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1. Introduction 

It is more than 100 years since the first Mycobacterium was isolated by Hansen (1874). That 
was leprosy bacillus, Mycobacterium leprae, which even today is still resisting all attempts to 
cultivate it in the laboratory. The tubercle bacillus, M. tuberculosis was discovered eight years 
later by Robert Koch (1882). The Koch discovery was confirmed by more efficient staining 
models of Ehrlich (1887) and Ziehl- Neelsen (1883). Under Light microscope, the tubercle 
bacilli typically appear as straight or slightly curved rods. According to growth conditions 
and age of the culture, bacilli may vary in size and shape from coccobacilli to long rods. The 
dimensions of the bacilli have been reported to be 1-10 µm in length (usually 3-5 µm), and 
0.2 -0.6 µm width. The possibility of morphological variations in tubercle bacilli was 
suggested by few investigators like Malassez and Vignal (1883), Nocard and Roux (1887), 
Metschnikoff (1888), Lubarsch(1899), Fischel(1893), and Vera and Rettger (1939). They 
showed under unfavorable conditions, i.e., a limited food supply, or oxygen deprivation, 
Mycobacterium assumed a swollen appearance without forming the vacuolar or globoid 
bodies (Vera and Rettger, 1939). These early reports were based on stained preparations and 
were subjected of severe criticism (Porter and Yegian, 1945). Today with advances in 
microscopic technique i.e., transmission electron microscope (TEM), scanning electron 
(SEM) and atomic force microcopy (AFM), almost all of investigators have been agreed that 
the Koch bacillus does not always manifest itself in the classical rod shape (figure 1). They 
become shorter in older cultures, filametous within macrophages and ovoid during 
starvation (Young et al., 2005; Farnia et al., 2010; Shleeva et al., 2011) and they may produce 
buds (Chauhan et al., 2006) and branches in extensively drug resistance strains (XDR-TB) 
(Velayati et al 2010; Farnia et al 2010). In the following parts the underlying mechanisms that 
may help the bacilli to change its morphology was highlighted.  

2. The role of cell wall in shape maintenance 

The cell wall of mycobacterium is characterized by a unique structure which is caused by 
partly distinct chemical compositions in comparison with the cell wall of other bacteria 
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(Koike and Takeya, 1961; Imaeda and Ogura, 1963; Imaeda et al., 1969). These variations are 
thought to be advantageous in stressful conditions of osmotic shock or desiccation as well as 
contributing to their considerable resistance to many drugs (Jarlier and Nikaido, 1990). The 
Mycobacterial cell wall, in principal, consists of an inner layer and an outer layer that 
surround the plasma membrane (Hett and Rubin, 2008). The outer compartment consists of 
both lipids and proteins (Draper, 1971, 1998; Draper et al., 1998; Brennan and Nikaido, 1995; 
Brennan, 2003). The inner compartment consists of peptidoglycan (PG), arabinogalactan 
(AG), and mycolic acid (MA) covalently linked together to form a complex known as MA-
AG-PG complex that extends from the plasma membrane outward in layers, starting with 
PG and ending with MAs. The Peptidoglycan, which forms the “backbone’ of the cell wall 
skeleton,was first studied by Misaki et al (1966). It belongs to a family of structures 
possessed by almost all bacteria and blue-green algae but by no other type of living 
organism (Schleifer and Kandler, 1977); its presence in mycobacteria provides conclusive 
evidence that they are not, as was once believed, some sort of intermediate stage between 
bacteria and fungi. The peptidoglycon is made of peptides and glycan strands. The long 
glycan strand typically consists of repeating N-acetylglucosamines (NAGs) linked to  
N-acetylmuramic acid (NAM). These strands are cross linked by peptides bound to the 
lactyl group on NAMs from different glycan strands. These peptide chains normally consist 
of L-alanyl-D-iso-glutaminyl-meso-diaminopimelic acid (DAP) from one strand linked to the 
terminal D-alanine residue from L-alanyl-D-iso-glutaminyl-meso- DAP-D-alanine from a 
different strand (Kotani et al., 1970; Wietzerbin et al., 1974). This highly cross-linked glycan 
meshwork of PG that surrounds bacteria is the primary agent that maintains bacterial shape. 
The structure of this stratum differs slightly from that of common bacteria, as it presents 
some particular chemical residues and unusual high number of cross-links. Indeed, the 
degree of peptidoglycon cross linking in the cell wall of M. tuberculosis is 70-80%, whereas 
that in E. coli is 20-30%. (Matsuhashi, 1994; nVollmer and Holtje,2004). PG isolated from  
E. Coli retains its rod –like shape even in the absence of all other material (Weidel et al., 1960; 
Weidel and Pelzer, 1964), confirming its role in shape maintenance. Also, treatment of 
bacteria with lysozyme which degrades PG, results in rod shaped cells becoming round 
spheroplasts (Lederberg, 1956). Spheroplasts, or round bacteria lacking PG, can be formed in 
M. smegmatis through degradation of PG. Upon transfer to growth media, the spherical 
bacteria are able to regenerate wild-type rod -shaped cells (Udou et al., 1982). This occurs 
through elongation of bacteria that then branch, septate and fragment. These data argue that 
shape and size are not simply governed by existing PG, but there must be some genetic 
heritable determinant also.  

3. Peptidoglycan synthesize 

Little is known about the biosynthesis of the peptidoglycan of M. tuberculosis. However, it is 
generally assumed to be similar to that of E. coli (van Heijenoort, 1998). Generally, 
peptidoglycan synthesis occurs in four sequential steps. First, inside the cytoplasm, soluble 
substrates are activated and peptidoglycon units are build. Glucosamine is enzymatically 
converted into MurNAc and then energetically activated by a reaction with uridine 
triphosphate (UTP) to produce uridine diphosphate –N-acetylmuramic acid (UDP-MurNAc) 
(De Smet et al., 1999). Second, at cytoplasmic membrane, the units UDP-MurNAc 
pentapeptide is attached to the bactoprenol “ conveyor belt”, through a pyrophosphate link 
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with the release of uridine monophosphate (UMP)(Crick et al., 2001; Yuan et al., 2007). Third 
the bactoprenol molecule translocates the disaccharide pentapeptide precursor to the 
outside of the cell. The GlcNAc-MurNAc disaccharide is then attached to a peptidoglycan 
chain using pyrophosphate link between itself and the bactoprenol as energy to drive the 
reaction. The pyrophosphobactoprenol is converted back to a phosphobactoprenol and 
recycled. Fourth, outside the cell but near the membrane surface, peptide chains from 
adjacent glycan chains are cross-linked to each other by a peptide bond exchange 
(transpeptidation) between the free amine of the amino acid in the third position of the 
pentapepide (e.g., lysine) or the N-terminus of the attached pentaglycine chain and the  
D-alanine at the fourth position of the other peptide chain, releasing the terminal D-alanine 
of the precursor (Wietzerbin et al., 1974; Ghuysen, 1991).  

4. Control of peptidoglycan synthesis 

Enzymes involved in remodeling PG can be grouped as either biosynthetic or hydrolytic. 
Biosynthetic enzymes include transglycosylase and transpeptidase domains, often found on 
a single, bifuntional protein. Hydrolytic enzymes include muramidase, glucosaminidase, 
lytic transglycosylase, amidase, endopeptidase and carboxypeptidase (Young, 2003; Cabeen 
and Jacobs-Wagner, 2005). The reaction of these enzymes may be antagonistic, or they may 
physically interact to form complexes capable of breaking bonds to generate openings for 
new monomers, while also forming bonds necessary to unit PG strands. The production of 
these enzymes should be regulated, otherwise the bacterial cell wall would be degraded and 
the bacteria would be lyses. There are several ways to governorate these enzymes; one 
method is through formation of complexes with other proteins (Hett and Rubin, 2008).These 
proteins could suppress the activity of the enzyme, or they could be enzymes themselves 
with antagonistic reactions that join rather than degrade PG. Another possibility is that the 
enzymes are sequestered from their substrate until they needed. A third method could be 
that the appropriate substrate is not made available until cleavage of it is required.  

5. The role of PG in cell shape regulation 

The PG –synthesizing enzyme organize into complexes that likely contributes to the 
resulting shape. Various models have been proposed which explain how this organization 
affects the bacterial shape. The two –competing sites” model (TCS) for peptidoglycan 
assembly advocates that, in bacterial rods, the shape depends on the activity of two 
biochemical reactions (sites) which occur in the terminal stages of peptidoglycan synthesis; 
one site is responsible for lateral wall elongation , and the other is responsible for septum 
formation (Lleo et al., 1990; Alaedini and Day, 1999). The two sites compete with each other 
in such a way that the lateral wall is not extended during septum formation and vice versa 
(Lleo et al., 1990; Satta et al .,1994). The actual shape of the bacteria is thus determined by the 
balance between the two competing reactions, correct balance leading to normal rods; 
abnormal prevalence of the site for lateral wall elongation leads to long rods or filaments, 
whereas prevalence of the site for septum formation leads to formation of coccobacilli or 
cocci (Lleo et al., 1990). The other bacteria carry only one site for peptidoglycan assembly 
which can form only septa and can grow only as cocci. Another model is “three –for –one “ 
predict the insertion of PG along a track, using an existing strand of PG as a template 
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(Holtje, 1998). This result in doubling the length in one direction, but since following a 
strand, no additional length is added in the direction perpendicular to the strand. Thus 
width would stay constant. Another theory as to how cells maintain a constant width posits 
that the poles are capped with a type of PG that prevents rapid turnover or insertion of new 
PG (De Pedro et al., 1997). Thus, the caps would restrict the width of the bacterium 

6. How the shape remain constant 

Uniform cell shapes are favored by the need to segregate the chromosome and cytoplasmic 
material between daughter cells (Errington et al., 2003). The regular shape would seem to be 
the best way to ensure each daughter, because a symmetrical cell can be halved accurately 
by mechanisms that measure length or volume (Helmstetter et al., 1990; Young, 2006). In an 
irregular cell, misplaced septation might leave one cell with both chromosomes or with 
more than its fair share of other components. Therefore, once a particular shape is adapted 
bacteria have a vested interest in keeping it (Stewart, 2005). The major incentive for doing so 
is to maintain a consistent relationship between cytoplasmic volume and surface area so that 
cell cycle events can be coordinated properly. This is visualized by considering the septation 
event that creates two daughter cells (Harry, 2001; Errington et al., 2003). The septum is 
formed through the in-ward growth of cytoplamic membrane and cell wall material that 
invaginates from opposing directions at the central plane of the cell. In such case, the 
concentration of essential division proteins will not change, but the surface area over which 
they must act will be greater in the sphere. The amounts of these proteins, if optimized for 
dimensions of a rod , might not be sufficient to initiate or complete normal septation and 
division in a coccus (Young, 2006). Thus limited concentrations of division proteins will 
dictate that the cell maintain a specific and constant diameter. To do this, bacteria must 
coordinate events spatially and temporally. Recently it was shown that the divisome will 
assemble at midcell, before chromosomes partitioned. The divisome consists of a set of 10 to 
15 proteins that are required to the middle of the cell and are responsible for generating the 
septum that divides two daughter cells (Margolin, 2006; Buddelmeijer and Beckwith, 2002). 
This is accomplished by synthesizing septal PG, constricting the cell wall to eventually close 
off the cytoplasmic compartments of each daughter cell, and finally hydrolyzing part of the 
PG that holds two together in order to physically separate the cells. These divisome proteins 
(FtsA, FtsB, FtsE, FtsI, FtsK, FtsL, FtsN, FtsQ, FtsW, FtsX, FtsZ, Zip A, AmiC and EnvC) 
encoded in different bacterial genomes and have different function (Di Lallo et al., 2003; 
Karimova et al., 2005; Vicente and Rico, 2006). The FtsZ is the first protein to assemble at 
midcell (Bi and Lutkenhaus, 1992). Its formation of a ring around the cell, just under the 
plasma membrane, gives the assembled divisome the name Z ring. This sub cellular 
organelle, a functional analog of the contractile ring used in cytokinesis of many eukaryotic 
cells, is thought to form the scaffold for recruitment of the other key cell division proteins. In 
E. coli, successful cell division depends on a constant and critical concentration of Ftsz 
combined with proper proportions of Z-ring stabilizing and destabilizing proteins. 
Significantly, small changes in the concentrations of FtsZ or other essential division proteins 
disrupt cell growth. Thus, division is inhibited if FtsZ is under produced, extra divisions 
occur if the protein is overproduced and no division occurs if FtsZ levels are adequate but 
FtsZ/FtsA ratio is incorrect (Errington et al., 2003; Maki et al., 2000; Chauhan et al., 2006).  
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7. Shape variation 

The tubercle bacillus is a prototrophic (i.e., it can build all its components from basic carbon 
and nitrogen sources) and heterotrophic (i.e., it uses already synthesized organic 
compounds as a source of carbon and energy), metabolically flexible bacterium( Edson, 1951; 
Ramakrishnan et al., 1972; Niederweis, 2008). The success of tubercle bacilli as a pathogen 
can be attributed to its extraordinary capacity to adapt to environmental changes 
throughout the course of infection. Generally, the nutritional quality and physical 
conditions will determine the temporary lifestyle of bacillus. These changes include: 
nutrient deprivation, hypoxia, temperature, PH, salinity and various exogenous stress 
conditions (Vera and Rettger, 1939; Smeulders et al., 1999; Honer et al., 2001; Young et al, 
2005; Anuchin et al., 2009; Velayati et al, 2009; Farnia et al., 2010; Singh et al., 2010; Shleeva et 

al., 2002, 2010). Unfortunately, in most of cases we do not know if shape per se is beneficial, 
because few experiments have addressed the question. Knowledge of the physiology of M. 

tuberculosis during this process has been limited by the slow growth of the bacterium in the 
laboratory and other technical problems such as cell aggregation. Recent advances in 
microscopy techniques have revealed adaptive changes in size and shape of bacilli under 

 
Fig. 1. Scanning electron microscope shows shape variation in M. tuberculosis at exponential 
phase of growth. 
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stress conditions (Velayati et al., 2009,2011; Farnia et al., 2010). Briefly, the reported 
morphological variation in M. tuberculosis are classified into two categories; those which 
frequently seen at exponential phase of growth that is rod, V, Y-shape, branched or buds, 
and those that are seen occasionally under stress or environmental conditions which are 
round, oval , ultra-virus, spore like, and cell wall defiant or L-forms.  

8. Shape variations during active or exponential phase of growth 

The most classical form of tubercle bacilli is a slender rod shape that seen in stained smears. 
They have smooth, homogenous cytoplasm with clear-cut and well-define outlines. The first 
electron microscope images of the tubercle bacilli were obtained in 1939 in the laboratories 
of the Technische Hochschule, Berlin.  

von Borries and E. Ruska (1939) published electron micrographs of the avian strain of 
tubercle bacilli magnified 26,000 times. The cytoplasm of these bacilli contained dark bodies 
of different sizes. Later on, Lembke and Ruska (1940), culture the bacilli on petragnani 
medium and observed up to eight large bodies inside the cytoplasm of bacilli. Rosenblatt, 
Fullam and Gessler (1942) in their studies of tubercle bacilli in the electron microscope, 
confirmed many earlier observation and added some new data, particularly concerning the 
internal structure of bacilli. The bacilli varied in size. The size of the strain H37 sub-cultured 
at Columbia University varied from 4.3µ X 0.4µ to 1.0µ X 0.2µ. The cell wall was always 
present (sometimes it was as thick as 0.03µ) and contained granules. The internal structure 
showed dense nuclear masses within the granular cytoplasm. The density of the cytoplasm 
varied; it contained many granules and vacuoles of different sizes. Later on it became clear 
that the cytoplasm of young cells is dense, the basic dyes stain it deeply and uniformly, and 
it contains vacuoles and hyper chromic bodies. The cell protoplast was seen surrounded by 
a 0.023µ thick and ductile cell wall. The cytoplasm itself was covered with a thin 
cytoplasmic membrane which closely adhered to the cell wall (Rosenblatt et al., 1942; Knaysi 
et al., 1950; Werner, 1951; Draper, 1982). In rod like bacilli, the process of cell division 
resembles that of most grams –positive bacteria (figure, 2). In the equatorial zone of the cell, 
on the inner side of the cell wall, a double cell plate was formed. The growth of this plate 
proceeded till the mother cell wall was divided into two daughter cells. The separation of 
newly formed cells occurred between these plates, which then covered the poles of the right 
and left cells. Before the cytoplasm divided, the division of cellular bodies was observed 
(Edwards, 1970; Nishiura et al, 1970; Dhal, 2004).  

The other types of cell shape (V or Y - shape bacilli) occurs in lower frequency (Dahl, 2004; 
Farnia et al 2010). The V-shape bacilli are caused by snapping post-fission movements 
(Krulwich and Pate, 1971). The term “snapping division” was first described by Kurth (1898) 
and has been reported by many other investigators. Upon completion of cell division, one or 
both of the two daughter cells suddenly swing around, bringing their distal ends closer 
together while still remaining attached by a small region at their proximal ends. The exact 
mechanism responsible for snapping postfission movements is not clear. Bisset (1955) 
claimed that all so-called postfission movements were nothing but artifacts due to 
mechanical stress on the dividing cells (e.g., cells growing between solid agar and a cover 
slip) and would not occur if the same cells were grown in liquid cultures. Sguros (1957) 
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suggested that V-forms resulted from “germ tube extrusions” from each of a pair of attached 
arthrospores and were not due to postfission movements. More studies have demonstrated 
that snapping division or V-forms could arise by any of three methods: (I) germination of 
adjacent coccoid elements, (ii) subpolar germination (budding) of rods, and (iii) snapping 
postfission movements (Starr and Khan, 1962). In mycobacterium, during septum formation 
the plasma membrane and inner cell wall grow inward but the outer cell wall layer remains 
intact. Upon completion of septum formation with a cross-wall, the inner layer may 
continue to grow and thus exert pressure upon the outer cell wall layer. The outer layer 
eventually ruptures first on one side of the cell, and the two daughter cells bend in on the 
side where the outer layer is still intact forming a “V-form (Dahl,2004; Farnia et al,2010; 
Malhotra et al., 2010)  

Mycobacterium is known to form a “Y-shaped “cells with branches more interior to the cells 
and of greater length figure 3. Brieger et al in 1954, was among the first scientist who 
demonstrate the branching in the reproductive cycle of M. avium. He showed that young 
culture of bacilli when first transplanted to fresh medium it consists mainly of short 
coccoid rods. These elongate into filaments (8-10µ) which continue to divide and grow 
during a phase of filamentous proliferation. The filaments usually have two fully  

 
Fig. 2. Atomic force microscopy shows the V-shape M. tuberculosis during exponential phase 
of growth 
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developed dense bodies in polar positions and in some organisms a number of smaller are 
also seen scattered among the cellular units and apparently associated with them. The final 
stage in the reproductive cycle led to a massive production of small rods. At this phase the 
filaments suddenly break down into masses of short rods which elongate to form the new 
generation and the cycle is complete. Under electron microscope, it was seen that the 
filaments were quite separate, and there was no true branching and that the mycelia 
appearance was produced because the filaments often remained stuck together. In another 
study, Mizuguchi Y et al (1985) showed β-Lactam antibiotics at low concentration induced 
filamentous cells in the M. avium-intracellular complex. Although, the mechanisms of 
induction of filamentous cells appeared to be different according to the drugs used. 
Ampicillin induces filaments by inhibiting the septation in a manner similar to its effect on 
E. coli, whereas cephazolin induces filaments but does not inhibit septation. In  
M. tuberculosis, branches were first seen as a small bud that does not grow to any 
appreciable size before breaking off as a separate cell. Few studies suggested that M. 
tuberculosis grows from the ends of bacilli and not along the length of the cylinder as seen in 
other well-characterized rod shape bacteria (Thanky et al., 2007). This might be true for 
susceptible isolates, but recently Farnia et al (2010) showed that in highly drug resistance 
strains i.e., XDR-TB and Totally or Extremely drug resistant isolates (TDR or XXDR-TB), 
branches produce along the cylinder. In fact, about 20 -24% of cells in XDR and XXDR-TB 
bacilli were dividing by branching, respectively.  

 
Fig. 3. Transmission Electron Microscopy shows Y-Shape M. tuberculosis at exponential 
phase of growth 

9. Cell shapes during dormancy or under limited conditions 

The morphological variations in tubercle bacilli become evident when the culture medium 
was poor. These changes were first reported by Koch himself. In his paper on the “discovery 
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of the cause of tuberculosis”, he described that “under certain conditions, some bacilli 
contain several spores, in most cases there are two to four of them; oval in form, they are 
distributed, in uniform intervals, along the axis of the bacilli(1882). Following Koch 
discovery, Malassez and Vignal (1883) had described, the small “coccoid bodies “ which 
cause tuberculosis infection and named them as cell wall deficient forms (CWD-forms) of 
tuberculosis. Later on, Spengler (1903, 1905), were among the first scientist who could 
demonstrated that in older cultures and frequently in sputa, apparently in response to 
adverse environmental conditions, the smooth cell takes on a fragmented appearance. Much 
(1907) was able to reproduce granules in the inside of the bacilli as well as scattered around 
them. These granules, according to Much, cannot be stained by the Ziehl- Neelsen technique 
but may generate new tubercle bacilli. Later on 1909, Fontes revealed how he had applied 
double staining to the bacilli, namely Ziehl- Neelson’s carbolfuchsin staining and the Gram 
treatment. In this way he tried to differentiate the pathogenic tubercle bacilli, containing 
Much granules, from the apathogenic ones without these granules. In 1910, Fontes described 
the multiplication through division of these granules in the inside of a cell and on its outside 
and applied the term “virus” to this formation. Fontes described the application to the 
tubercule bacillus of the well –known method of separating the virus from the substrate by 
filtering the material through a bacterial filter. He inoculated a guinea pig with the filtered 
caseous material and transplanted the organs of this animal into a fresh one. When after five 
months of observation the animal was killed, the autopsy revealed the infiltration of round 
cells, granules, and occasional acid-fast bacilli in the lymph nodes and the lungs. After years 
of oblivion, the early works of Fontes were rediscovered by Vandremer (1923). He repeated 
the Fontes filtration experiments and confirmed the development of acid –fast bacilli on 
media and in animals inoculated with these filtrates. Calmette (1926) advanced the theory 
on the role of the the tuberculosis ” ultra-virus” in the development of certain forms of the 
diseases. However, Negre et al (1933) denied the existence of filterable forms of the 
mycobacteria. Few years later, Vera and Rettger (1939) studied four strains of  
M. tuberculosis(hominis), “Koch”, 607, 75 and H37 in micro-culture by Hill hanging block 
technique. This method was employed to permit observation of individual cells and their 
progeny over long periods of time using lucida drawings camera. They could demonstrate 
various forms which have been described in the literature at one time or another. When they 
cut off air supply, different variants developed very soon. The bacilli swelled slightly, the 
cytoplasm become less clear and smooth. The swelling commonly occurred at the ends of 
cells, so the clubs and dumbbell shapes were formed; cells often became spoon shaped. 
These swollen structures became increasingly refractive and more sharply delimited, until 
finally there was a definite superficial resemblance to spores. At the similar time, the ability 
of the tubercle bacillus to survive environmental hardship in culture was documented by 
Corper and Cohn in a study published in 1933. In another study, McCune and other 
colleagues (1965, 1966), showed the capacity of tubercle bacilli to survive in mouse tissue 
after sterilization. In this model, out bred mice were infected intravenously with 105 colony-
forming units of the H37Rv strain of M. tuberculosis. They were immediately treated for a 
period of 12 weeks with the antimycobacterial drugs isonizid (INH) and pyrazinamide 
(PZA). For 4-6 week period after withdrawal of therapy, the mice showed no evidence of 
cultivable tubercle bacilli (sterile state). But, 12 weeks after INH and PZA treatment was 
withdrawn, one-third of the mice developed full-blown active TB, with nearly two-thirds 
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displaying disease after 24 weeks. Csillag (1962, 1963, and 1964) considered Mycobacteria as 
dimorphic organisms in the same sense as are some pathogenic fungi, for instance, 
Histoplasma capsulatum. The usual acid fast form of the mycobacteria was termed ’form I’ 
and the form which was not acid fast was termed ‘form 2’. When form 2 grown in digest 
broth, form 2 strains produced cocci which continued to multiply by binary fission and bud 
formation (Csillag, 1964).  

These forms were not produced by mycobacteria grown in rich media such as nutrient 
broth; Martin’s digest broth, yeast extract and Lab-Lemo beef extract. One year later, 
Stewart-Tull (1965) isolated two forms of mycobacteria and mycococci from M. phlei 
.Nyka W in 1963, described them as “chromophobic tubercle bacilli” in the lungs of 
patients treated by drugs in association with surgery. This organism morphologically 
were similar to the acid- fast bacilli, but do not stain with either carbolfuchsin or the 
counter stains when applied by the classic Ziehl-Neelsen technique or with any other 
aniline dye. In continuation of his work, he submitted the culture of M. tuberculosis,  
M. kansasii, and M. phlei to starvation. As a result they lost first their acid fastness, but in 
this chromophobic state, they survived for at least 2 years, and after that time, produced 
cultures of acid fast bacilli when transferred onto nutrient media. Since these in-vitro 
bacilli could recover their original biological properties, it was concluded that those bacilli 
in the lung could also become reactivated and cause a relapse of the disease. Some 
scientists regard the filterable forms of mycobacteria as being analogous to the so –called 
L-forms of the other bacterial genera as they also pass through filters (Thacore and 
Willett, 1963). Some other scientists believe that development of the L-form is a mutation 
process, while development of the filterable forms is an adaptation of the micro-
organisms to enable them to multiply in unfavorable (Imaeda, 1974; Mattman, 1970: 
Ratnam and Chandrasekhar, 1976). In this regards, Takahashi (1979), reported that 
tubercle bacilli in caseous lesions seems to be non acid fast, gram negative granules which 
may revert into acid fast rods, when the caseous lesion begins to liquefy and form 
tuberculous cavity. Similarly, khomenko and colleagues (1987) showed ultra-fine forms of 
M. tuberculosis in the walls of open cavities in the lungs of experimental animals by 
electron microscopy. These invisible forms of M. tuberculosis are able to revert to the 
typical bacterial forms. The initial stage of this process is accompanied by the formation of 
coccoid forms of mycobacteria that can be detected when material is inoculated on to 
semi-synthetic medium with 10% plasma and by microscopy of the sediment. Lawrence 
Wayne (1994) postulated that bacilli recovered from granulomatous lesions had adapted 
to a relatively oxygen starved environment so that they would be unable to grow in an 
aerated culture and therefore, may be non-cultivable by traditional culture methods 
(Wayne and Hayes, 1996). In the Wayne model, cultures of the bacterium are subjected to 
gradual self-generated oxygen depletion by incubation in sealed stirred tubes. Upon the 
slow shift of aerobic growing M. tuberculosis to anaerobic conditions, the culture is able to 
adapt and survive anaerobiosis by shifting down to a state of nonreplicating persistence. 
Wayne L showed two phase of growth in mycobacterium under limited oxygen; initially 
when the level of drops and the turbidity increased in culture tubes (NRP-1) and in 
anaerobic phase when there is no oxygen and no division (NRP-2). Wayne model was a 
break through in understanding what may happen to tubercule bacilli in necrotic material 
(Wayne and Lin, 1982). Although, Kaprelyants et al (1993) did not consider the bacilli 
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obtained by Wayne and Sramek (1994) as dormant because they maintained a high 
viability and developed sensitivity to metronidazole when anaerobic, thus indicating 
active metabolism. Therefore, from large accumulated data that found in literature, it 
become clear that M. tuberculosis can adapt rapidly to changing environment inside and 
outside the host (Parrish et al., 1998; Cardona, 2009; Rustad et al., 2009). These capacities 
will allow the tubercle bacilli to survive for long time in a dormant state in the lung tissue. 
Recently, Peyron et al (2008) developed an in vitro model of human tuberculosis 
granulomas. In this model granuloma-specific cell types and their modulation by tubercle 
bacilli were characterized. More recently, the complete morphological changes that occurs 
in tubercle bacilli under hypoxic conditions viewed under AFM (every 90 days for 48 
months) (Velayati et al., 2011). The morphological adaptation classified into two 
categories; First was temporary adaptation (from 1 to 18 months of latency) in which cells 
undergoing thickening of cell wall (20.5±1.8 nm versus 15.2±1.8 nm, P<0.05), formation of 
ovoid cells by “folding phenomena“(65-70%), size reduction (0.8± 0.1 µm versus 2.5±0.5 
µm), and budding type of cell division (20-25%) (figure 4). 

 
Fig. 4. Atomic force Microscopy shows M. tuberculosis under 8 months hypoxic condition. 
The bacilli becomes round and developed a thickened cell-walls (shows by arrows)  

A second feature include changes that accompany development of specialized cells (from 18 
to 48 months of latency) i.e., production of spore like cells (0.5 ± 0.2 µm) and their progeny 
(filterable non -acid fast forms; 150 to 300 µm in size figure 5). Using AFM, they could 
demonstrate that the filterable non-acid fast forms of bacilli are produced from spore –like 
cells. These cells were metabolically active and increased their number by symmetrical 
typing of division and could be stain by gram staining. Inoculation of these cells could 
induce active tuberculosis in mice. Although, it is important to determine how closely the  
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in vitro models correlate to the state of M. tuberculosis during latent infection. But, if these 
models are predictive of human disease, the information they provide in combination with 
advances in animal models, imaging and analysis will substantially aid in the development 
of drugs capable of killing tubercle bacilli in altered metabolically states, and possibly 
shortening the course of TB therapy. 

 
Fig. 5. Atomic force microscopy shows the Latent TB bacilli, after 48 months of latency 
(Velayati et al., 2011). 
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