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1. Introduction  

Despite all efforts, tuberculosis (TB) still constitutes a serious global health threat with 9.4 
million new cases and 1.7 million deaths worldwide in 2009 (World Health Organisation, 
2010). Furthermore, an estimated one third of the worlds’ population is infected with the 
bacterium responsible, Mycobacterium tuberculosis. The main handicaps in fighting TB 
include a vaccine which works poorly in the most affected populations, and an arduous 
treatment regimen, involving a combination of several drugs taken over many months. This 
is further complicated by the emergence of multi-drug resistant (MDR) and extensively 
drug-resistant (XDR) M. tuberculosis strains, which require even longer treatment times with 
less well-tolerated drugs. Eradication of TB will require the development of new drugs and 
vaccines, alongside improved methods for diagnosis and monitoring treatment efficacy. 
With the vast burden of disease falling in resource poor settings, the challenge will also be to 
develop methodologies that can be deployed with minimal investment in infrastructure, 
maintenance and staff expertise.  

Recent decades have seen the emergence of the new discipline of molecular imaging. In 
essence, molecular imaging enables the non-invasive visualisation, characterisation, and 
quantification of biological processes taking place within intact living subjects, be it a mouse 
or man (Filippi & Rocca, 2011; Horky & Treves, 2011; Pysz et al., 2010; Sandhu et al., 2010). 
Imaging has long been applied to managing TB; simple chest x-rays have allowed clinicians 
to visualise TB in people for over a century (Singh & Nath, 1994). However, the new 
molecular imaging techniques are revolutionising medical research, with the potential to 
translate into significant changes in clinical practice. In this chapter we describe the new 
generation of imaging modalities and how these are being applied to eradicating TB, from 
the laboratory bench and in to the clinic. 

2. Molecular imaging modalities 

Molecular imaging is broadly defined as the visualisation, characterisation and 
quantification of biological processes, at the cellular and subcellular level, within living 
subjects. Importantly, the non-invasive nature of the techniques enables the study of disease 
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processes longitudinally within the same subjects, a powerful tool indeed for elucidating 
host-pathogen interactions and treatment efficacy. A number of imaging modalities have 
emerged, which vary in their methods of image generation, spatial resolution, depth 
penetration and detection thresholds (Table 1). As a result each modality has different 
advantages and disadvantages (Table 2), suggesting the techniques should be used to 
complement each other to answer specific research questions. 
 

Modality Image generation Spatial resolution Depth penetration 

Computed tomography 
(CT) 

x-rays 50-200 μm No limit 

Magnetic resonance 
imaging (MRI) 

Radiowaves 25-100 μm No limit 

Positron emission 
tomography (PET) 

High energy 
Ǆ-rays 

1-2 mm No limit 

Single photon emission 
(SPE) CT 

Lower energy  
Ǆ-rays 

1-2 mm No limit 

Optical Visible light 2-5 mm 1-2 cm 

Table 1. Features of currently employed imaging modalities (Adapted from Massoud & 
Gambhir, 2003) 

2.1 Computed Tomography (CT) 

CT imaging combines low-dose x-rays and computing to produce reconstructions of the 
internal organs and tissues. This is possible because diverse tissue types differentially 
absorb x-rays as they pass through the body. CT is not a molecular imaging tool per se, but 
can provide important information on anatomical changes which arise as a result of disease 
processes. Widely used in clinical settings, there are now a number of miniaturised 
machines suitable for scanning of small animals (often referred to as micro-CT). To collect 
data, the subject is placed on a motorised table, which then moves into the lead-encased CT 
machine. Inside, an x-ray source and a set of x-ray detectors rotate 360 degrees around the 
subject in synchrony. At every angle, the detectors record the x-rays passing through the 
subject to provide a digital projection which is collected and sent to a computer. The x-ray 
source produces a narrow, fan-shaped beam, with widths ranging from 1 to 20 mm. In axial 
CT, which is commonly used for head scans, the table is stationary during a rotation, after 
which it is moved along for the next slice. In helical CT, which is commonly used for body 
scans, the table moves continuously as the x-ray source and detectors rotate, producing a 
spiral or helical scan. Clinical machines typically have multiple rows of detectors operating 
side by side, so that many slices (currently up to 64) can be imaged simultaneously, 
reducing the overall scanning time. As an alternative to the fan-shaped x-ray beam, small 
animal scanners may instead use a cone-shaped beam, where the scanned subject is 
captured completely in one rotation, speeding up the imaging process. The data are 
processed by computer to produce a series of image slices representing two-dimensional 
(2D) or three-dimensional (3D) views of the target organ or body region. 
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Modality Advantages Disadvantages 

CT 

Unlimited depth penetration 
High spatial resolution 
Whole body imaging of animals and 
humans 
Short aquisition times (minutes) 
Anatomical imaging 

Radiation exposure 
Poor soft tissue contrast 
Moderately expensive 

MRI 

Unlimited depth penetration 
High spatial resolution 
Whole body imaging of animals and 
humans 
Good soft tissue contrast 
Non-ionising radiation 
Anatomical imaging 

Expensive 
Long acquisition times (minutes to 
hours) 
Limited sensitivity 
 

PET 

Unlimited depth penetration 
Whole body imaging of animals and 
humans 
Can be combined with CT for 
anatomical imaging 

Radiation exposure 
Expensive 
Long acquisition times (minutes to 
hours) 
Low spatial resolution  
PET cyclotron or generator needed 

SPECT 

Unlimited depth penetration 
Whole body imaging of animals and 
humans 
Can be combined with CT for 
anatomical imaging 
Can distinguish between 
radionuclides, so multiple processes 
can be imaged simultaneously 

Radiation exposure 
Long acquisition times (minutes to 
hours) 
Low spatial resolution  
 

Optical 

Short aquisition times 
Highly sensitive and quantitative 
Whole body imaging of animals 
Can be combined with CT for 
anatomical imaging of animals 
Inexpensive 

Limited depth penetration 
Whole body imaging of humans 
not possible  
 

Table 2. Advantages and disadvantages of imaging modalities (Adapted from Massoud & 
Gambhir, 2003) 

The spatial resolution of CT is primarily limited by scanning times, the size of the x-ray 
source, and the sensitivity of the detection system. In addition, CT has relatively poor soft 
tissue contrast; generally, iodinated molecules are applied as contrast agents, owing to the 
high x-ray absorption coefficient of iodine (McClennan, 1994). Current iodine-based contrast 
agents have several limitations, including adverse reactions, renal toxicity, vascular 
permeation and rapid renal clearance resulting in limited imaging times. As a result, 
alternative contrast agents have been suggested, such as polymer-coated Bi2S3 (Rabin et al., 
2006) or gold nanoparticles (Hainfield et al., 2006). Indeed, gadolinium chelate-coated gold 
nanoparticles have been reported as dual imaging probes for CT and magnetic resonance 

www.intechopen.com



 
Understanding Tuberculosis – Global Experiences and Innovative Approaches to the Diagnosis 

 

310 

imaging (MRI) (Alric et al, 2008). Tissue contrast can also be improved by using a dual-
energy x-ray method in which the projection data are acquired using two different x-ray 
spectra (Taschereau et al., 2010). However, one of the major limitations of CT is radiation 
exposure, and while the doses are low, they are not negligible and this can limit repeated 
imaging of the subject. 

2.2 Magnetic Resonance Imaging (MRI) 

MRI is based on the interactions of atoms and molecules in a tissue of interest, upon 
exposure to a magnetic field. In addition to providing detailed structural images, MRI can 
obtain physiological information through the use of specific contrast agents. While the 
proton 1H is most widely used in MRI, due to the abundance of water within soft tissues, 
other paramagnetic atoms such as 13C, 17O, 19F, 23Na and 31P are also useful. Within an MRI 
scanner, a strong ‘coiled’ magnet produces a magnetic field with a gradient in the X, Y and Z 
directions, which causes nuclei to align themselves. The device also contains a 
radiofrequency (RF) coil which is used to produce a temporary RF pulse, resulting in a 
change in nuclei alignment. Following the pulse, the protons return to their baseline 
orientation (known as relaxation) which is detected as a change in electromagnetic flux.  

The behaviour of the energy inserted into the system is described by two relaxation 
constants: the longitudinal relaxation time (T1) or the transverse relaxation time (T2). 
Different tissues have different relaxation times and this can be used to produce endogenous 
contrast between different tissues. Addition of exogenous contrast agents can further 
enhance tissue contrast by selectively shortening either T1 or T2 in a tissue of interest. 
According to their magnetic properties, contrast agents can be classified as paramagnetic 
(for example, gadolinium based agents) or superparamagnetic (for example, iron oxide 
nanoparticles) (reviewed in Geraldes & Laurent, 2009). Depending on their biodistribution 
patterns, different contrast agents can also be utilised to image specific anatomical regions. 
MRI is becoming widely used in both clinical and preclinical settings, with dedicated MRI 
machines available for humans and rodents. An advantage of MRI is that it does not involve 
ionising radiation, has unlimited depth penetration and good soft tissue contrast. However, 
it is expensive and scanning times are typically long, from minutes to hours.  

2.3 Positron Emission Tomography (PET) 

PET imaging involves the visualisation of a radiotracer, a biomarker labelled with a positron 
emitter. The positron emitters typically used are isotopes with short half-lives (several hours 
to a few minutes), such as 11C, 13N, 15On and 18F. Radiotracers are typically made to reflect 
compounds normally used by the body, such as glucose or ammonia, or molecules that bind 
to specific receptors. Once the radiotracer is injected into a subject, it therefore distributes 
based on its similarity to the original biomarker compound. The most commonly used 
radiotracer is an analogue of glucose labelled with 18F, [18F]-2-fluoro-deoxy-D-glucose, ([18F]-
FDG). A major advantage of PET imaging is that it can be used to trace the fate of any 
compound, provided it can be radiolabeled with a PET isotope. As a result, the processes 
that can be probed using PET imaging are virtually limitless, and radiotracers for new target 
molecules and processes continue to be developed. For a summary of available PET 
radiotracers see Pysz et al., 2010. Dedicated clinical and small animal PET scanners are now 
available. 
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PET imaging is based on the fact that the incorporated radionucleotide undergoes positive ǃ 
decay and emits a positron. The positron travels a few mm before it annihilates with an 
electron to emit a pair of photons moving in approximately opposite directions. These 
photons are then detected by the scanning device. As the photons are travelling at 
approximately 180º to each other, it is possible to localise their source along a straight line of 
coincidence known as a line of response (LOR). The distribution pattern of the LORs is then 
used to reconstruct an image of the radioactivity distribution within the subject. One minor 
limitation of utilising photons is that they are differentially attenuated as they traverse 
different thicknesses of tissue. This attenuation results in the reconstruction of structures 
deep within the body as having falsely low uptake of the radiotracer. However this 
attenuation can be corrected for by combining PET with CT imaging.  

Despite the great promise of PET imaging, there are a number of significant disadvantages. 
One is the use of ionising radiation, although this is minimised by the use of radioisotopes 
with short half-lives. However, these short half-lives require both costly cyclotron 
generators and chemical synthesis apparatus within close proximity to the scanning facility 
for the production of the radiotracers. This certainly limits the use of the technology within 
resource poor settings. Furthermore, scanning times are typically long, from minutes to 
hours, and the technique provides low spatial resolution.  

2.4 Single Photon Emission Computed Tomography (SPECT) 

Like PET, SPECT imaging is based on the distribution and uptake of a radiolabelled tracer 
after injection into a subject. Unlike PET tracers, SPECT radionucleotides undergo 
radioactive decay and emit Ǆ-rays of a particular energy, which are then captured by an 
external detector. A number of 2D projections are captured from multiple angles which, 
when combined, form a 3D image. Radiotracers based upon radioactive metals, such as 
111In, 188Re, 131I, and 133Xe, are often used. For a summary of available SPECT radiotracers see 
Pysz et al., 2010. PET and SPECT imaging share many of the same advantages and 
disadvantages. However, while PET is more sensitive, SPECT imaging is much cheaper 
largely thanks to the availability of different radiotracers which are longer lived and easier 
to obtain. Moreover, different SPECT radiotracers have different energies enabling multiple 
tracers to be used to image different processes. 

2.5 Optical Imaging 

The electromagnetic radiation we refer to as light undergoes a range of interactions when 
propagating through tissue. Importantly, these interactions depend on the structural 
arrangement and physical properties of the micro-environment. Such interactions have led 
to the development of the field of optical imaging which encompasses a wide variety of 
methods and approaches (Table 3), from visualising tissue anatomy on the microscopic scale 
(Zonios et al., 2001) to the 3D localisation of a photonic signal in whole animals using 
fluorescence molecular tomography (Ntziachristos, 2006). 

In this chapter we will focus on biophotonic imaging (BPI), a preclinical imaging technique 
based on the ability of light to travel through flesh. This principle is easily demonstrated by 
placing a torch underneath ones hand and observing the light emerging through the fingers. 
BPI involves the detection of visible light which arises from either the excitation of a 
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fluorescent protein (FP), or molecule, or from an enzyme-catalysed oxidation reaction (a 
phenomenon known as bioluminescence).  
 

Resolution Technique Contrast Depth 

Microscopic 
Epi microscopy A, Fl 20 µm 
Confocal microscopy Fl 500 µm 
Multi-photon microscopy Fl 800 µm 

Mesoscopic 
Optical projection tomography A, Fl 15 mm 
Optical coherence tomography S 2 mm 
Laser speckle imaging S 1 mm 

Macroscopic 

Hyperspectral imaging A, S, Fl <5 mm 
Endoscopy A, S, Fl <5 mm 
Fluorescence reflectance imaging (FRI) A, Fl <7 mm 
Diffuse optical tomography (DOT) A, Fl <20 cm 
Fluorescence resonance imaging (FRI) A, Fl <7 mm 
Fluorescence molecular tomography (FMT) Fl <20 cm 
Biophotonic Imaging (BPI) Fl, E < 3cm 

Key: A, Absorption; Fl, fluorescence; S, Scattering; E, Emission. 

Table 3. Optical imaging techniques (taken from N. Andreu et al., 2011).  

Bioluminescence arises from the oxidation of a substrate (a luciferin) by an enzyme (a 
luciferase), which usually requires energy (in the form of FMNH2 and ATP) and oxygen. 
Luciferin and luciferase are generic terms as none of the major classes share sequence 
homology. Most widely studied are the systems belonging to luminous beetles in the family 
Lampyridae (such as the firefly Photinus pyralis), the sea pansy Renilla reniformans, the 
marine copepod Gaussia princeps and numerous luminous bacteria (such as Vibrio sp. and 
Photorhabdus luminescens). In contrast, fluorescence arises when a fluorescent compound is 
irradiated with light of a suitable wavelength. This leads to the transition of an electron in 
the molecule to a higher energy state, a process known as excitation. This process is almost 
instantaneous, taking around 10-15 seconds. Upon return of the electron to a lower energy 
level (around 10 ns), light of lower energy is emitted, giving the fluorescent signal.  

Although the emitted light may be dim, it can be detected externally using sensitive photon 
detectors such as those based on cooled, or intensified, charge coupled device (CCD) 
cameras, mounted within light-tight specimen chambers. As light passes through a range of 
tissue types (including skin, muscle and bone) it is possible to observe and quantify the 
spatial and temporal distribution of light production from within living subjects (N. Andreu 
et al, 2011). In general, imaging of luminescence is much more sensitive than imaging 
fluorescence as a result of better signal-to-noise ratios. This is mainly due to the high levels 
of background fluorescence in vivo compared to luminescence, due to endogenously 
produced fluorophores such as keratin, porphyrins, NAD(P)H, collagen and elastin (Troy et 
al., 2004). A major limitation of BPI is the limited depth penetration through tissue. Hence 
BPI is currently only applied to imaging small animals, although visualisation of 
bioluminescence from within infant monkeys (the long-tailed macaque, Macaca fascicularis) 
has been reported (Tarantal et al., 2006). Alternatively, the light could potentially be 
detected internally using an endoscopic device, such as reported by Hsiung and colleagues 
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to image colonic pathology (Hsiung et al., 2008). The advantages of BPI are that it is 
inexpensive, sensitive and requires short imaging times.  

3. Use of molecular imaging in animal models of TB  

M. tuberculosis, the infectious agent of TB, can infect many animals in addition to its natural 
human host. Although the study of TB in patients is extremely useful, a detailed analysis of 
the pathogenesis and the interactions of M. tuberculosis with the host requires the use of 
well-defined models that can be infected in a controlled manner. Furthermore, animal 
models can be easily manipulated, can be used in statistically significant numbers, and the 
results are obtained in a relatively short time frame. In addition, they are particularly useful 
in drug and vaccine efficacy testing before moving the most promising candidates to clinical 
studies. 

For both practical and economical reasons, laboratory mice remain the most extensively 
used animal model of TB: they are easy to manipulate and house, there is a wide range of 
mutant and genetically modified strains, and there are many immunological reagents 
available. However, latent infection is difficult to achieve in the mouse model, and the 
pathology, with poorly organised granulomas, differs considerably to that observed in 
humans. By contrast, guinea pigs and particularly rabbits display a spectrum of pathology 
that better represents the human disease. Moreover, guinea pigs are extremely susceptible to 
M. tuberculosis infection and relatively inexpensive compared to other larger animal models, 
which makes this model very useful for vaccine efficacy studies. Even so, studies with 
guinea pigs and rabbits are limited by the narrow range of immunological reagents 
available. This is not the case in non-human primates, which are the closest model to 
humans in terms of pathology and disease development and therefore constitute the most 
relevant model to predict treatment and vaccine efficacy. Nevertheless, work with non-
human primates presents many limitations regarding space requirements, animal 
availability, and costs. In summary, each animal model presents both advantages and 
disadvantages which must be carefully considered when designing a new study. A more 
detailed description of these animal models of TB can be found elsewhere (Dharmadhikari 
& Nardell, 2008; Flynn, 2006; Gupta & Katoch, 2005). 

The use of animals in research is accompanied by ethical responsibilities and most countries 
promote the three Rs: replacement, reduction and refinement. Replacement refers to 
methods that avoid the use of animals, for example, in silico computer modelling, or using 
established human and animal cell lines and non-mammalian models such as the nematode 
Caenorhabditis elegans or the embryo of the zebrafish, Danio rerio. Reduction refers to 
methods which minimise the use of animals and enable researchers to obtain comparable 
levels of information from fewer animals or to obtain more information from the same 
number of animals, thereby reducing the future use of animals. Refinement refers to 
improvements to scientific procedures and husbandry which minimise actual or potential 
pain, suffering, distress or lasting harm and/or improve animal welfare. Molecular imaging 
is a very powerful tool for implementation of two of the 3Rs, refinement and reduction. 
Using traditional disease models, infected animals are sacrificed at defined time points and 
tissues excised for determination of pathogen numbers and localisation. In contrast, the non-
destructive nature of molecular imaging allows the course of an infection to be monitored 
simply by repeated imaging of the same group of animals. Importantly, this allows disease 
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progression to be followed with extreme accuracy, while allowing each animal to act as its 
own control. Furthermore, we have demonstrated that BPI can provide real time 
information on the effectiveness of the inoculation method (Wiles et al., 2007). As a result, 
errors in administration can be detected immediately (N. Andreu et al., 2011) and animals 
eliminated from further study – thus minimising any potential pain, suffering and distress 
for the animal and reducing variation by removing flawed scientific data.  

One major drawback to working with M. tuberculosis is the slow growth of the organism. 
This lengthens the time required to carry out in vivo experiments extraordinarily, and delays 
the quantification of bacterial burdens by about four weeks, which is the time required for 
M. tuberculosis to form visible colonies on agar. Therefore, the use of molecular imaging to 
track infection dynamics in real time would be a major advantage as it would enable 
researchers to make on-the-spot decisions, shortening the length of the experiment if clear 
differences (for example, between control and vaccinated groups) were observed. There is, 
therefore, an increasing interest in the development of molecular imaging techniques in 
animal models of TB. Moreover, the developments and knowledge acquired through the use 
of these techniques in animal models may eventually translate into the clinic. 

3.1 Computed Tomography (CT) 

CT imaging has mostly been used as a complementary technique to PET and SPECT 
imaging (see sections 3.3 and 3.4), as it gives high-resolution anatomical information for a 
better localisation of the radionuclide signal. However, CT has also been evaluated as an 
imaging method on its own to assess disease burden in macaques (Lewinsohn et al., 2006). 
To this end, four animals were infected by bronchoscopy instillation of M. tuberculosis, and 
disease progression was monitored every four weeks clinically (weight, body temperature, 
complete blood count and erythrocyte sedimentation rate), immunologically (ELISPOT), 
bacteriologically (quantitative M. tuberculosis culture from bronchoalveolar lavage), and by 
CT imaging. In addition, a necropsy was performed at the end of the experiment (12 weeks 
post-infection) which included histopathology and bacterial burden quantification from 
selected organs. Clinical indicators failed to provide information about disease progression, 
as most of them were fairly constant through the whole experiment. Most bacterial cultures 
from bronchoalveolar lavage were positive, although some cultures were negative even 
though CT imaging and post-mortem analysis showed infection. Even bacterial cultures 
from post-mortem lung samples were not consistently positive, which was attributed to a 
non-uniform infection of the lungs and therefore biased tissue sampling. In contrast, CT 
imaging provided a reliable readout of disease progression in the whole lung and also 
allowed monitoring of other organs, such as the liver and spleen. Moreover, different types 
of lesions were observed, and progression of the lesions from small nodules to cavitation 
and necrosis was evident. CT findings were corroborated by post-mortem histopathology 
and, together with immunological monitoring, provided a non-invasive, accurate, and rapid 
assessment of TB in this animal model. It is important to note that even though a CT scanner 
was not available in the animal biosafety level 3 (BSL3) containment facility, the authors 
were able to image infected animals in a scanner localised within a non-containment facility, 
by transporting and imaging the anesthetised macaques in a box fitted with HEPA filters. 
This is a solution that has also been adopted for other imaging techniques like PET/CT, 
SPECT/CT and BPI (see below).  
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3.2 Magnetic Resonance Imaging (MRI) 

To our knowledge, MRI was the first molecular imaging method reported for an animal 
model of TB, when Kraft and colleagues used the technique to assess lesion distribution and 
lesion numbers as an indication of disease burden in BCG-vaccinated and unvaccinated 
guinea pigs infected with M. tuberculosis by the aerosol route (Kraft et al., 2004). 3D lung 
images were reconstructed from images taken of 2 mm slices of formalin-fixed and agarose-
embedded lungs, and lung volumes, lymph node volumes and total nodular burden were 
quantified. Small nodules were observed 15 days post-infection, which developed into 
granulomatous lesions 20 days later. Lesions were uniformly distributed in the lungs, which 
suggested that aerosol delivery of M. tuberculosis results in a homogenous infection. 
Additionally, lesions numbers supported the hypothesis that a single bacillus establishes a 
single lesion. In terms of vaccine efficacy, the authors found the same number of lesions in 
vaccinated and unvaccinated animals but the lesions were smaller in the vaccinated group, 
thus suggesting that BCG has an effect on disease development rather than on the initial 
establishment of the infection. All in all, they found that MRI was a useful method to assess 
disease burden in terms of lesion distribution, size and number. The main limitation was a 
low sensitivity when dealing with very small (< 1 mm) lesions. 

More recently, the same laboratory used MRI to assess treatment efficacy in guinea pigs 
infected with M. tuberculosis (Ordway et al., 2010). The treatment had a dramatic effect on 
bacterial load with a 4-6 log decrease in viable counts (as determined by colony forming 
units [CFUs]) both in the lungs and lymph nodes in just 25 days. However, the effect on 
lesion burden, as quantified by MRI, was slower and could only be detected in the lungs 
after 50 days of therapy (Figure 1). In addition, the lesions in the lymph nodes of the treated 
group were smaller, although the differences with the untreated group were only obvious at 
later time points. These results were corroborated by histological analysis, although the 
number of lesions in the lungs of the treated animals was already lower than in the control 
group by day 25. 

MRI has also been applied to studies in non-human primates (Sharpe et al., 2009, 2010). 
Disease burden in this animal model has been traditionally assessed by a range of ante- and 
post-mortem methods such as clinical signs (behaviour, weight, and body temperature), 
laboratory markers (haemoglobin levels, erythrocyte sedimentation rate, and immunology),  

Day 29 Day 50 Day 78 Day 105
 

Fig. 1. MRI showing lesions resolving/disappearing during treatment of M. tuberculosis-
infected guinea pigs with a cocktail of anti-TB drugs (given as days post-treatment). 
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chest x-ray, gross pathology, and histology. However, most of these methods are qualitative 
and subjective. Moreover, the most common alternative method, the quantitative estimation 
of total lesion numbers in the lung by manual counting, is laborious and particularly 
difficult in animals with more severe disease, as individual lesions become difficult to 
distinguish. Sharpe and colleagues used MRI and stereology (a statistical method that 
extracts quantitative information of a 3D structure from measurements made on planar 
sections of the material) to quantify lesion volume relative to lung volume in macaques 
infected with a range of doses of M. tuberculosis by the aerosol route (Sharpe et al., 2009). 
Similarly to what was previously seen in guinea pigs, the authors observed a uniform 
distribution of lesions in the lungs. In addition, the lesion-to-lung volume ratio increased 
with the infectious dose, and this ratio revealed subtle differences in the level of pulmonary 
disease and correlated well with other measures of disease burden. By contrast, methods 
such as gross pathology and chest x-ray were less sensitive and did not differentiate 
between the levels of disease in the animals exposed to the highest infectious doses. In 
conclusion, MRI together with stereology makes up a sensitive, quantitative, systematic and 
consistent method to assess disease burden in the macaque model of tuberculosis. 
Moreover, when MRI was compared with more traditional methods to measure vaccine 
efficacy, it was found that MRI combined with stereology was the only readout that 
distinguished between the unvaccinated and the vaccinated groups, and it was even able to 
show differences between survivor and non-survivor animals within the vaccinated groups, 
thus highlighting the sensitivity of the method (Sharpe et al., 2010). 

In summary, the use of MRI appears to be a reliable method to assess disease burden in the 
lungs of M. tuberculosis-infected animals. However, it should be noted that the studies 
described here were performed on fixed lungs where the bacteria had been inactivated, as 
the use of MRI under BSL3 containment was not available. Initially, the whole lung was 
fixed and used for imaging to reduce sample error. As a result the tissue could not be used 
for other procedures, such as determination of bacterial load. However, the results 
discussed above illustrate that aerosol delivery of M. tuberculosis results in an even 
distribution of the lesions in the lungs and, therefore, samples can be taken and used for 
other techniques without compromising its reliability. Similarly to what has been done to 
image live animals by CT scanning, MRI of live animals could be done by using a sealed box 
with filters to transport the animals to the MRI facility and contain them during imaging. 
When available, MRI of live animals will allow longitudinal monitoring of disease 
progression, and real-time observation of vaccine and drug efficacy. The ex vivo results 
discussed here, together with the excellent soft tissue contrast of MRI and the development 
of faster MRI devices that reduce the artefacts induced by respiratory motion, suggest that in 

vivo MRI may become a very useful technique for the study of TB in animal models. 

3.3 Positron Emission Tomography (PET) 

Another technique which is gaining popularity in TB research is PET combined with CT 
imaging (PET/CT). The PET radiotracer [18F]-FDG is used to image inflammation at the 
infection site, as it accumulates in inflammatory cells such as neutrophils and activated 
macrophages. This technology has been used to image TB infection (Figure 2) and to assess 
drug treatment efficacy in mice (Davis et al., 2009b). The authors infected two strains of 
mice, BALB/c (which develop diffused granulomas) and C3HeB/FeJ (which develop well-
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defined necrotic granulomas), and evaluated three different treatments: (i) first line 
tuberculosis regimen (rifampin + pyrazinamide + isoniazid), (ii) a more bactericidal regimen 
(rifampin + pyrazinamide + moxifloxacin), and (iii) a bacteriostatic regimen (ethambutol). 
The animals were imaged and CFUs obtained at different time points during the 12 weeks of 
treatment. Furthermore, one group of BALB/c mice was followed for 22 weeks after 
completion of the bactericidal treatments to assess relapse of the infection. For the imaging, 
anesthetised mice were contained in a sealed device with holes for passage of gases fitted 
with 0.22 m filters. In both mouse models, CFU counts perfectly reflected the efficiency of 
the three treatments being evaluated, with a faster decrease in bacterial numbers when 
moxifloxacin was used instead of isoniazid, and stabilization of bacterial burden when mice 
were treated with ethambutol only.  

 
Fig. 2. 3D co-registered PET and CT images from a live C3HeB/FeJ mouse infected with a 
low-dose aerosol of M. tuberculosis. The brightness of the lesions represents FDG activity, 
with brighter lesions being more active. The heart also takes up FDG and can therefore be 
seen on the left. The bony structure (rib cage and scapula), shown in grey, were extracted 
from the CT (Davis, S.L. & Jain, S.K.; unpublished data). 

The use of PET/CT imaging allowed differentiation between the bacteriostatic and 
bactericidal treatments, as the [18F]-FDG activity was higher in the mice treated with 
ethambutol. However, unexpectedly, [18F]-FDG activity was higher in mice treated with 
moxifloxacin than in those treated with isoniazid during the first four weeks of treatment. 
The authors suggested that this could be due to the limited statistical power of the study 
since only three mice per group were used, or that it could be an inherent limitation of using 
[18F]-FDG, whereby an increased killing of M. tuberculosis would cause an increased Tumour 
Necrosis Factor (TNF)-mediated inflammation and therefore increased [18F]-FDG activity 
even though bacterial numbers were decreasing. Relapse was detected in both groups of 
mice by PET imaging and by CFU counts. In summary, PET/CT allowed the non-invasive 
monitoring of disease progression in real-time. Moreover, individual lesions could be 
observed in the C3HeB/FeJ mouse model; as treatment response has been suggested to be 
lesion-dependent, the possibility of monitoring individual lesions would be very useful. 
However, it is important to take into account that this method does not specifically image 
infection but only measures inflammation which, as illustrated by the treatment results of 
this work, does not always correlate with bacterial burden. Nevertheless, this method has 
some advantages over using, for example, CFU counts: it uses a reduced number of animals, 
and the same animals can be repeatedly imaged which allows a more easy detection of 
untimed events such as relapse. 
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PET/CT imaging is also being used in non-human primates, although the results have only 
been presented in meetings and no peer-reviewed article has been published to date. For 
example, PET/CT has been used to monitor disease progression and drug efficacy in 
macaques (Lin et al., 2009). Using CT imaging, lesions as small as 1 mm were detected in the 
lungs and lymph nodes of infected animals. Moreover, lesion progression could be followed 
over time. Interestingly, co-registered [18F]-FDG–PET images revealed that individual 
granulomas differed in their [18F]-FDG affinity: whereas some granulomas exhibited high 
uptake values, others seemed devoid of [18F]-FDG. The imaging results were complemented 
with post-mortem histology and bacterial burden analysis of individual lesions. The authors 
found a complex, lesion-specific response to drug treatment that included changes in [18F]-
FDG avidity. These remarkable results show that even though PET and CT are two 
complementary techniques, images should be first analysed separately, and that caution 
should be taken when interpreting the results of PET activity in terms of [18F]-FDG 
accumulation. 

3.4 Single Photon Emission Computed Tomography (SPECT) 

SPECT/CT has also been used for imaging of TB infection in mice (Davis et al., 2009a). The 
authors used the radiotracer 1-(2′deoxy-2′-fluoro-ǃ-D-arabinofuranosyl)-5-[125I]-iodouracil 
([125I]-FIAU), a nucleoside analogue, together with an engineered M. tuberculosis strain that 
stably expressed the enzyme thymidine kinase (TK) which phosphorylates [125I]-FIAU 
leading to its accumulation within the bacteria. In contrast to [18F]-FDG–PET imaging, this 
technique specifically images the bacteria instead of the inflammatory response, as [125I]-
FIAU is a poor substrate for mammalian TK. Using this technique, the authors were able to 
image individual necrotic granulomas in the lungs of C3HeB/FeJ infected mice (Figure 3). 
The presence of the lesions was subsequently corroborated by histopathology. However, the 
limit of detection was found to be 5x106 to 1x107 CFUs, a rather high bacterial burden for 
mice infected with M. tuberculosis. The authors suggested that the sensitivity of the method 
could be improved by increasing the expression of TK in the bacilli or by using more 

 
Fig. 3. Co-registered SPECT and CT images from a live C3HeB/FeJ mouse infected with a 
low-dose aerosol of an M. tuberculosis strain expressing bacterial thymidine kinase (TK) 
under the control of a strong mycobacterial promoter. TB lesions were imaged 8-weeks after 
this infection, using [125I]-FIAU, a nucleoside analog substrate for bacterial TK. The FIAU-
SPECT signal localizes to the TB lesion (crosshairs) in the lungs, indicating uptake of FIAU 
by the bacteria (Davis, S.L. & Jain, S.K.; unpublished data). 

www.intechopen.com



 
Molecular Imaging in TB: From the Bench to the Clinic 

 

319 

sensitive (and expensive) radionuclides such as 123I or 124I. Other limitations of the technique 
include: the limited blood supply at the centre of the granulomas could limit accessibility to 
imaging substrates; TK requires ATP, which could be restricted in latent bacteria; and the 
presence of non-specific signal in tissues such as liver, gall bladder, or stomach, that either 
metabolize or excrete FIAU or its iodinated derivatives. 

3.5 Biophotonic Imaging (BPI) 

Bioluminescence imaging is one of the most widely used imaging techniques in the study of 
infectious diseases (N. Andreu et al., 2011). Luciferases have been used in mycobacterial 
research for more than 20 years; the two most widely used are the firefly luciferase (FFluc) 
and the luciferase of the bacterium Vibrio harveyi (LuxAB). Both luciferases produce light in 
the presence of a combination of a substrate and a cofactor, namely D-luciferin and ATP (for 
FFluc) and n-decanal and FMNH2 (for LuxAB). As the co-factors are only found in live cells, 
the production of light by the luciferases provides a sensitive indicator of cell viability. The 
bacterial luciferase system has a major advantage when compared with the FFluc: the genes 
for the synthesis of the substrate are known and can be co-expressed with the luxAB genes 
as a convenient gene set (luxCABDE) that renders the bacteria autoluminescent, that is, no 
external addition of substrate is needed for light production. Light-emitting mycobacteria 
have been used as an easier and faster approach than commonly used methods to assess 
bacterial numbers in vitro and in macrophages, for example, in drug screening assays (Arain 
et al., 1996). The first approach to use luminescent mycobacteria in animal models consisted 
of measuring luminescence ex vivo in organ homogenates (Hickey et al., 1996). This method 
generated results in a much quicker time frame than using CFU counts and has been 
applied to drug and vaccine efficacy testing (Hickey et al., 1996; Snewin et al., 1999). 

More recently, a recombinant M. bovis BCG strain expressing the bacterial luciferase enzyme 
LuxAB has been used to monitor mycobacterial infection in vivo (Heuts et al., 2009). In this 
work, only the luciferase genes were expressed and, therefore, the n-decanal substrate had 
to be injected before imaging. Although n-decanal is very toxic, the authors were able to 
deliver it dissolved in a mixture of olive oil and ethanol by injection into the mouse 
peritoneum. To assess the usefulness of the system, immunodeficient RAG2−/−/cR−/− mice 
were intravenously infected with the luminescent BCG strain, and bioluminescence imaging 
was performed at different time points for 11 weeks. A signal coming from the spleen was 
detected four weeks post-infection, when the bacterial load was around 5x107 CFUs. The 
signal increased over time and extended to the abdomen of the animal but no signal was 
observed in the lungs, even though CFU counting showed a bacterial burden in this organ 
of 107 CFUs at eight weeks post-infection. However, luminescence was detected in the 
excised lungs, suggesting that tissue attenuation was responsible for the failure to detect the 
signal in the whole animal. The same luminescent BCG strain was also used to assess drug 
efficacy and the host immune response. A reduction in light emission, which paralleled the 
reduction in bacterial numbers, was observed in treated mice compared to the untreated 
mice, as well as in inmunocompetent BALB/c and T-cell reconstituted RAG2−/−/cR−/− mice 
compared to immunosupressed RAG2−/−/cR−/− mice. Therefore, bioluminescence imaging 
allows monitoring of mycobacterial infection in mice. However, the system was not useful 
for imaging infection in the lungs, and a toxic substrate had to be administered to the mice 
before imaging. 
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To overcome these difficulties, our group has recently optimised the expression of FFluc and 
the complete bacterial luciferase system in M. tuberculosis (N. Andreu et al., 2010). The 
resulting mycobacterial strains express either the optimised gene encoding FFluc (which is 
the brightest luciferase and uses a non-toxic substrate) or the optimised luxCABDE gene set 
from Photorhabdus luminescens (which results in autoluminescent strains that do not need the 
exogenous addition of substrate to produce light). Both M. tuberculosis strains were imaged 
in vivo in the lungs and spleens of infected mice (Figure 4), with limits of detection of around 
105-106 CFU per lung and 105 CFU per spleen, whereas as few as 104 CFU can be imaged in 
the dissected organs (our unpublished results). Further work will assess the usefulness of 
these luminescent mycobacteria in drug efficacy testing and in other small animal models 
such as guinea pigs. 

 
Fig. 4. Visualisation of bioluminescent bacteria within living mice infected with FFluc-
expressing M. tuberculosis after administration of luciferin. The image was obtained using an 
IVIS Spectrum and is displayed as a pseudocolour image, where red represents the most 
intense light emission while blue correspond to the weakest signal (Andreu, N. & Wiles, S; 
unpublished data). 

Fluorescence imaging has had a more limited use in the study of infectious diseases, 
although it has been widely applied to other research fields such as cancer research (N. 
Andreu et al., 2011). In a first attempt to develop fluorescence imaging of M. tuberculosis 
infection, a GFP-expressing M. tuberculosis strain was used to infect mice and guinea pigs, 
and five weeks post-infection the lungs were imaged using a photon imager (Sugawara et 
al., 2006). Granulomas as small as 1 mm of diameter were detected, and the results were 
corroborated by histopathology examination. The same fluorescence technique was used to 
visualize granulomas in a latent model of TB in guinea pigs (Sugawara et al., 2009). In this 
case, the animals were subcutaneously infected with M. tuberculosis and the infection was 
followed for 10 months. No clinical signs of infection were evident in any of the animals for 
the length of the experiment, although the bacteriological analysis of lungs and spleens 180 
and 300 days post-infection showed the presence of a few bacteria. Similarly, even though 
no granulomas were detected by gross pathology examination, microgranulomas were 
observed in the histological analysis. According to the authors, these small lesions 
corresponded to the fluorescent spots detected by photon imaging of sliced lungs and 
spleens. More work is still needed to validate these results and to be able to use this 
technology in vivo. 

FPs that emit light in the far-red region of the spectrum are more appropriate for in vivo 
imaging than for example GFP, as red light is less affected by absorption and scattering 
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when travelling through tissues. This is exemplified by the finding that as few as 105 CFUs 
of a BCG strain that expressed tdTomato (excitation 554 nm, emission 581 nm) can be 
detected after being subcutaneously injected into mice, in comparison to 107 CFUs of BCG 
expressing enhanced GFP (EGFP) (excitation 484 nm, emission 510 nm) (Kong et al., 2009). 
Therefore, far-red reporters show a lot of promise for fluorescence in vivo imaging of M. 
tuberculosis infection in animal models, and the expression of several red FPs in 
mycobacteria has recently been optimised (Carroll et al., 2010). 

The strategies presented above use recombinant bacteria that express an exogenous FP. A 
much more versatile strategy consists of using an activatable fluorescent agent that is non-
fluorescent in its native (quenched) state but produces fluorescence through enzyme-
mediated release of its fluorochrome. This strategy has been widely used in cancer and 
inflammation research but, until recently, not in infectious diseases. Using a near-infrared 
fluorogenic substrate for -lactamase, an enzyme that is endogenously expressed by M. 
tuberculosis but not by eukaryotic cells, it is possible to detect 106 CFUs of M. tuberculosis 
subcutaneously injected in mice (Kong et al., 2010). The maximal signal was produced 48 h 
after substrate injection, and no signal was detected 48 h later, which suggests that repetitive 
imaging of the same animals can be done every 96 h. Surprisingly, the limit of the detection 
in the lungs of live animals was 104 CFUs, which is far lower than the limit of detection 
subcutaneously, even though the lungs are localised much deeper in the body. The signal 
was localised laterally, close to the armpit of the animal, and 3D fluorescence molecular 
tomography (FMT) and imaging of the excised lungs proved that the lungs were the source 
of the signal. The amount of fluorescence correlated with bacterial numbers when the 
imaging was performed 24 h post-substrate administration, but at later time-points substrate 
accumulation lead to a similar level of fluorescence independently of bacterial numbers. In 
addition, the technique was used to assess drug efficacy by imaging treated and untreated 
mice, showing that the signal increased in the untreated group while it decreased in the 
treated group. Although much work needs to be done to assess the usefulness of the 
technique, one can imagine many potential applications not only in in vivo imaging but also 
in vitro using fluorescence microscropy or FACS, as well as for TB diagnosis (e.g. detection 
of bacilli in sputum or imaging tuberculosis in patients). However, a limitation that needs to 
be considered is the fact that other bacteria, such as Pseudomonas aeruginosa or Staphylococcus 

aureus, also express -lactamase and therefore may give a false signal. Thus, alternative 
fluorogenic substrates that are activated by other endogenous enzymes are currently under 
study; for example, certain trehalose analogues that are substrates for the M. tuberculosis 
mycolyltransesterases Ag85A, Ag85B and Ag85C (Backus et al., 2011). 

4. Imaging TB in human disease 

4.1 Radiography 

The plain radiograph was first described in 1895 by Röntgen, at the same time that the TB 
pandemic was peaking in wealthy Western countries such as Victorian England. 
Consequently, there is a long experience and literature of plain radiographic imaging of TB, 
which has been reviewed previously (McAdams et al., 1995; J. Andreu et al., 2004; Curvo-
Semedo et al., 2005). In summary, TB can cause a wide array of chest x-ray appearances, but 
classically causes consolidation and cavitation in the apices of the upper lobes. TB can also 
cause disease at the apices of the lower lobes, which appears in the mid-zone on chest 
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radiograph (Figure 5). However, TB can result in a wide range of other features, such as 
miliary disease with small millet seed-sized nodules throughout the lungs, pleural effusions, 
mediastinal lymphadenopathy and extrapulmonary disease. In the era of HIV infection, 
where the host immune system is compromised, the appearances of pulmonary TB are often 
atypical (Kwan & Ernst, 2011), ranging from classical cavitation to areas of pneumonia to a 
normal chest x-ray even in the presence of a high mycobacterial load. This illustrates the 
importance of the adaptive immune response in driving lung inflammation, resulting in 
consolidation and tissue destruction. 

 
Fig. 5. Radiograph illustrating right mid zone cavitation on a 17 year old patient with 
pulmonary TB. 

As TB is treated, areas of consolidation tend to gradually resolve, leaving an area of fibrosis 
or scar tissue which persists for life. Cavities remain even after cure, because the lung cannot 
reconstruct the intricate extracellular matrix after it has been destroyed. However, it is well 
recognised that radiographic appearances may often worsen before they improve (Leung, 
1999), and similarly some lesions may increase in size and density while others appear to 
resolve. Even in HIV negative patients with drug-sensitive disease, such “paradoxical” 
reactions may occur (Cheng, 2002). This demonstrates the different behaviour of 
inflammatory lesions even in the same patient, and one challenge for modern imaging 
techniques is to define the molecular mechanisms underlying this immune response to 
improve our understanding of what constitutes an effective as opposed to deleterious 
immune response to TB. 

4.2 Computed Tomography (CT) 

CT involves cross-sectional imaging of patients and so permits a much greater degree of 
resolution of anatomical structures, although it results in a higher radiation dose and higher 
cost than plain radiography. CT can demonstrate cavity formation with much greater 
sensitivity and will demonstrate subtle changes which may be missed on plain chest x-rays 
(Figure 6 [left panel]). For example, filling of small airways with inflammatory debris may 
result in a “tree-in-bud” pattern (Figure 6 [right panel], arrow), which should immediately 
alert the physician to the possibility of mycobacterial infection. Therefore, CT scanning 
provides information of changes at a much more precise anatomical level than plain 
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radiography, but does not give information about the molecular events occurring at the site 
of infection. 

 
Fig. 6. CT imaging reveals a small left mid zone cavity (indicated by arrow) that was not 
visible on plain chest x-ray (left panel) and a tree-in-bud bronchial filling in a 33 year old 
man with pulmonary TB (right panel), which appears as branched opacities in the lung field 
adjacent to arrowhead.  

4.3 Magnetic Resonance Imaging (MRI) 

MRI provides the best imaging of the meninges and spinal cord, and so is useful in the 
diagnosis of cerebral TB, TB meningitis and paraspinal TB abscesses. MRI is a rapidly 
developing area, and so may emerge as a modality which can provide insight into molecular 
events in TB. The advantage of MRI is that it involves no ionizing radiation and provides 
excellent anatomical resolution. New MRI modalities to investigate inflammatory diseases 
are under development (Pirko et al., 2004), but these have not yet entered the clinical arena 
for investigation in TB. 

4.4 Positron Emission Tomography (PET) 

PET imaging is a widely used nuclear medicine technique which has the potential to study 
pathological events at a molecular level before extensive anatomical changes are observed 
on plain radiography. PET imaging is commonly combined with CT scanning in patients to 
provide both functional and anatomical information. [18F]-FDG accumulates in 
metabolically active cells after phosphorylation, and so is taken up by metabolically active 
macrophages within the TB granuloma and other inflammatory foci. A primary limitation of 
PET imaging for TB is the high cost and low availability in developing world. Increased PET 
uptake is well described in both pulmonary and extrapulmonary TB lesions (Matsuura et al., 
2000; Bakheet et al., 1998; C.M. Yang et al., 2003), and can cause diagnostic uncertainty with 
malignancy and other infections (Chen et al., 2004; Li et al., 2008). 

PET scanning is clinically useful in certain patients with TB. For example, when patients 
have normal radiology but symptoms highly suggestive of active TB, PET scans may 
identify occult foci of infection which can then be sampled to confirm the diagnosis and for 
culture (Figure 7, arrow). Furthermore, PET imaging has been proposed for monitoring the 
resolution of TB disease (Hofmeyr et al., 2007), although the benefit must be weighed 
against the increased radiation exposure. Current research questions which need to be 

www.intechopen.com



 
Understanding Tuberculosis – Global Experiences and Innovative Approaches to the Diagnosis 

 

324 

addressed are whether PET imaging can be useful to define cure, especially in the context of 
drug-resistant TB where treatment regimes may exceed 18 months, and also investigate 
whether active foci can be identified in patients with clinically “latent” disease. 

 
Fig. 7. PET imaging reveals increased uptake of [18F]-FDG in a right hilar lymph node, 
appearing as bright white (as indicated by arrow).  

In addition to [18F]-FDG, a wide array of radiopharmaceuticals have been developed at 
the preclinical level which might be applied to TB (Signore & Glaudemans, 2011). 
However, the potential of these in man have not yet been confirmed. For example, 
radiolabelling the antibiotic ciprofloxacin looked promising initially to investigate cryptic 
foci of infection (Britton et al., 2002), but has not entered clinical practice widely. The 
ability to detect a wide range of pathophysiological markers suggests that PET imaging 
may emerge as a powerful modality to investigate the biology of TB in man, but currently 
most prospective candidates require further study in model systems before clinical 
studies in man can be considered. 

4.5 Single Photon Emission Computed Tomography (SPECT) 

A number of SPECT radiotracers have been applied to the management of TB including 
99mTc-methoxyisobutylisonitrile (99mTc-MIBI) (Ahmadihosseini, 2008), 67Ga (Liu et al., 2007) 
and 111In-octreotide (Vanhagen et al., 1994). 99mTc-MIBI is a widely used myocardial 
perfusion agent, which can accumulate in tumours and inflammatory lesions (Aktolun et al., 
1991; Caner et al., 1992; Kao et al., 1994; A. Yang et al, 2007). Ahmadihosseini and colleagues 
studied 36 patients with either proven active or inactive treated pulmonary TB and found 
that 99mTc-MIBI uptake was increased in 23 out of 24 patients (95.8%) with active pulmonary 
TB but none of those with inactive TB (Ahmadihosseini et al., 2008). M. tuberculosis has been 
demonstrated to have significantly higher 99mTc-MIBI uptake compared with fibroblasts and 
myocytes cultures (Stefanescu et al., 2007), suggesting the bacilli themselves contribute to 
the signal detected on 99mTc-MIBI SPECT images.  

A number of studies have found positive SPECT images in sputum smear negative patients 
subsequently found to have a positive sputum culture for M. tuberculosis (Ahmadihosseini et 
al., 2008; Önsel et al., 1996; Stefanescu et al., 2006), suggesting that SPECT imaging may be 
very useful while awaiting culture results. However, as previously stated, many benign and 
malignant etiologies can also demonstrate 99mTc-MIBI uptake (Aktolun et al., 1991; Caner et 
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al., 1992; Kao et al., 1994; A. Yang et al, 2007), which significantly decreases the value of this 
radiotracer in the differential diagnosis of pulmonary TB from other lung pathologies. 

5. Future prospects 

A fundamental challenge of TB research is to develop applications which are useful in 
resource poor settings and can be deployed with minimal investment in infrastructure, 
maintenance and staff expertise. Furthermore, any application needs to be equally 
applicable in urban and rural settings. Most modern imaging techniques are useful in the 
developed world, but are not available to the vast majority of patients with TB who live in 
resource-poor settings. 

However, the detailed study of a small number of patients may identify pathophysiological 
markers of TB which can then be simplified to develop new diagnostic and therapeutic 
approaches applicable in resource poor settings. Ironically, when one considers molecular 
imaging of TB in this light, developing an imaging technique based on plain chest 
radiography is currently the only widely deliverable approach in the near future. For 
example, if a highly radio-dense specific TB ligand was developed, a diagnostic test might 
involve taking an initial chest x-ray, injecting the labelled ligand, and then taking a second 
x-ray to identify high uptake in the region of TB. This might be useful in the common 
clinical scenario when a patient presents with upper zone fibrosis, which may be caused by 
either old self-healed TB or new active TB. If the patient is sputum smear negative, an 
expensive and invasive bronchoalveolar lavage is required, so a non-invasive test to 
determine disease activity would be useful. 

Another frequent clinical scenario is a patient with immunological evidence of infection, but 
with a normal chest x-ray and a cryptic location of disease. An investigation whereby one 
could locate the site of disease for aspiration and culture analysis would be clinically useful. 
This assay might either rely on antimycobacterial ligands, potentially using the “dock and 
lock” strategy (Goldenberg et al., 2007), whereby a primary antibody is first injected which 
docks on the mycobacterial target, and then 24 hours later a second radiolabelled antibody is 
injected which locks onto the primary antibody, or alternatively might focus on the host 
immune response, such as looking for increased metalloproteinase activity at the site of 
disease (Elkington et al., 2011). 

In additional to diagnosis, a secondary role of imaging is to determine the prognostic and 
therapeutic correlates of host immunity. Currently, standard treatment lasts for six months. 
A recent trial comparing short-course therapy for four months in patients with low risk 
features was stopped because of increased recurrence in the short course treatment group 
(Daley, 2010). We need better markers to identify patients who will respond rapidly to 
treatment and imaging modalities to define mycobacterial load, the effectiveness of the host 
immune response and TB cure. 

6. Conclusions 

It is clear that molecular imaging technologies will play an important role in improving our 
understanding of the host-pathogen interactions that occur in animal models of TB, and 
should speed up preclinical testing of novel vaccine candidates and therapeutic regimes. In 

www.intechopen.com



 
Understanding Tuberculosis – Global Experiences and Innovative Approaches to the Diagnosis 

 

326 

the clinical setting, standard radiographic imaging is likely to remain the mainstay of TB 
management in humans, with PET imaging emerging as a useful adjunct in specific cases. 
Indeed, molecular imaging in human TB also has the potential to provide valuable insights 
into disease pathogenesis, and to aid in the development of new diagnostic approaches and 
treatment options. However, it remains to be discovered whether approaches currently at 
preclinical development can be rolled out to the regions of the world where TB is pandemic. 
We hope that the detailed investigation of small number of patients using cutting-edge 
technologies may identify pathological markers which can then be developed into simpler, 
plain radiograph based assays which fulfil the requirements of a truly valuable TB 
diagnostic. 
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