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1. Introduction 

The overall goal of this chapter is to provide evidence for the feasibility of repositioning 
antiprogestin compounds originally utilized for reproductive medicine toward ovarian cancer 
therapy. This disease is the most deadly of the female reproductive track; at the time of 
diagnosis, in the majority of cases abnormal growths have progressed outside the ovaries and 
into the nearby fallopian tubes, uterus, and peritoneal cavity. Thus, the majority of diagnosed 
patients require cytoreductive surgery followed by platinum-based chemotherapy (Bukowski 
et al.,2007; DiSaia&Bloss,2003; Martin,2007; Naora&Montell,2005; Ozols,2006a). The efficacy of 
this therapy, however, is limited by the elevated toxicity of the platinum derivatives (Cepeda 
et al.,2007), the development of mechanisms to escape drug toxicity (Cepeda et al.,2007; 
Kelland,2007), and the repopulation or regrowth of cells between treatment intervals 
(Kim&Tannock,2005), all of which lead to the recurrence of the disease. The majority of 
relapsing patients are platinum-resistant, with very limited chemotherapeutic options, and a 
median survival time of about only two years (Gordon et al.,2004; Modesitt&Jazaeri,2007; 
Ozols,2006b; Pectasides et al.,2006; Wilailak&Linasmita,2004). The five-year survival for 
ovarian cancer patients is extremely disappointing, ranging from 37% to 45% (Jemal et 
al.,2006). Hence, new therapeutic interventions to overcome the limitations of platinum-based 
therapy for ovarian cancer patients are greatly needed. 

2. Mifepristone: A prototypical antiprogestin 

The synthetic steroid RU-38486 or simply RU-486, now named mifepristone, was first 
synthesized in the mid-1980s when investigators were in the pursuit of synthesizing an  
antiglucocorticoid agent to treat Cushing’s syndrome (Spitz,2006); however, because in 
preclinical studies with pregnant animals the compound had a remarkable capacity to 
interrupt pregnancy, its ability to oppose progesterone action in the uterus was inferred. As 
a result, mifepristone was rapidly repositioned for reproductive medicine, to exploit largely 
its antiprogesterone and, consequently, contraceptive properties. Mifepristone became the 
first prototypical antiprogestin clinically approved for early termination of pregnancy in the 
United States in 2000. In this context, mifepristone blocks progesterone receptors in the 
uterus (Philibert et al.,1985), thus increasing the sensitivity to myometrial contractions 
induced by prostaglandin analogues, leading to early interruption of pregnancy (Benagiano 
et al.,2008a).  
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Mifepristone has also been used for other reproductive indications, such as oral 
contraception, menstrual regulation, and emergency contraception (Benagiano et al.,2008b; 
Ho et al.,2002). More recently, mifepristone emerged as a treatment of endocrine-related 
diseases such as endometriosis and uterine leiomyoma (Moller et al.,2008); it diminishes the 
pain associated with pelvic endometriosis (Fedele&Berlanda,2004; Kettel et al.,1994) and 
reduces the size of uterine fibroids, improving quality of life without evidence of 
endometrial hyperplasia (Eisinger et al.,2009; Murphy et al.,1995; Steinauer et al.,2004). 

3. Mifepristone is a valuable therapeutic alternative in oncology 

The antiprogestin activity of mifepristone has been extensively studied; however, it is 
evident that the contraceptive effect of the compound jeopardized its investigation for other 
medical uses, in particular, its application in oncology, which is now emerging. In non-
reproductive tissues, it was reported that mifepristone inhibited the growth of gastric cancer 
cells (Li et al.,2004), meningioma cells in vitro and in vivo (Grunberg et al.,2006; Grunberg et 
al.,1991; Matsuda et al.,1994; Tieszen et al.,2011), glioblastoma and osteosarcoma cells 
(Tieszen et al.,2011), and non-small lung cell carcinoma cell lines (Weidner, Hapon & 
Telleria, unpublished observations).  
In reproductive tissues, mifepristone blocked the growth of cervical adenocarcinoma cells in 
vitro and in vivo (Jurado et al.,2009), and inhibited cell proliferation killing benign and 
malignant endometrial cancer cells (Han&Sidell,2003; Murphy et al.,2000; Narvekar et 
al.,2004; Schneider et al.,1998). In prostate cancer, the antiprogestin blocked growth of 
androgen-sensitive and androgen-insensitive LNCaP and PC-3 cells (El Etreby et al.,2000a; 
El Etreby et al.,2000b; Liang et al.,2002; Tieszen et al.,2011). In breast cancer, mifepristone 
inhibited the growth of T-47D (Musgrove et al.,1997), MCF-7, and MDA-MB-231 cells 
(Tieszen et al.,2011); particularly in MCF-7 cells, mifepristone had an additive lethal effect 
when associated with the antiestrogen tamoxifen (El Etreby et al.,1998), as well as a 
synergistic lethal interaction with the Chk-1 inhibitor 7-hydroxystaurosporine (UCN-01) 
(Yokoyama et al.,2000) and with 4-hydroxytamoxifen (Schoenlein et al.,2007). Mifepristone 
also blocked the growth of MCF-7 sublines made resistant to 4-hydroxytamoxifen (Gaddy et 
al.,2004) and was lethal to MDA-MB-231 cells that are devoid of estrogen and progesterone 
receptors (Liang et al.,2003). In p53/BRCA1-deficient mice, mifepristone prevented the 
formation of breast tumors (Poole et al.,2006), indicating its efficacy not only impairing the 
growth of established mammary tumors but also inhibiting mammary tumorigenesis. In 
mice with spontaneous lung cancer or leukemia, mifepristone was also found to improve 
longevity and quality of life (Check et al.,2009; Check et al.,2010b). Most recently, case 
studies of patients with widely metastatic thymic, renal, colon, or pancreatic cancers no 
longer responding to chemotherapy, reported that chronic daily treatment with 200 mg 
mifepristone had a significant improvement in their qualities of life (Check et al.,2010a). 

4. Mifepristone in ovarian cancer therapeutics 

The action of antiprogestins on ovarian cancer has received limited attention. First in 1996, it 
was revealed that the antiprogestin mifepristone arrested OVCAR-3 and A2780 ovarian 
cancer cells at the G1 phase of the cell cycle (Rose&Barnea,1996). In a small clinical trial 
conducted with patients having recurrent epithelial ovarian cancer whose tumors had 
become resistant to standard chemotherapy, mifepristone administration showed promising 
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effects against some of the tumors (Rocereto et al.,2000). Years later, it was reported that 
mifepristone enhanced the toxic effect of cisplatin on COC1 ovarian cancer cells in vitro and 
in xenografted immunosuppressed mice (Liu et al.,2003; Qin&Wang,2002).  
These initial studies indicated an anti-ovarian cancer activity of mifepristone, yet the 
molecular target(s) involved in mediating such an effect remained obscure. In 2007, we 
described some molecular mediators of growth inhibition induced by mifepristone as a 
single agent in ovarian cancer cells, and further defined its efficacy in an in vivo preclinical 
setting (Goyeneche et al.,2007). We also proved that cytostatic doses of mifepristone added 
after a lethal dose of cisplatin prevents repopulation of remnant ovarian cancer cells 
surviving a platinum insult (Freeburg et al.,2009b). We showed that cell cultures exposed to 
mifepristone after cisplatin had a remarkable increase in the percentage of cells expressing 
the cell death marker cleaved poly (ADP-ribose) polymerase (PARP) and the mitotic marker 
phospho-histone H3 suggesting that mifepristone potentiates cisplatin lethality and that the 
cells likely die as a consequence of mitotic failure (Freeburg et al.,2009b). We also reported 
that the effect of mifepristone in ovarian cancer cells is independent of p53 functionality and 
platinum sensitivity (Freeburg et al.,2009a), making mifepristone an even more interesting 
chemotherapeutic candidate for ovarian cancer as the majority of tumors in relapsing 
patients are platinum resistant and p53 mutant (Ozols,2006b). Finally, we have shown in 
ovarian cancer cells that mifepristone potentiates the lethality of otherwise sub-lethal doses 
of cisplatin, and synergizes with cisplatin growth inhibiting ovarian cancer cells of different 
genetic backgrounds and platinum sensitivities (Gamarra-Luques&Telleria,2010).  

4.1 Mifepristone-induced cytostasis vs. lethality in ovarian cancer cells 

Antiprogestin mifepristone is toxic towards ovarian cancer cells, with cytostasis manifested at 
lower micromolar concentrations and lethality taking place when the compound is used at 
higher micromolar doses (Freeburg et al.,2009a; Goyeneche et al.,2007; Goyeneche et al.,2011; 

Tieszen et al.,2011). When mifepristone was used at doses up to 20 M, the effect was limited 
to cytostasis demonstrated by the reversibility of the growth inhibition observed when the 
drug was removed from the culture media, in association with the lack of measurable cell 
death (Goyeneche et al.,2007). In all ovarian cancer cell lines we investigated, concentrations of 

mifepristone 30 M or higher were lethal (Freeburg et al.,2009a; Goyeneche et al.,2011; Tieszen 
et al.,2011).  This lethality was illustrated by the reduced viability of the cells, the increase in 
cellular particles with hypodiploid fragmented DNA content, and the cleavage of the cell 
death associated caspase, caspase-3, in parallel with the cleavage of the widely accepted 
marker of cell death and a substrate for caspase-3, PARP (Scovassi&Poirier,1999). The lethality 

of concentrations of mifepristone over 40 M towards ovarian cancer cells was first suggested 
in OVCAR-3 and A2780 cells (Rose&Barnea,1996). Yet, our studies demonstrate that the 
lethality of mifepristone monotherapy towards ovarian cancer cells is related to a caspase-
associated apoptotic process.  
The dose-dependent cytostatic and lethal effects of mifepristone towards ovarian cancer 
cells, which we globally refer to as cytotoxicity, occur also in breast cancer cells. In the MCF-
7 breast cancer cell line the combination of mifepristone and antiestrogen 4-
hydroxytamoxifen had greater cytostatic and lethal activities than either monotherapy, 
whereas the lethality of the treatment was associated with genomic DNA fragmentation and 
cleavage of PARP (Schoenlein et al.,2007). In addition, it has been shown that MCF-7 cells 
made resistant to 4-hydroxytamoxifen also respond to mifepristone monotherapy 
undergoing apoptotic death (Gaddy et al.,2004); finally, although at higher concentrations, 
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mifepristone was also cytotoxic to progesterone receptor- and estrogen receptor-negative 
MDA-MB-231 breast cancer cells (Liang et al.,2003; Tieszen et al.,2011).  

4.2 The inhibition of ovarian cancer growth by mifepristone occurs regardless of 
histopathological classification, platinum sensitivity, or p53 genetic background 

Ovarian cancer is very heterogeneous from histopathological and genetic viewpoints 
(Cannistra,2004; Despierre et al.,2010). Furthermore, mutations of the p53 tumor suppressor 
gene occur at extremely high frequencies in ovarian cancer (Havrilesky et al.,2003), whereas  
most recurrent patients with ovarian cancer are platinum-resistant, consequently being left 
with therapeutic alternatives that have very disappointing outcomes (DiSaia&Bloss,2003; 
Herzog,2006; Vasey,2003). Thus, if the histopathological and genetic backgrounds, 
sensitivity to platinum, and p53 status of the ovarian cancer cells would not condition their 
response to the growth inhibition activity of mifepristone, such findings would have 
pronounced clinical relevance.  
We showed that the cytostatic effect of mifepristone displayed similar potency among the 
ovarian cancer cells representing various histopathological origins (Freeburg et al.,2009a; 
Goyeneche et al.,2007; Tieszen et al.,2011), such as clear cell adenocarcinoma (SK-OV-3), 
papillary ovarian adenocarcinoma (Caov-3 cells), glandular with mixed differentiation 
(IGROV-1), undifferentiated (A2780), and endometrioid (OV2008) cells (Shaw et al.,2004).   
We proved that the growth inhibition induced by mifepristone occurred irrespective of the 
p53 background of the ovarian cancer cell lines studied, with IC50s ranging between ~ 7 to 12 

M (Freeburg et al.,2009a; Goyeneche et al.,2007) in p53 wild type cells [e.g. OV2008, 
OV2008/C13, A2780, and IGROV-1; (Casalini et al.,2001; Fraser et al.,2003; Sasaki et al.,2000; 
Siddik et al.,1998)], p53 mutant cells [A2780/CP70 and Caov-3 (Lu et al.,2001; Reid et 
al.,2004; Yaginuma&Westphal,1992)], or p53 null cells [SK-OV-3; (O'Connor et al.,1997; 
Yaginuma&Westphal,1992)]. 
We observed that mifepristone displayed similar growth inhibition potency among SK-OV-
3, OV2008, and Caov-3 cell  lines (Goyeneche et al.,2007), which have different sensitivities 
to platinum agents. OV2008 cells were reported as being highly sensitive to cisplatin 
(Katano et al.,2002), SK-OV-3 cells were originally obtained from a patient with intrinsic 
resistance to clinically achievable doses of cisplatin and considered, in vitro, as semi-resistant 
to platinum (Ormerod et al.,1996), whereas Caov-3 cells were shown to be resistant to 
cisplatin (Arimoto-Ishida et al.,2004; Hayakawa et al.,1999). Furthermore, when we studied 
the action of mifepristone among ovarian cancer cell line pairs consisting of cisplatin-
sensitive parental lines and stable cisplatin-resistant sublines derived by in vitro selection 
with stepwise exposure to cisplatin, the toxicity of mifepristone did not discriminate among 
the cell lines, as we could not find a correlation between the IC50s for mifepristone and the 
IC50s for cisplatin obtained for the ovarian cancer cell lines studied (Freeburg et al.,2009a). 
These results confirm that mifepristone growth inhibits ovarian cancer cells regardless of 
their sensitivities to cisplatin.  

5. Anti-ovarian cancer effect of antiprogestins other than mifepristone: ORG-
31710 and CDB-2914 (Ulipristal) 

ORG-31710 and CDB-2914 (a.k.a. ulipristal) are two members of a family of selective 
progesterone receptor modulators with a similar structure to RU-38486, as they all contain a 

dimethylaminophenyl substitution at the 11-position that confers antiprogestin activity 
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(Belanger et al.,1981; Benagiano et al.,2008a; Moller et al.,2008) (Fig. 1). ORG-31710 and CDB-
2914, however, were designed with the aim to decrease the antagonistic effect of RU-38486 on 

the glucocorticoid receptor by substitutions made at the 17side chain (Moller et al.,2008). 
 

 

Fig. 1. Chemical structure of antiprogestins [Adapted from (Goyeneche et al.,2011)] 

Limited information is available on the oncologic value of CDB-2914 and ORG-31710. Both 
chemicals were effective in rats, reducing the growth of established DMBA-induced breast 
tumors (Kloosterboer et al.,2000; Wiehle et al.,2007). In cultured human uterine leiomyoma 
cells, CDB-2914 inhibited cell proliferation down-regulating PCNA expression and inducing 
apoptosis (Xu et al.,2005). Moreover, a randomized controlled clinical trial revealed that 
CDB-2914 reduced leiomyoma growth (Levens et al.,2008).  ORG-31710, on the other hand, 
was effective in increasing apoptosis in human periovulatory granulosa cells (Svensson et 
al.,2001). We have proved that mifepristone, ORG-31710 and CDB-2914, are all cytostatic at 
lower concentrations and lethal at higher doses towards OV2008 and SK-OV-3 ovarian 
cancer cells (Goyeneche et al.,2011). 

6. Mechanisms of antiproliferation of ovarian cancer cells by antiprogestins  

It is apparent that different antiprogestin compounds are cytotoxic to ovarian cancer cells 

displaying two main effects: (i) a cytostatic effect at lower concentrations blocking cell 

growth at the G1 phase of the cell cycle; and (ii) a lethal effect at higher doses associated 

with morphological features of apoptosis and fragmentation of the genomic DNA. The 

overall toxicity of antiprogestins involves a dose-dependent decline in the activity of the cell 

cycle regulatory protein cyclin dependent kinase 2 (Cdk-2).  

6.1 Cell cycle arrest  

Exposure of ovarian cancer cells to concentrations of mifepristone likely to be achieved in 

vivo inhibits their growth by inducing G1 cell cycle arrest without triggering cell death. This 

is consistent with the dose-dependent tumor growth inhibition achieved by mifepristone 

monotherapy in vivo in nude mice carrying subcutaneous tumors derived from human 

ovarian cancer cells (Goyeneche et al.,2007).  

The growth inhibitory effect of mifepristone on ovarian cancer cells is associated with 
inhibition of DNA synthesis, down-regulation of the transcription factor E2F1 needed for 
S phase progression, and inhibition of the activity of Cdk-2. This cell cycle regulatory 
protein is critical to promote the transition of cells in the cell cycle from G1 to S phase 
(Conradie et al.,2010). For instance, the activity of Cdk-2 is needed for the stimulation of 
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histone gene transcription (Zhao et al.,2000), which is one of the major events marking the 
entry into the S phase. To drive cell cycle progression, Cdk-2 should be free of p21cip1 and 
p27kip1 binding (Conradie et al.,2010), bound to cyclin E, and allocated to the nucleus to 
phosphorylate cell cycle regulatory proteins (Brown et al.,2004; Lents et al.,2002). 
Mifepristone, ORG-31710 and CDB-2914 affect the nucleocytoplasmic trafficking of Cdk 
inhibitors p21cip1 and p27kip1, Cdk-2 and its co-factor cyclin E. The antiprogestins also 
increase p21cip1 and p27kip1 abundances in both cytoplasm and nuclear compartments in 
correlation with decreased Cdk-2 and cyclin E nuclear levels, increased cytoplasmic cyclin 
E, and a remarkable decline in the activity of Cdk-2 in both subcellular compartments 
(Goyeneche et al.,2007; Goyeneche et al.,2011). 
Because Cdk-2 is frequently up-regulated in ovarian tumors as compared to non-cancerous 

cells (Sui et al.,2001), the potent inhibition of Cdk-2 elicited by antiprogestins may be 

critically important from a translational therapeutics viewpoint. Moreover, because 

cytoplasmic localization of Cdk inhibitor p27kip1 in ovarian cancer patients has been 

associated with poor prognosis (Rosen et al.,2005), by promoting an increase in p27kip1 in the 

nucleus, antiprogestins may be able to rescue the tight inhibitory control of Cdk inhibitors 

on Cdk-2 activity that is mostly lost in ovarian cancer.  

The magnitude of inhibition of Cdk-2 activity is related to the growth inhibition potency 
of the antiprogestins with mifepristone>ORG-31710>CDB-2914 (Goyeneche et al.,2011). 
Supporting our results, a decline in cyclin E-associated kinase activity (presumably Cdk-
2) was reported for T-47D breast cancer cells in response to ORG-31710 in the absence of 
significant changes in cyclin E and Cdk levels, but in the presence of elevated amounts of 
p21cip1, suggesting that p21cip1 contributes to the reduction in Cdk-2 activity after 
antiprogestin treatment (Musgrove et al.,1997). In ovarian cancer cells, we provide 
evidence that not only the increased association of p21cip1 and p27kip1 to Cdk-2 may 
account for the reduced Cdk-2 activity in the nucleus in response to antiprogestins, but 
also a reduction in Cdk-2 and cyclin E nuclear levels and redistribution of cyclin E to the 
cytoplasm, are related variables leading to blunt Cdk-2 nuclear activity needed for the 
cells to transit from G1 to S phase. A recent study using LNCaP prostate cancer cells 
revealed that targeting Cdk-2 to the nucleus is sufficient to prevent growth inhibition 
triggered by 1,25 (OH)2 D3 (Flores et al.,2010), suggesting that antiprogestin-mediated 
growth inhibition and growth arrest triggered by metabolites of vitamin D may share 
common molecular intermediaries. 

6.2 Cell death  

At high concentrations, the antiprogestins mifepristone, ORG-31710 and CDB-2914 blunt the 

activity of Cdk-2 leading to ovarian cancer cell death in association with morphological 

features of apoptosis, hypodiploid DNA content, fragmentation of the DNA, and cleavage 

of the executer caspase substrate PARP (Goyeneche et al.,2011). Such effects may be the 

consequence of Cdk-2 inhibition. For instance, in addition to regulating cell cycle 

progression, Cdk-2 is involved in cell survival after DNA damage (Deans et al.,2006; Huang 

et al.,2006). As a survival factor, Cdk-2 phosphorylates the FOXO1 transcription activator of 

pro-apoptotic genes, keeping them in the cytoplasm (Huang et al.,2006; 

Huang&Tindall,2007) . If the activity of Cdk-2 is abolished by an antiprogestin, then FOXO1 

may not be retained in the cytoplasm, consequently migrating to the nucleus where it 

promotes the expression of pro-apoptotic genes (Huang et al.,2006; Huang&Tindall,2007).  

www.intechopen.com



 
Antiprogestins in Ovarian Cancer 

 

213 

The lethality of high concentration antiprogestins has features of apoptosis similar to that of 

platinum-induced lethality in the same cell lines in terms of nuclear and DNA 

fragmentation (Goyeneche et al.,2011); however, the molecular mediators of antiprogestin-

induced cell death vary among the steroids. Cleavage of the caspase-3 substrate PARP is a 

commonality among mifepristone, ORG-31710 and CDB-2914. CDB-2914 also causes an up-

regulation of PARP which was previously observed in cultured human uterine leiomyoma 

cells (Xu et al.,2005). In addition, CDB-2914 causes up-regulation of the anti-apoptotic 

proteins XIAP and Bcl-2, yet cell death still ensues but with less effectiveness than that 

observed after exposure to high concentrations of mifepristone or ORG-31710, in which both 

XIAP and Bcl-2 are down-regulated after 3 days of treatment (Goyeneche et al.,2011). Thus, 

the extended up-regulation of XIAP and Bcl-2 upon CDB-2914 treatment but not after 

mifepristone or ORG-31710 may account for the reduced cytotoxic potency of CDB-2914. 

Although with different potencies, high concentrations of antiprogestins lead the cells to 

cross a cell death threshold or point of no return in which the pro-apoptotic load of the cell 

surpasses its anti-apoptotic buffering capacity. 

6.3 Progesterone receptors are not essential for the growth arrest induced by 
antiprogestins in ovarian cancer  

Because several tumors of both gynecologic and non-gynecologic origin are steroid 
hormone-dependent and express progesterone receptors, antiprogestins have been 
investigated as potential anti-cancer therapeutic agents largely based on their capacity to 
modulate progesterone receptors. However, whether the mechanism(s) through which 
antiprogestins act to induce cytostasis and lethality in cancer cells actually requires 
progesterone receptor expression remains obscure.  
When targeting cancer cells mifepristone has progesterone-like activity. For example, in T-
47D breast cancer cells and HeLa cervical adenocarcinoma cells, mifepristone induced 
progesterone-regulated reporter genes mainly when the cyclin AMP pathway was activated 
(Kahmann et al.,1998; Sartorius et al.,1993). In ovarian cancer cells, progesterone blocked cell 
growth (Syed&Ho,2003; Syed et al.,2007; Syed et al.,2001); likewise, mifepristone also 
induced cell growth arrest, though with greater potency than synthetic progestins 
(Goyeneche et al.,2007). These data suggest that the cytostatic effect of mifepristone might be 
mediated by an agonistic action on progesterone receptors.  
Nonetheless, there is ample evidence suggesting that the efficacy of antiprogestins as anti-
cancer agents may not require progesterone receptor expression. Liang and colleagues 
reported that micromolar doses of mifepristone monotherapy were able to inhibit the 
growth of estrogen receptor- and progesterone receptor-negative MDA-MB-231 breast 
cancer cells (Liang et al.,2003). In another report mifepristone, instead of blocking growth 
inhibition induced by progesterone, potentiated progesterone-mediated growth retardation 
and apoptosis (Moe et al.,2009). Such potentiation of cytotoxicity of progesterone by 
mifepristone was also observed in progesterone receptor positive MCF-7 breast cancer cells 
and progesterone receptor negative C4-I cervical carcinoma cells, suggesting that the 
presence of progesterone receptor is not essential for the anti-growth properties of both 
progesterone and mifepristone (Fjelldal et al.,2010).   
The reported level of expression of progesterone receptors in ovarian cancer cell lines is 
controversial. Progesterone receptor immuno-reactive proteins A (PR-A) and B (PR-B) were 
identified in OVCA-429 and OVCA-432 ovarian cancer cells—derived from patients with 
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late-state serous ovarian cancer—at levels higher than those found in immortalized human 
ovarian surface epithelial cells (Mukherjee et al.,2005). Papillary adenocarcinoma Caov-3 
ovarian cells were reported to express progesterone receptor mRNA in one study (Akahira 
et al.,2002) but not in another report (Hamilton et al.,1984). Similarly, studies in clear 
adenocarcinoma SK-OV-3 ovarian cells showing some and no expression of progesterone 
receptor mRNA have been published (Hamilton et al.,1984; Keith Bechtel&Bonavida,2001; 
McDonnel&Murdoch,2001). We have found low levels of progesterone receptor immuno-
reactive proteins in endometrioid OV2008 ovarian cancer cells when compared with MCF-7 
breast cancer cells used as positive control (Fig.2A). Moreover, utilizing ten cell lines 
expanding cancers from the nervous system (meningioma IOMM-Lee cells and glioblastoma 
U87MG cells), breast (estrogen-responsive MCF-7 and estrogen-unresponsive MDA-MB-231 
cells), prostate (androgen-responsive LNCaP and androgen-unresponsive PC-3 cells), bone 
(osteosarcoma U-2OS and SAOS-2 cells), and ovary (OVCAR-3 and SK-OV-3 cells), and two 
anti-progesterone receptor antibodies, we failed to detect progesterone receptor immuno-
reactive proteins in all but MCF-7 cells, yet all cell lines studied were growth inhibited by 
mifepristone (Tieszen et al.,2011). Even in MCF-7 cells carrying progesterone receptors, 
mifepristone reduced their expression, further discouraging the role of these nuclear 
receptors as mediators of the growth inhibitory effect of mifepristone given that the 
cytostatic property of mifepristone can be maintained long after the receptors are down-
regulated (Tieszen et al.,2011). 
These data rule out progesterone receptors as essential mediators of the growth inhibitory 
effect of antiprogestins. Mainstream literature on the anti-cancer effect of antiprogestin 
mifepristone assumes that it acts as a progesterone receptor antagonist, implying that the 
presence of progesterone receptors in the target tissues is a pre-requisite for mifepristone’s 
anti-growth activity. Our work challenges such a dogma (Tieszen et al.,2011), opening the 
field of study to alternate, non-classical mechanisms whereby antiprogestins operate as cell 
growth inhibitors without the necessity of nuclear progesterone receptors being present or 
operational. If these results were translated into the clinic, the presence or absence of 
classical, nuclear progesterone receptors would not be relevant and would not impact the 
usage of this drug for cancer therapy.  

6.4 Glucocorticoid receptors and the growth inhibitory activity of antiprogestins  

Antiprogestins, mainly mifepristone, may drive their anticancer action through glucocorticoid 
receptors. This is because: (i) mifepristone can bind to glucocorticoid receptors with an affinity 
similar to that of progesterone receptors (Mao et al.,1992); and (ii) ovarian cancer cells have 
been reported to express glucocorticoid receptors (Tieszen et al.,2011; Xu et al.,2003). In this 
regard, we have detected abundant levels of glucocorticoid receptor immuno-reactive proteins 

alpha (GR) and beta (GR) in SK-OV-3, OVCAR-3, and  OV2008 cells [(Tieszen et al.,2011) 
and (Fig.2B)]. When we cultured OV2008 cells in the presence of the glucocorticoid agonist 
dexamethasone at concentrations equimolar to cytostatic mifepristone, ORG-31710 or CDB-
2914, however, the antiprogestins up-regulated Cdk inhibitors p21cip1 and p27kip1 and blocked 
cell growth, but dexamethasone did not, though its activity is demonstrated by the down-
regulation of glucocorticoid receptors (Fig.2B). These data suggest that even if antiprogestins 
bind glucocorticoid receptors in the ovarian cancer cells, they may not trigger receptor 
transactivation. Supporting our observations with ovarian cancer cells, mifepristone blocked 
the growth of LNCaP prostate cancer cells that were either androgen-sensitive or -refractory, 
while competition for glucocorticoid receptors with equimolar doses of mifepristone and 
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hydrocortisone could not reverse the degree of growth inhibition achieved by mifepristone 
alone (El Etreby et al.,2000b).  
 

 
 

 
 

                                                 

Fig. 2. (A) Expression of progesterone receptor isoforms (PR-A and PR-B) and glucocorticoid 

receptors (GR and GR) in OV2008 ovarian cancer cells. Whole cell extracts (WCE) from 
MCF-7 cells were used as positive control for progesterone receptor expression. To detect 
progesterone receptor proteins in OV2008 cells, we worked with cells growing exponentially 
and increased the WCE loading 4-fold with respect to MCF-7. (B) Effect of equimolar 
concentrations of antiprogestins and dexamethasone (DEX) on OV2008 ovarian cancer 

growth. Cells were exposed to vehicle (VEH), 20 M mifepristone (RU-38486), ORG-31710, 
CDB-3914 (ulipristal) or DEX for 72 h. Cell growth (B, upper panel) was analyzed by 
microcytometry and protein expression (B, lower panel) by Western blot. Bars, mean± SEM.  

Mifepristone has potent anti-glucorticoid activity (Baulieu,1991; Benagiano et al.,2008c) . 

Indeed mifepristone  binds GR with mostly antagonistic activity; yet it may have agonistic 

B

A 
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potency depending on the concentration of glucocorticoid receptors in the cell (Zhang et 

al.,2007). Although GR has been considered a dominant-negative regulator of GR(Oakley 
et al.,1999; Taniguchi et al.,2010; Yudt et al.,2003),  it was also reported that mifepristone was 

the only compound of 57 potential natural and synthetic ligands to bind the GR receptor 
isoform, and that interaction of GRβ with mifepristone led to its nuclear translocation 
(Lewis-Tuffin et al.,2007). This latter study also found that despite its classification as a 

dominant-negative isoform lacking transcriptional activity, GR was able to regulate gene 

expression in the absence of GR, and this activity was modulated by the interaction with 

mifepristone. A more recent study also reported intrinsic transcriptional activity of GR 

independent of GR, but neither found an association between mifepristone binding and 

nuclear translocation of GR nor could detect modulation of GR transcriptional activity by 
mifepristone (Kino et al.,2009), adding controversy to the actual activity of mifepristone on 

GR. This evidence and our results encourage performing more studies to underscore a role, 
if any, for either isoform of the glucocorticoid receptor on the anti-growth activity of the 
antiprogestin mifepristone. 

6.5 Other potential targets of antiprogestins when operating as cell growth inhibitors 

A possibility exists that antiprogestins may have an effect that does not involve specific 

hormone receptors. In this regard, mifepristone was shown to have a potent antioxidant 

activity reflected at micromolar concentrations and likely caused by the dimethylamino 

phenyl side chain of the molecule (Parthasarathy et al.,1994). Furthermore, the growth 

inhibitory action of mifepristone in endometrial cells and macrophages was attributed, at 

least in part, to the antioxidant property of the compound (Murphy et al.,2000; Roberts et 

al.,1995). A putative antioxidant effect of mifepristone on ovarian cancer cells could be 

interesting in the context of G1 arrest associated with p21cip1 upregulation, because p21cip1 

can be induced in response to some antioxidants in a p53 independent manner 

(Liberto&Cobrinik,2000; Liu et al.,1999). We have shown that growth arrest caused by 

mifepristone is associated with p21cip1 increase in p53 wild type OV2008 cells and in p53 null 

SK-OV3 cells, opening the possibility for mifepristone acting as an antioxidant to drive G1 

arrest through a p53-independent up-regulation of p21cip1.  
Another potential target of antiprogestin action is the ubiquitin-proteasome system (UPS). 
This idea is based on the following facts:  (i) to transition from G1 to S phase and to commit 
to DNA synthesis, the cells must degrade the Cdk-2 inhibitors p27kip1 and p21cip via the 
Skp1-Cullin-F-box protein/Skp2 (SCFSkp2) E3 ubiquitin ligase complex (Bornstein et al.,2003; 
Tsvetkov et al.,1999). This requires the Cdk-2-dependent phosphorylation of p27kip1 on 
Thr187 (Tsvetkov et al.,1999) and p21cip1 on Ser130 (Bornstein et al.,2003); (ii)  antiprogestins 
have a dual effect blocking Cdk-2 activity and triggering the accumulation of p21cip1 and 
p27kip1, and these Cdk-2 inhibitors rely on the UPS for their disappearance to enforce the 
orderly progression of the cell cycle from G1 to the S phase;  (iii) there are remarkable 
similarities in the behavior of antiprogestins and proteasome inhibitors in inducing p21cip1 
and p27kip1 accumulation before triggering caspase-associated lethality (Bazzaro et al.,2006; 
Freeburg et al.,2009a; Goyeneche et al.,2007).  It is therefore possible that antiprogestins 
induce G1 growth arrest by interfering with the proteasome-mediated degradation of 
p27kip1/p21cip1, leading to Cdk-2 inhibition. It is also reasonable that the sustained levels of 
p27kip and p21cip1 in response to cytostatic doses of antiprogestins are the consequence of a 
reduced recognition of the Cdk inhibitors by the UPS.  Because ovarian cancer cells function 
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with high activity of the UPS (Bazzaro et al.,2006), this proteolytic machinery may be 
degrading Cdk inhibitors at a high rate, causing the reduced basal levels we found in 
ovarian cancer cells, thus favoring their proliferation. Antiprogestins may mitigate this 
process.  
An additional potential mechanism mediating the anti-cell growth activity of 
antiprogestins is the induction of stress of the endoplasmic reticulum. A recent study 
showed that mifepristone induced an atypical unfolded protein response (UPR) in non-
small lung cell carcinoma cells (Dioufa et al.,2010). The role of the endoplasmic reticulum 
responding to antiprogestins triggering the UPR, which could lead to either survival or 
death depending on the concentration of antiprogestins, is a provoking hypothesis that 
should be explored.  
The newly discovered progesterone receptor membrane component 1 (PGRMC1) 

(Gellersen et al.,2009; Rohe et al.,2009) or the family of membrane PRs (mPR 
(Dressing et al.,2011; Gellersen et al.,2009; Thomas et al.,2007) may also mediate the anti-
tumor effect of antiprogestins. For instance, PGRMC1 expression increases while cognate, 
nuclear progesterone receptor decreases in advanced stages of ovarian cancer, and 
overexpression of PGRMC1 interferes with the lethality of cisplatin,  suggesting a survival 
role for PGRMC1 in ovarian cancer development (Peluso et al.,2008).  In a panel of 

ovarian cancer cell lines expressing mPR, mPR, and mPR, but not cognate nuclear 
progesterone receptors, exposure to progesterone mediated the expression of pro-
apoptotic proteins via activation of JNK and p38 MAPKs (Charles et al.,2010). Given that 
at micromolar concentrations the antiprogestin mifepristone operates as an agonist on 

both mPR and mPR when expressed in yeast (Smith et al.,2008), it is conceivable that 
antiprogestins carrying a similar structure (Fig.1) may mediate antiproliferation of cancer 
cells acting as agonists of mPRs.   

7. Strategy to utilize antiprogestins in ovarian cancer therapeutics 

7.1 Blockage of ovarian cancer re-growth after platinum therapy 

We validated an in vitro model of ovarian cancer cell repopulation taking place among 
courses of lethal cisplatin therapy. Using this in vitro model system, we demonstrated that  
intertwining cytostatic concentrations of the antiprogestin mifepristone in between courses 
of cisplatin treatment is an efficacious strategy to prevent repopulation of ovarian cancer 
cells leading to a better treatment outcome; in addition, we found that chronic exposure to 
mifepristone after cisplatin enhances the killing efficacy of this cross-linking agent (Freeburg 
et al.,2009b). In this study, although the majority of the cells in the culture succumbed to the 
lethality of cisplatin, there were isolated cells that survived the treatment. These cells, 
because of their scarcity in the culture plate, may be easily missed in routine cell cultures if 
long-term follow-up is not conducted.  When such a population of remnant cells that 
escaped the toxicity of platinum was exposed to cisplatin-free medium, the cells relapsed 
and repopulated the culture.  We were able to document the relapse of highly sensitive 
OV2008 cells after three rounds of cisplatin treatment. The OV2008 cells repopulating after 
cisplatin incorporated more BrdUrd into their DNA when compared with exponentially 
growing, untreated cells, suggesting that an increased number of cells synthesizing DNA 
may be a product of accelerated cell repopulation (Kim&Tannock,2005). When antiprogestin 
mifepristone was utilized chronically in between cisplatin treatment intervals, the cells that 
survived the treatment did not synthesize DNA, did not repopulate, and had a very poor 
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clonogenic survival capacity, suggesting a permanent DNA damage to the cells not 
compatible with their survivability.   
The nature of the cells that escape the lethality of cisplatin remains to be determined. There 

is a possibility that cisplatin is killing only the population of differentiated cancer cells 

representing the bulk of the culture, but not the scarce tumor initiating cells with the 

capacity to regenerate the culture, and that appear to be resistant to most common DNA 

damaging agents (Kvinlaug&Huntly,2007). The presence of tumor initiating cells in ovarian 

cancer cell lines, however, has yet to be confirmed.  

Alternatively, antiprogestins may block repopulation of cells after cisplatin by interfering 

with a cellular process termed reverse polyploidy or neosis (Erenpreisa&Cragg,2007; Illidge 

et al.,2000; Sundaram et al.,2004). Cancer cells develop the capacity to escape DNA damage 

caused by pharmacological doses of platinum agents by reverse polyploidy, leading to the 

formation of diploid, rapid proliferating cells with increased platinum resistance (Puig et 

al.,2008). Thus, it is feasible that antiprogestins, when used chronically, block post-platinum 

repopulation by preventing reverse polyploidy. This hypothesis is based on the observation 

that OV2008 cells repopulating after cisplatin exposure show giant cells together with a 

nascent population of small cells (Freeburg et al.,2009b) that may originate from the likely 

polyploid, giant progenitors. Cultures treated with antiprogestins after platinum do not 

show this small pool of repopulating cells and instead display an overall reduced number of 

cells, with predominance of a giant phenotype that ends up committing suicide as marked 

by cleaved PARP positivity (Freeburg et al.,2009b).  

7.2 Potentiation of platinum induced lethality by antiprogestins 

We proved that intertwining cytostatic concentrations of antiprogestin mifepristone in 

between courses of lethal cisplatin-based chemotherapy not only resulted in an efficacious 

strategy to prevent repopulation of cancer cells in between lethal platinum treatment 

intervals, but it also potentiated the killing efficacy of cisplatin (Freeburg et al.,2009b).  

When ovarian cancer cells are exposed to only mifepristone therapy, the cell cycle is 
arrested in the G1 phase (Goyeneche et al.,2007; Rose&Barnea,1996). However, when 
antiprogestin mifepristone is added after cisplatin, the cells tend to accumulate at the S 
and/or G2/M phases rather than in G1 (Gamarra-Luques&Telleria,2010). This 
phenomenon may provide the rationale for the potentiation of platinum therapy by the 
antiprogestin.  It is known that cisplatin treatment leads to a transitory S or G2 cell cycle 
arrest, which is utilized by the cells as an opportunity to repair any damaged DNA; 
however, if the DNA damage is significant and the DNA repair mechanisms cannot 
operate, the cells usually trigger their own demise (Sorenson et al.,1990). Thus, 
mifepristone may be a disruptor of the DNA damage and repair pathways operating after 
cisplatin exposure. Consequently the cells would enter an unscheduled mitosis with 
damaged DNA, which usually would trigger a cell death mechanism due to mitotic 
failure (Vakifahmetoglu et al.,2008).  Partial support for this hypothesis is that cells 
receiving the combination treatment of cisplatin followed by mifepristone show an 
elevated percentage of cells allocated to the M phase of the cell cycle suggested by 6-fold 
overexpression of the mitotic marker, phospho-histone H3, when compared to cisplatin-
only treated cultures (Freeburg et al.,2009b). This result, together with the data showing 
that the cultures receiving cisplatin followed by mifepristone express 4-fold more cleaved 
PARP compared with cultures receiving only cisplatin (Freeburg et al.,2009b), indicate 
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that cells chronically exposed to mifepristone after receiving lethal platinum therapy not 
only are unable to repopulate, but are also likely to die transiting into an unscheduled 
mitosis that could trigger cell death (i.e. mitotic death).   
Mifepristone may be interfering with early steps in the DNA damage response pathway that 
lead to a failure of cells to arrest in the G2 phase when challenged with cisplatin. This 
rationale is supported by data generated utilizing the Chk-1 kinase inhibitor UCN-01 (7-
hydroxystaurosporine), which as a single agent is able to induce G1 growth arrest in non-
small-cell lung carcinoma similar to the effect observed in ovarian cancer cells treated with 
mifepristone alone (Goyeneche et al.,2007). When UCN-01 was used after cisplatin, 
however, the combination was synergistic in terms of growth inhibition likely by reducing 
the time cells spend in the S or G2 phases to operate the DNA damage check point in order 
to allow repair the DNA damage induced by platinum (Mack et al.,2003).   
We demonstrated that the cytostatic effect of mifepristone in ovarian cancer cells associates 
with an abrupt reduction in the activity of Cdk-2 (Goyeneche et al.,2007). In addition to its 
role in the cell cycle and cell survival previously stated, Cdk-2 has been implicated in DNA 
repair. For instance, the DNA repair machinery is dysfunctional in Cdk-2 deficient cells, and 
cells lacking the DNA repair component of BRCA1 are prone to cell death in response to 
Cdk-2 inhibition (Deans et al.,2006). This role played by Cdk-2 in the DNA repair process 
provides the rationale for a synergistic interaction of Cdk-2 inhibition and DNA damaging 
agents in the killing of cancer cells and could also explain the potentiation by mifepristone 
of platinum-induced lethality of ovarian cancer cells.  
Another hypothesis as to how antiprogestin mifepristone can facilitate the lethal effect of 
cisplatin is based upon its capacity to abrogate the expression of the E2F1 transcription 
factor (Goyeneche et al.,2007). E2F1 is needed to regulate the expression of genes involved in 
the nucleotide excision DNA repair pathway (NER) (Berton et al.,2005), which is a major 
mechanism needed to repair ~90% of the platinum-DNA intrastrand crosslinks (Cepeda et 
al.,2007; Helleday et al.,2008; Kelland,2007; Rabik&Dolan,2007). Because in ovarian cancer 
increased expression of the endonuclease ERCC1 (excision repair cross-complementing-1) 
involved in NER has been correlated with cisplatin resistance (Li et al.,2000), and antisense 
RNA against ERCC1 sensitizes ovarian cancer cells to the lethality of cisplatin 
(Selvakumaran et al.,2003), it is possible that mifepristone potentiates cisplatin lethality by 
interfering with the functionality of the NER pathway. Antiprogestins may also  dysregulate 
the homologous recombination DNA repair pathway responsible to repair the ~10% DNA 
interstrand crosslinks induced by platinum agents; this avenue is of relevance as it is 
apparent that despite the majority of cisplatin binds DNA via intrastrand crosslinks, it is the 
low percentage of DNA interstrand crosslinks which causes most of its lethality 
(Wang&Lippard,2005; Wang et al.,2011). 

8. Clinical relevance of repurposing antiprogestins for ovarian cancer 
treatment 

Based upon the evidence presented earlier in this chapter, antiprogestins—of which 
mifepristone and ulipristal are approved by the United States Food and Drug 
administration for reproductive medicine—can be re-purposed for another modality-of-use 
as part of the chemotherapeutic armamentarium for ovarian cancer patients. The translation 
of antiprogestin therapy to the clinic may have an impact in two manners: (i) adding an 
antiprogestin between rounds of platinum-based therapy should prevent the repopulation 
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of ovarian cancer cells that escape the lethality of the platinum derivative, and improve 
treatment success in a synergistic manner when followed by antiprogestin maintenance 
therapy (compare models in Figs.3A vs.3B); and (ii) working as a single, cytostatic agent, a 
prototypical antiprogestin may be used for chronic maintenance therapy following lethal 
platinum agents to delay or avoid disease recurrence in a similar manner anti-estrogens are 
used to treat some cohorts of breast cancer patients (Osipo et al.,2004) (compare models in 
Figs.3A vs.3C).  
 

 
 

                                                
 

                                                 

Fig. 3. Clinical translational impact of the use of antiprogestins (AntP) in the context of 
platinum (Pt) based chemotherapy for ovarian cancer 
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9. Conclusions 

We have described a novel modality of action of antiprogestins acting as cytotoxic agents 
towards ovarian cancer, displaying a cytostatic effect at lower concentrations blocking cell 
growth at the G1 phase of the cell cycle, and a lethal effect at higher doses in association 
with morphological features of apoptosis and fragmentation of the genomic DNA. We have 
distinguished between lethal and cytostatic actions of these synthetic steroids, and provided 
evidence that Cdk-2 is involved as a downstream target of the anti-cancer effect of the 
drugs. Moreover, the remarkable increase in the number of dying cells when antiprogestin 
mifepristone followed cisplatin exposure (Freeburg et al.,2009b; Gamarra-
Luques&Telleria,2010) raises hope that adding antiprogestins to the platinum-based 
chemotherapeutic schedule in ovarian cancer should allow reducing either the number of 
platinum cycles or the dose of platinum without losing efficacy in terms of inhibition of 
tumor growth, yet reducing unwanted side effects. Consequently, the scheduling of 
antiprogestins between and/or after courses of platinum-based therapy for human ovarian 
cancer has reasonable potential for improving treatment success, extending the quality and 
quality of life of patients suffering from this disease. 
We have provided data supporting the feasibility for re-repurposing or re-repositioning of 
antiprogestins originally designed to operate as antiglucocorticoid or antiprogestins, to 
chronically treat ovarian cancer patients, as it is currently done with antiestrogen therapy 
for breast cancer. In particular, the emergent role of ORG-31710 and CDB-2914 having far 
less antiglucocorticoid effects than mifepristone but maintaining its anti-ovarian cancer 
properties is promising for translation to the clinic. 
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