

2 2

4
 

     

5. Pulse propagation in FBG 

Wave propagation in a linear periodic medium has been studied extensively using coupled-
mode theory. In the case of a dispersive nonlinear medium, the refractive index is given as 

     2, , ( )gn z I n n I n z      (16) 

where n2 is the Kerr coefficient and ng(z) accounts for periodic index variation inside the 
grating. The coupled-mode theory can be generalized to include the nonlinear effects if the 
nonlinear index change, n2I in Equation (2.11) is so small that it can be treated as a 
perturbation. 
The starting point consists of solving Maxwell’s equations with the refractive index given in 
Equation (16). When the nonlinear effects are relatively weak, we can work in the frequency 
domain and solve the Helmholtz equation, 

  2 2 2 2, / 0E n z c E      (17) 

The forward and backward propagating modes in FBG due to Bragg reflection can be 
described using CMT as been explained by Yariv in the distributed feedback structure (K. 
Senthilnathan, 2003). As usual, the governing equations for the pulse propagation in FBG 
are derived using Maxwell’s equation. In this study the focus is on the frequency domain as 
the nonlinear effects are assumed to be relatively weak. It can easily be shown that 
Maxwell’s equation are reduced to the following wave equation in the form  

 
 2 2

2 2 2
0

zE E

dz c t

 
 




 (18) 

where perturbed permittivity,    2 ,z n z     2n  is the spatial average of  z , and n is 

the average  refractive index of the medium. We consider the term  z  with a period  and 

define k0 =  /. Using the Fourier series,  z  can be written as 

    02 cos 2z k z    (19) 

This electric field inside the grating can be written as  

          , , , ...b d a ai k z t i k z t
f bE z t E z t e E z t e

      
  

 (20) 

where  , ,f bE z t  represents the forward and backward propagating waves, respectively, 

inside the FBG structure. Now, inserting Equation (19) and (20) into Equation (18) and 
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considering that the fields  , ,f bE z t  are varying slowly with respect to 1
0
 in time and 

1
0k in space, the resulting frequency domain coupled mode equations can be written as  

 0
f f

b

E En
i i E

z c t


 
  

 

 


 (21) 

 0b b
f

E En
i i E

z c t
 

   
 

  
  

The value of  represents the coupling between the forward and backward propagating 

waves in the FBG. The set of Equations (21) are called linear coupled-mode (LCM) equations 

in which the non-phase-matched terms have been neglected. The LCM equations assume 

slowly varying amplitudes rather than the electric field itself. Note that CMT is an 

approximate description that is valid for shallow gratings and for wavelength close to the 

Bragg resonance. 

6. Potential energy distribution in FBG 

In the presence of Kerr nonlinearity, using CMT, the NLCM equations can be written as 

  2 22 0
f f

b s f x b f

E En
i i E E E E

z c t


 
      

 

 
   

  

  2 22 0b b
f s b x f b

E En
i i E E E E

z c t
 

       
 

     
 (22) 

where Ef and Eb are the slowly varying amplitudes of forward and backward propagating 

waves, n is the average refractive index, and s and x are SPM and Cross-Phase 

modulation terms. In Equation (22) the material and waveguide dispersive effects are not 

included due to the dispersion arising from the periodic structures dominates the rest near 

Bragg resonance condition. Noted that the above NLCM equations are valid only for 

wavelengths close to the Bragg wavelength.  

Now, by substituting the stationary solution to the above coupled-mode equations is by 

assuming  

         ˆ /
, ,, i ct n

f b f bE z t e z e   (23) 

where ̂ is the detuning parameter. Using the stationary solution in Equation (22), we 

obtain 

 
2 2ˆ 2 0

f
f b s f x b f

de
i e e e e e

dz
          

 
  

 
22ˆ 2 0b

b f s b x f b

de
i e e e e e

dz
           

 
 (24) 
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Equation (24) represents the time-independent light transmission through the grating 

structure, where ef and eb are the forward and backward propagating modes  represents 

n0k ,  
01 02

0k

n n
n


  

 
where n01 is the core refractive index and n02 is the cladding refractive 

respectively, s represents Self Phase Modulation and x represents Cross-phase modulation 
effects. This  has been extensively investigated by many researchers. The NLCM equations 
are non-integrable in general. But in a few cases, NLCM equations have exact analytical 
solutions representing the solitary wave solutions. However, Christoudolides and Joseph 
have obtained the soliton solution to the NLCM equation, known as slow Bragg soliton, 
under the integrable massive Thirring model where the SPM and detuning parameter is set 
to zero. After using suitable transformation, it is used in nonlinear optics as a simple model 
to explain the self-induced transparency effect. Using the Stokes parameters they derived 
the relation of energy density for the stationary solution for the NLCM equation in terms of 
the Jacobi elliptic function.  
There are some possible interesting soliton-like solutions apart from these stationary 
solutions. In the fiber Bragg grating, these soliton-like solution for the NLCM equations 
carry a lot of practical importance.  

7. Solution of optical soliton using NLCM 

Wave propagation in optical fibers is analyzed by solving Maxwell’s Equation with 
appropriate boundary conditions. In the presence of Kerr nonlinearity, using the coupled-
mode theory, the nonlinear coupled mode equation is defined under the absence of material 
and waveguide dispersive effects. The dispersion arising from the periodic structure 
dominates near Bragg resonance conditions and it is valid only for wavelengths close to the 
Bragg wavelength. 
In order to explain the formation of Bragg soliton, consider the Stokes parameter since it will 
provide useful information about the total energy and energy difference between the 
forward and backward propagating modes. In this study, the following Stokes parameter 
are considered where 

 
 

2 2
0

* *
1

* *
2

2 2
3

,

,

f b

f b f b

f b f b

f b

A e e

A e e e e

A i e e e e

A e e

 

 

 

 

   and (25) 

with the constraint 2
0A  equals to the sum of 2 2 2

1 2 3A A A  . In the FBG theory, the nonlinear 

coupled-mode (NLCM) equation requires that the total power 
2 2

0 3 f bP A e e   inside 

the grating is constant along the grating structures. Rewriting the NLCM equations in terms 
of Stokes parameter gives 

 0
22 ,

dA
A

dz
    1

2 0 2
ˆ2 3

dA
A A A

dz
   ’  
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 2
1 0 0 1

ˆ2 2 3 ,
dA

A A A A
dz

       3 0
dA

dz
   (26) 

In Equation (26), we drop the distinction between the SPM and cross modulation effects. 

Hence Equation (26) becomes 3 2 x s      . It can be clearly shown that the total power, P0 

(=A3) inside the grating and is found to be constant meaning it is conserved along the 
grating structure. In the derivation of the anharmonic oscillator type equation, it is necessary 

to use the conserved quantity. This is obtained in the form 2
0 0 1

3ˆ
4

A A A C     , where C 

is the constant of integration and ̂  is the detuning parameter. Equation (27) can further be 

simplified to (Yupapin, P.P. et al, 2010), 

 
2

2 30
0 0 02

ˆ4
d A

A A A C
dz

         (27) 

where 2 2ˆ2 2 2 3 C         , ˆ9    and 29

4
   . Equation (27) contains all the 

physical parameter of the NLCM equation. Physically, ┙ represents the function of detuning 

parameters, and phase modulation factors (SPM and CPM).  represents the function of 

phase modulation factors (SPM and CPM) and the detuning parameters. Lastly,  represents 

the phase modulation factor (SPM and CPM). In general, ┙,  and  are the oscillation 
factors.  

8. Potential energy distribution in FBG structures 

In order to describe the motion of a particle moving within a classical anharmonic potential, 
we have the solution of Equation 28 in the form of 

  
2 3 4
0 0 0

0
2 3 4

A A A
V A        (28) 

It represents the potential energy distribution in a FBG structures while the light is 
propagating through the grating structures. 

In Equation (28),  is not considered due to power conservation along the propagating of 
this FBG structure. The qualitative aspects of the potential well will change if the 
nonlinearity parameter of the wave equation is varied.  
Figure 3 depicts the double-well potential under Bragg resonance condition where  = 0,  = 
0.23 and  is varied from 0.1 to 1.0. Photon with power of less than the total power, P0 will 
only travel inside the well unless their energy exceeds the energy level. This would allow 
the photon to move outside the well. 

Figure 4 explains the optimized point for various values of . The graph clearly shows that 
the optimized points decreased exponentially when values of  are increased. However, 
when  >>1, the trend of the curve is no longer valid since it turns into an almost linear 
relationship. 
Figure 5 shows the motion of photon in double well potential under different values of gamma 
for the Bragg resonance condition of  from 0.13 to 0.53. Note that the increment of gamma 

which is between 0.53<<1 will reduce the double well potential to a single well potential. 
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Fig. 3. The motion of photon in double well for different values of . 
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Fig. 4. The optimized point of the double well potential for different values of . 
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Fig. 5. Under Bragg resonance condition the system possesses double well potential for   
0.13 to 0.53. 
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Fig. 6. The optimized point of the double well potential when  = 0.1 to 1.0. 
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Figure 6 describes the optimized point for varies of gamma, . Parametric variation of 
gamma produces a potential energy function which increases exponentially. However, 

when  >> 1, a plateau is observed. This shows that it is not valid if .  

9. External disturbance of potential energy photon in FBG 

By using Equation (28) where another term is considered, then we can have  

 
2

2 3 40
0 0 0 02

ˆ4
d A

A A A A C
dz

           (29) 

where 2 2ˆ2 2 2 3 C         , ˆ9    , 29

4
    and  f  . To simplify Equation 

(29), it is assumed the parameters of ,  and  is independent with respect to parameter . 
Equation (29) contains all the physical parameter of the NLCM equation. 
In order to describe the motion of a particle moving with the classic anharmonic potential, 
where the external disturbance is involved then we have the solution as follows, 

   
2 3 4 5
0 0 0 0

0
2 3 4 5

A A A A
V A          (30) 

It represents the potential energy distribution in the Fiber Bragg Grating structures. 
Figure 7 depicts the motion of photon in a potential well which changes when few nonlinear 
parameters are taken into account as shown is Equation (30). Photon is trapped by the  
parameter which is depicted by legend V. When  is too large, the potential well produces 
A0 increases and have a wider of double well. The  parameter is shown by X legend. When 
 is large, the potential well produces A0 increases. Suppose that the source is imposed to 
FBG than initial power is used to generate the particles. It shows that double well potential 
well is not symmetrical and the potential energy will decrease at certain region and is shown 
in Figure 7 in legend Y. The other effect is the disturbance at potential energy by legend Z 
where photon cannot be trapped symmetrically. It will tend to equilibrium but it is not 
stable where the photon leaves the potential curve as a losses. 
In terms of parametric function, we can describe it as follows. The change in  will affect the 
dip of the potential well. If  is approximately too small, the shape of the potential well 
develop into a single potential well. The occurrence of  effect in the motion of photon gives an 
effect to the negative region which means A0 < 0. The effect of  also shows that the width of 
potential well will decrease if we increase the value of . Therefore if we increase the value of 
gamma, we can assume that the photon will be localized and can be trapped. In addition, 
another nonlinear factor , it will change the shape of potential well rapidly. We could say that 
if we include the existence of , the shape of potential well becomes chaotic. The photon does 
not only move within a certain region that is known as the potential well and moving freely. 
Figure 8 shows the effect of external disturbance, . It shows that by increasing the value of 
, it will also affect the change in . In other words, the negative part of Ao will be influenced 
it potential energy. The different values of  will produce different profiles. By simulating, 
we assumed that the increased of  value from 0.3 to 0.9, the curve will be positioned within 
the region C. The peak of V for each  from 0.3 to 0.9 describes   increases linearly and large 
gradient compare to the initial V. This represents that potential energy cannot maintain 
photon to be trapped and equilibrium state if  is relatively small. 
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Fig. 7. The motion of photon in potential well for ┙ = 0.9,  = 0.3, = 0.09 and  is varies from 
0.3 to 0.9. 

 

 

Fig. 8. The effect of theta,  to  and shape of the potential well of the photon.  

C 
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In Figure 9 it can be shown that by increasing the value of  the potential energy of the 

potential well will be reduced. The highest potential drop occurs within the range of , 0.2 to 
0.3. If the disturbance is large, it requires a high potential energy to maintain the photon 

especially for  = 0.7. In other words, increasing the  value will affect the shape of the 
potential well in terms of the potential energy. It will affect the equilibrium of the potential 
well and therefore the trapped photons are no longer being trapped or localized. 
 
 
 
 
 
 
 

 
 
 
 

Fig. 9. The disturbance to the potential energy by  factor.  

10. Photon due to external energy perturbation in potential well 

Figure 10 depicts the motion of photon in potential well which changes when few nonlinear 
parameters is take into account as described by Equation (30). There are theoretically some 

comments in this figure. Photon is trapped by  parameter which is depicted by legend V. 

When  is too large, the potential well produces A0 increases and have a wider double well. 

The value of  parameter is shown by X legend. When  is large, the potential well produces 
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A0 increases. Suppose that the source is imposed to FBG than initial power is used to 
generate the particles. It shows that double well potential well is not symmetric and 
potential energy will decrease at the certain region in legend Y. The other effect is the 
perturbation of potential energy by legend Z where photon cannot be trapped 
symmetrically. It will tend to equilibrium but it is not stable where it can go for losses.  

The change in the parametric function can be easily described in terms of ┙, ┚ and . The dip 
in the potential well will transform with a single potential well when ┙ is extremely small. ┚ 
affects the photon motion which in turn will effect to the negative region of the potential 

well when A0 < 0.The effect of   shows that the width of potential well will decrease if we 

increased the value of . The photon will be trapped when  is increased. The shape of the 

potential well can be controlled by a nonlinear factor. The changes in the value of   lead to 
a chaotic behaviour of the potential well. Under these conditions the photon can either move 
within certain specific regions or act as a free particle. Thus, Figure 10 illustrates the single 

perturbation as described by the nonlinear parameter,  . 
 
 
 
 
 

 
 
 

Fig. 10. The motion of photon in potential well for ┙ = 0.9,  = 0.3,  = 0.09 and  is varies 
from 0.3 to 0.9. 
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Now consider the case in Equation (27) with a set of constraints which is governed by 

  0
0

n
e

n

A



 . The perturbation factor then is 

 
2

0
02 e n

d A

dz
 
  (31) 

If Equation (30) is accumulated using the external perturbation then 

 0 0
0
1

n
n m

n
m

C A 






      

where  is a function of f (, C, Cm,) and  , , ,...mC     

The value of m = 2n  for  n = 1, 2, 3, …, m = 2n + 1  for  n = 0, 1, 2, …   

C is constant and C = (C1, C2, C3, …, Cm). The value of C is linear to A0 but not to V. Equation 

(31) can  then be modified by 

  0 0
1
0

n
m

m
n

V A C A





   (32) 

Equation (32) represents the complete potential energy distribution in the Fiber Bragg 

Grating structure. We believe at this juncture, the potential function is modified from Conti 

and Mills (C. Conti and S. Trillo, 2001). Using well-known Duffing oscillator type equation, 

analogically it is written as 

  0
1
0

0n
e m

m
n

C A





    (33) 

For multi perturbation of nonlinear parameters, two major shapes will be simplified in the 

series term. The coupled mode equations are solved under different conditions when soliton 

is used for FBG writing. The cases examined are (i) when there is no energy disturbance (ii) 

the effect of potential energy disturbance factor (iii) potential energy with the highest 

disturbance factor. 
When multi perturbations are considered then the photon will be trapped and untrapped 

for various conditions. As depicted in Figure 11, it explains the extrapolation of the graph if 

more factors of perturbation added into Equation (32). The addition of parametric factors by 

the higher odd number, Figure 11 (a) will allow the photon to move in a well, and Figure 11 

(b) will lead the photon to be untrapped and higher even number. It is clearly shown in the 

graphs that as n>> , the value of |A0| will remain constant in the range of -2<A0<2. 

However, when the value of V(0) is equal to zero, there are many possibilities of A0, meaning 

the exact value of intentsity, A0 to trap the photon is difficult to determine in this condition. 

If the parametric factor considered is too large then we may conclude that the photon is in 

indifferent state part of the equlibrium. 
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(a) 

  
(b) 

Fig. 11. The disturbance factor that affect the shape of the potential well of the motion of 
photon. 
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The stationary solutions of Equation (32) are applied neither for bright nor dark soliton 
solution since the dominant parametric factor in contributing A0 is unknown. However, 
from Equation (32) we have 

  0 ,mA f C z  (34) 

Under these conditions, the frequencies with photonic band gap keep forming an envelope 
after the exact balancing at grating-induced dispersion with nonlinearity. Either decay or 
increase, the forward and backward waves are transferred by Bragg reflection process. The 
total energy of the system, potential energy function is equal to zero having multi 

perturbation which is -1<A0<1 and if V, A0 = 2. 

11. Conclusion 

The novel idea of using soliton in Fiber Bragg Gratings (FBG) shows that the motion of a 

particle moving in FBG represents the pulse propagation in the grating structure of FBG. 

This indicates the existence of optical soliton. It is described in terms of the photon motion 

and as a function of potential energy. Results obtained show that photon can be  

trapped by nonlinear parameters of potential energy which are identified as , ,   
and . 

In the first simulation results of nonlinear parametric studies of photon in a FBG, we have 

successfully shown that the changes of nonlinearity parameter will affect the motion in 

the potential well. This will influence the existence of Bragg soliton in a fiber Bragg 

grating. In the second simulation results, we have added new nonlinear parameter which 

is known as . We have preset the value of ,  and  and vary the value of  over certain 

range. From the results, it is depicted that the factor  will affect the shapes of potential 

well. If the existence of  is taken into account, the potential well profile becomes  

chaotic.  

The simulation data are then expanded on the multi perturbation of potential energy 

photon in FBG. It shows that the change of ┙ affect the dip of the potential well. The 

occurrence of ┚ effect in the motion will affect the soliton propagation in the region for 

A0<0. The effect of  shows that the width of potential well will decreased if the value of  
is increased. However, another nonlinear factor,  will turns the shape of potential well 

rapidly which necessities the multi perturbation studies. When multi perturbations are 

considered, the photon will be trapped and entrapped under various conditions. From 

this, we may conclude the addition of nonlinear parametric factors by the higher odd 

number will allow the photon to move in a well instead to be entrapped with the higher 

even number. It is found from this study that the potential well under Bragg resonance 

condition is not symmetrical and conserved. The higher perturbation series representing 

the potential well is much indifferent of the equilibrium in both odd and even nonlinear 

parametric factor of n.  

As a conclusion, these studies have successfully shown that it is plausible to use soliton 

for FBG writing and the soliton can be controlled by manipulating the parametric effects 

which are , ,  and .  The model developed in this topic can be further extended by 

optimizing the nonlinear parameters in terms of the potential energy, soliton trapping and 
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its applications as optical tweezers. The model can be tested by developing compact 

miniature FBG inscribing system using laser diode. 
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