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1. Introduction   

Mediterranean-type ecosystems are characterised by a particular temperature and rainfall 
regime that limits plant growth in both summer and winter seasons (Mitrakos, 1980; 
Larcher, 2000). Mediterranean plant community is very heterogeneous and include many 
evergreen and semi-deciduous species that present a complex mixture of elements, some 
deriving from in situ evolution, others having colonized the area from adjacent regions in 
different periods in the past (Blondel & Aronson 1999; Gratani & Varone, 2004). The result of 
this evolution is that the Mediterranean maquis species are well adapted to environmental 
stress conditions and successfully overcome them (Sànchez-Blanco et al., 2002; Varone & 
Gratani, 2007). 
Structural and physiological adaptations consist in a mixture of characteristics that make 
these species very resistant to stresses. High leaf consistency, leaf tissue density, leaf 
thickness, and reduced leaf area are traits improving drought resistance by decreasing 
photochemical damages to the photosynthetic system (Abril & Hanano 1998; Castro-Díez et 
al. 1998; Gratani & Ghia 2002). 
In this study we have focused our attention on photosynthetic adaptive strategies in 
Mediterranean evergreen and semi-deciduous species subjected to winter temperatures.  
Winter depression of photosynthetic activity, occurring between December and February, is 
the consequence of low temperatures which are responsible for slowing down metabolic 
processes and cessation of growth (Rhizopoulou et al., 1989; Larcher, 2000).  
Under these conditions, photosynthetic performance may decline and may be restored when 
the environmental conditions become favourable for growth in spring (Larcher, 2000; 
Oliveira & Peñuelas, 2004). The combination of low temperatures and high light, may 
induce a reduction in photochemical efficiency, increasing the sensitivity of photosystems to 
photoinhibition (Powles, 1984). Mediterranean plant communities comprise many evergreen 
and semi-deciduous species that cope with winter cold through different strategies that 
include biochemical, physiological, anatomical and cytological modifications (Huner et al., 
1981; Boese & Huner 1990; Long et al., 1994; Oliveira & Peñuelas, 2000; Tattini et al., 2000).  

www.intechopen.com



 
Advances in Photosynthesis – Fundamental Aspects 

 

404 

The chilling-induced photosynthetic decline can be attributed both to a reduced activity of 

enzymes involved in the photosynthetic carbon reduction cycle (Sassenrath et al., 1990; 

Hutchinson et al., 2000), or to a photoinhibitory process. In fact, when chilling is protracted 

for a long time, the reduction of carbon assimilation can lead to an increase of excitation 

energy to reaction centres, that if not safely dissipated, induces damages at photosystems 

level compromising the whole photosynthetic apparatus (Baker, 1994; Tjus et al., 1998). 

However, in nature, the photosynthetic decrease as well as the reduction of photochemical 

activity at low temperatures, often represent a regulatory mechanism associated with 

photoprotective strategies that promote the dissipation of excess excitation energy avoiding 

irreversible damages to photosystems (Long et al., 1994; D’Ambrosio et al., 2006). Several 

mechanisms have evolved in plants in order to protect photosystems against photodamages; 

they include thermal dissipation, chloroplasts movements, chlorophyll concentration 

changes, increases in the capacity for scavenging the active oxygen species and the PSII 

ability to transfer electrons to acceptors different from CO2 (Niyogi, 2000).  

It has been reported that the resistance of Mediterranean maquis evergreen species to 

photoinhibition is associated mainly to the increase in scavenging capacity and thermal 

dissipation processess, as well as to the increment of carotenoids pool or reduction in 

chlorophyll content (Garcìa-Plazaola et al., 1999, 2000; Arena et al., 2008). On the other 

hand, the semi-deciduous species such as Cistus rely on pheno-morphological features 

such as short lifetime of leaves and leaf pubescence to protect leaves from the excess of 

light and, thus, reduce the investment in other physiological mechanisms (Werner et al., 

1999; Oliveira & Peñuelas, 2001, 2002, 2004). Previous studies have demonstrated that the 

resistance to environmental constraints such as low temperature or high irradiance can 

depend on leaf age (Shirke, 2001; Bertamini & Nedunchezhian, 2003). Young and mature 

leaves may differ both in photosynthetic performance and some leaf functional traits such 

as the sclerophylly index LMA (leaf mass per area) and its opposite leaf specific area 

(SLA), leaf dry matter content (LDMC) and relative water content (RWC). These 

properties affect significantly the whole plant physiology. More specifically, LMA 

variations are linked to biomass allocation strategies (Wilson et al., 1999) and to 

photosynthetic acclimation under different conditions, RWC is a good indicator to 

evaluate the plant water status (Cornelissen et al., 2003; Teulat et al., 1997) and LDMC 

represent an index of resource use by plant (Garnier et al., 2001). LDMC is related to leaf 

lifespan and it is involved in the trade-off between the quick production of biomass and 

the efficient conservation of nutrients (Poorter & Garnier, 1999; Ryser & Urbas, 2000). 

Generally young leaves appears more vulnerable than mature leaves to stress, since have 

a reduced degree of xeromorphism (lower LMA). In this chapter has been examined the 

photosynthetic and photochemical behaviour of young and mature leaves of different 

species of the Mediterranean maquis, grown during the winter, in response to low 

temperatures. In particular our attention has been focused on  the evergreen species 

Laurus nobilis L., Phillyrea angustifolia L. and Quercus ilex L. and on the semi-deciduous 

species Cistus incanus L. that are widespread in Southern Italy area. Our specific purposes 

were: 1) to focus on eco-physiological strategies adopted by the different species to 

optimize the carbon gain during winter and minimize the photoinhibitory damage risks; 

2) to compare the behaviour of young and mature leaves under low winter temperature in 

order to elucidate if the photoprotective mechanisms may be influenced by the leaf age. 
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measurements, pigment content, 

leaf traits determination on 
mature leaves 

 Chlorophyll a fluorescence 
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leaf traits determination on young 

and mature leaves

Spring (SO) 

Winter (WO) 

2. Material and methods 

Two different experiments have been considered in this study; the first experiment has been 

carried out on evergreens L. nobilis, P. angustifolia and Q. ilex and analyzes the 

photosynthetic and the photochemical performance of young and mature leaves during the 

winter and of mature leaves during the winter and following spring. The second experiment 

is focused on the photochemical behaviour of young and mature leaves of the semi-

deciduous species C. incanus during winter and of mature leaves during the winter and the 

following spring. It is well know that the C. incanus species produces two different 

typologies of leaves: winter leaves and summer leaves with dissimilar morpho-anatomical 

traits (Aronne & De Micco, 2001). In the present study only winter leaves have been 

examined.  The experimental planning of the work is reported in Fig. 1. 

2.1 The experimental planning schema 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The experimental planning of the work. 

2.2 Plant material and growth conditions 

First experiment. Two years old plants of Q. ilex, P. angustifolia and L. nobilis coming from 
the garden centre of Corpo Forestale dello Stato of Sabaudia (Latina, Italy) were 
transplanted in 15 L pots in January 2004 and placed outdoor in the Botanical Garden of 
Naples University for one year. Pots were large enough to avoid limitations in root growth 
and were filled with a mixture of peat and soil in the proportion 50:50. The temperature 
conditions at the experimental site during plant growth were typical of the Mediterranean 
region with cold winters and warm summers (Fig. 2A). Gas exchange and chlorophyll a 
fluorescence measurements were performed in winter (early March 2005) and in spring 
(during May 2005); for winter measurements, 8 mature leaves of one year old and 8 young 
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leaves sprouted in late October of the previous year, were selected randomly for each 
species from 4 different plants. The photosynthetic behaviour of one-year old leaves in 
winter was compared with that of one-year old leaves in spring. 
Second experiment. In November 2007, eight plants of C. incanus, of three years old, were 
collected in the field in the Castel Volturno Natural reserve (Naples, Italy). The climate of 
the reserve is typically Mediterranean, with dry summers and rainy autumns and winters. 
The main vegetation type is maquis often opening into garrigue formations dominated by 
evergreen sclerophylls and seasonally dimorphic species. 
The collected plants were excavated in situ and quickly transplanted in 15 L pots filled with 

native soil, then were carried to the Department of Structural and Functional Biology of 

Naples University and placed outdoors in a open area of the Department. The temperature 

conditions experienced by plants during growth are shown in Fig. 2B. Outdoor 

temperatures at the experimental site, during the experimental period, ranged between 

minimum values of 2 °C and maximum values of 16 °C.  
 

 

Fig. 2. Monthly mean air temperature (T °C) at the two experimental sites during the 
evergreens growth (A) and C. incanus growth (B). Data have been collected  from Naples 
Largo San Marcellino weather station. 

At the beginning of February, three healthy plants were selected for eco-physiological 
analyses; young leaves of about 15 days old and mature leaves of about 30 days old were 
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chosen for photochemical measurements and photosynthetic pigments and leaf functional 
traits determinations. At the end of April, mature leaves were analysed again and compared 
to mature leaves in winter on basis of chlorophyll a fluorescence measurements, chlorophyll 
content and leaf functional traits determinations. All analyses were carried out on six leaves 
from 3 different specimens.  

2.3 Gas exchange and chlorophyll a fluorescence measurements 

In the first experiment, on the three evergreen species, gas exchange and chlorophyll a 
fluorescence measurements were performed simultaneously in winter (March 2008) and in 
spring (May 2005) by a portable gas exchange system (HCM-1000, Walz, Germany) in a 
climatized cuvette equipped with a fiber optic connected with a portable pulse amplitude 
modulated fluorometer (Mini-PAM, Walz, Germany). All measurements were performed at 
midday under clear-sky conditions. In winter both young and mature leaves were analysed, 
in spring only mature leaves were considered. 
In the second experiment, on the semi-deciduous species C. incanus L. measurements of 

chlorophyll a fluorescence were performed by a portable pulse amplitude modulated 

fluorometer (Mini-PAM, Walz, Germany) equipped with a leaf-clip holder (Leaf-Clip 

Holder 2030-B, Walz, Germany), which allows the simultaneous recording of the incident 

photosynthetic photon flux density on the leaf and abaxial leaf temperature. Measurements 

were performed at midday, under natural light and temperature conditions, on young and 

mature leaves, during winter (February 2008), and on mature leaves during spring (April 

2008). The air temperature (Tair) and the Photosynthetic Photon Flux Densities (PPFD) 

experienced by C. incanus  leaves at midday, during the days of measurements, are reported 

in Table 1. 

 

 
Days of 

measurements 
Young leaves Mature leaves 

T air 2 Feb 2008 12 ± 0.12 11 ± 0.22 

 29 Apr 2008 - 22 ± 0.05 

PPFD 
 

2 Feb 2008 693 ±  28 712 ± 29 

 29 Apr 2008 - 1074 ± 28 

Table 1. Air temperature (Tair, °C) and Photosynthetic photon flux density (PPFD, mol 
photons m-2 s-1) measured at midday on C. incanus plants at the experimental site in the days 
of measurements. Data reported are means ± SE (n=6). 

For gas exchange measurements, each leaf has been kept in cuvette for 5-6 min. The 

acquisition of data was made when steady-state rate of net assimilation was achieved. A 

constant photosynthetic photon flux density (PPFD) of 1000 mol photons m-2 s-1 was 

provided to the leaves by an external light source (1050-H, Walz, Germany) positioned on 

the cuvette plane. The PPFD of 1000 mol photons m-2 s-1 was selected in order to obtain the 

values of light-saturated net photosynthetic rate for each species.  

Net photosynthetic rate (AN), stomatal conductance to water (gH2O) and intercellular CO2 
concentration (Ci) were calculated by the software operating in HCM-1000 using the von 
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Caemmerer and Farquhar equations (1981). The ratio of intercellular to ambient CO2 
concentration, Ci/Ca, was used to calculate the apparent carboxylation efficiency. 
As concerns chlorophyll a fluorescence measurements, in the early morning, on 30 min 
dark-adapted leaves, the background fluorescence signal, Fo, was induced by light of about 

0.5 mol photons m-2 s-1 at the frequency of 0.6 kHz. In order to determine the maximal 

fluorescence level in the dark-adapted state, Fm, a 1s saturating light pulse (10000 mol 
photons m-2 s-1) was applied by previously setting the frequency at 20 kHz; the maximum 
PSII photochemical efficiency (Fv/Fm) was calculated as: 

[Fv/Fm=(Fm-Fo)/Fm] 

The saturating pulse intensity was chosen in order to saturate the fluorescence yield but 
avoiding photoinhibition during the pulse.  
At midday, the steady-state fluorescence signal (Ft) and the maximal fluorescence (Fm’) 
under illumination were measured, setting the light measure at a frequency of 20 kHz. Fm’ 

was determined by a 1s saturating light pulse (10000 mol photons m-2 s-1). The partitioning 
of absorbed light energy was calculated following the model of Kramer et al. (2004). The 

quantum yield of PSII linear electron transport (PSII) was estimated following Genty et al. 
(1989) as: 

PSII = (Fm’ – Ft) ⁄ Fm’ 

The yields of regulated energy dissipation was calculated as: 

ΦNPQ = 1 - ΦPSII - 1/(NPQ + 1 + qL x (Fm/Fo-1) 

whereas the non-regulated energy dissipation in PSII was calculated as: 

ΦNO = 1/(NPQ + 1 + qL x (Fm/Fo-1)) 

The coefficient of photochemical quenching, qL, was defined and calculated following 
Kramer et al. (2004) as: 

(Fm’ – Ft)/( Fm’ – Fo’) x Fo’/Ft = qp x Fo’/Ft 

The value of Fo’ was estimated as: Fo’ = Fo/(Fv/Fm + Fo/Fm’) (Oxborough & Baker, 1997). 
Non-photochemical quenching was expressed according to Bilger & Björkman (1990) as: 

[NPQ = (Fm-Fm’)/Fm’] 

The statistical analysis of the data was performed by one-way ANOVA followed by 
Student-Newman-Keuls test (Sigma-Stat 3.1) based on a significance level of P < 0.05. Data 
are means ± SE (at least n = 6). 

2.4 Photosynthetic pigment content and functional leaf traits determination  

After fluorescence measurements, leaves were detached from C. incanus plants and carried 
to the laboratory for the photosynthetic pigment content determination. Pigments were 
extracted with a mortar and pestle in ice-cold 100% acetone and quantified by a 
spectrophotometer according to Lichtenthaler (1987). A different group of leaves of 
comparable age to those used for fluorescence measurements and pigment determinations, 
was collected and utilized for the specific leaf area (SLA) and leaf dry matter content 
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(LDMC) measurements. Specific leaf area was calculed as the ratio of leaf area to leaf dry 
mass and expressed as cm2 g -1 dw (dry weight). For dry mass determination, leaves were 
dried at 70 °C for 48 h. Leaf dry matter content (LDMC) was measured as the oven-dry mass 
of a leaf divided by its water-saturated fresh mass and expressed as g g -1 wslm (water 
saturated leaf mass). Leaf dry matter content is related to the average density of the leaf 
tissues (Cornelissen et al., 2003). 

3. Results 

3.1 Young and mature leaves of L. nobilis L., P. angustifolia L. and Quercus ilex L.  
during winter 
During winter, mature leaves of all species showed an higher (P<0.001) net photosynthetic 
rate (AN) compared to young leaves. In both young and mature leaves the highest (P<0.001) 
AN values were measured in Q. ilex whereas the lowest (P<0.001) in L. nobilis (Fig. 3A, D). 
 

 

Fig. 3. Net photosynthetic rate (AN), stomatal conductance to water (gH2O) and ratio of 
intercellular to ambient CO2 concentration (Ci/Ca) in young and mature leaves of  Laurus 
nobilis, Phillyrea angustifolia and Quercus ilex, during winter. Different letters indicate 
statistical differences between young and mature leaves (small letters) and among species 
(capital letters). Values are means ± SD (n=8).  
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Fig. 4. Quantum yield of linear PSII electron transport (PSII), regulated energy dissipation 

(NPQ), non-regulated energy dissipation (NO) and maximum PSII photochemical efficiency 
(Fv/Fm) in young and mature leaves of  Laurus nobilis, Phillyrea angustifolia and Quercus ilex, 
during winter. Different letters indicate statistical differences between young and mature 
leaves (small letters) and among species (capital letters). Values are means ± SD (n=8).  
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the contrary, in mature leaves gH2O was significantly lower (P<0.01) in L. nobilis than P. 

angustifolia and Q. ilex. No significant difference in gH2O between young and mature leaves 
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The ratio of intercellular to ambient CO2 concentration (Ci/Ca) was similar for young leaves 

of all species, conversely in mature leaves was lower (P<0.001) in L. nobilis compared to P. 

angustifolia and Q. ilex. No significant difference within young and mature leaves of the 

same species was observed in Ci/Ca ratio (Fig. 3 C, F). 

The analysis of photochemistry showed that, among young leaves of different species, the 

quantum yield of PSII linear electron transport (PSII) was higher (P<0.005) in P. angustifolia 

and Q. ilex compared to L. nobilis (Fig. 4A) on the contrary L. nobilis showed the highest 

regulated energy dissipation, NPQ, (P<0.05) and the lowest  (P<0.005) non-regulated energy 

dissipation, NO, compared to other species. No difference was detected in NPQ and NO 

between P. angustifolia and Q. ilex (Fig. 4B, C). All mature leaves exhibited no significant 

difference in PSII (Fig. 4E) but leaves of L. nobilis showed again the highest NPQ (P<0.05); 

the highest (P<0.005) NO was found in P. angustifolia (Fig. 4 F, G). No variation in 

maximum PSII photochemical efficiency (Fv/Fm) among different species and between 

young and mature leaves were found (Fig. 4 D, H). The comparison between young and 

mature leaves evidenced no difference in PSII and lower (P<0.001) and higher (P<0.005) 

values of NPQ and NO, respectively, in mature leaves.  

3.2 Mature leaves of L. nobilis L., P. angustifolia L. and Quercus ilex L. during winter 
and spring  

During winter, within different species, Q. ilex showed higher net photosynthetic rate (AN) 

(P<0.001) and stomatal conductance to water (gH2O) (P<0.05) as well as a lower (P<0.005) 

intercellular to ambient CO2 concentration ratio (Ci/Ca) compared to L. nobilis and P. 

angustifolia (Fig. 5A, B, C). The lowest values of AN and gH2O was found in L. nobilis. No 

significant difference between L. nobilis and P. angustifolia in Ci/Ca ratio was found. During 

spring, among species, Q. ilex exhibited again the highest (P<0.001) net photosynthetic rate 

(AN) and the lowest Ci/Ca ratio (P<0.05) compared to L. nobilis and P. angustifolia (Fig. 5 D, 

F), but similar values of gH2O (Fig. 5E).  

The comparison between winter and spring showed that, during spring, an increase in AN 

(P<0.001) and gH2O (P<0.05) were observed in all species compared to winter (Fig. 5D, E); on 

the other hand, no significant difference in  Ci/Ca ratio was found (Fig. 5F).  

During winter the photochemical performance varied among species (Fig. 6).  
In particular, L. nobilis showed the lowest (P<0.001) quantum yield of PSII linear electron 

transport (FPSII) and non-regulated energy dissipation (NO), as well as the highest (P<0.01) 

regulated energy dissipation (NPQ) (Fig. 6A, B, C). No difference in Fv/Fm values was 
observed among species (Fig. 6 D).  

During spring, Q. ilex and P. angustifolia showed an higher (P<0.001) PSII than L. nobilis (Fig. 

6E). The lowest (P<0.01) NPQ was detected in Q. ilex, whereas the highest (P<0.01) FNO was 
found in L. nobilis (Fig. 6F, G). Similar values of maximum PSII photochemical efficiency, 
Fv/Fm, were observed among species (Fig. 6H). 
The comparison between the two campaign of measurements has evidenced that in all 

species FPSII and NPQ were respectively higher and lower (P<0.001) in spring than in winter 

(Fig. 6A, E, B, F). In spring compared to winter, NO increased (P<0.01) only in L. nobilis, 
whereas decreased (P<0.05) in P. angustifolia and remained unvaried in Q. ilex (Fig. 6C, G). 
The maximum PSII photochemical efficiency Fv/Fm was lower in winter as compared to 
spring (P<0.005) for all species (Fig. 6D, H). 
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Fig. 5. Net photosynthetic rate (AN), stomatal conductance to water (gH2O) and ratio of 
intercellular to ambient CO2 concentration (Ci/Ca) in mature leaves of  Laurus nobilis, 
Phillyrea angustifolia and Quercus ilex, during winter and spring. Different letters indicate 
statistical differences among species (small letters) and between seasons (capital letters). 
Values are means ± SD (n=8). 

3.3 The semi-deciduous species Cistus incanus L. 

The comparison between young and mature leaves of the semi-deciduous species C. incanus 

evidenced that the quantum yield of PSII linear electron transport (PSII) was lower in 
mature as compared to young leaves (P<0.001) whereas the quantum yield of regulated 

energy dissipation (NPQ) showed an opposite tendency (P<0.05) (Fig. 7A, B). No significant 

difference in non regulated energy dissipation (NO) and maximum photochemical 
efficiency (Fv/Fm) was detected (P<0.05) between the two leaf typologies (Fig. 7C, D).  
The photochemical behavior of mature C. incanus leaves was different during winter and the 

following spring. More specifically, in spring leaves showed higher values of PSII (P<0.001) 

and lower values of NPQ and NO (P<0.005) compared to winter (Fig. 7E, F, G), whereas no 

significant difference in Fv/Fm between the two seasons was observed (Fig. 7H).  
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Fig. 6. Quantum yield of linear PSII electron transport (PSII), regulated energy dissipation 

(NPQ), non-regulated energy dissipation (NO) and maximum PSII photochemical efficiency 
(Fv/Fm) in mature leaves of  Laurus nobilis, Phillyrea angustifolia and Quercus ilex, during 
winter and spring. Different letters indicate statistical differences among species (small 
letters) and between seasons (capital letters). Values are means ± SD (n=8). 

The results relative to leaf functional traits and photosynthetic pigment content are reported 

in the table 2. The analysis of functional leaf traits has evidenced that, as compared to 

mature leaves, young leaves showed lower values (P<0.05) of leaf area (LA), but no 

difference in specific leaf area (SLA) and leaf dry matter content (LDMC). Functional leaf 
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traits did not show any difference between mature leaves in both winter and spring 

campaigns. The total chlorophyll content, chl (a+b), as well as the total carotenoid content, 

car (x+c), were higher in mature than in (P<0.01) young leaves, that showed a lower (P<0.05) 

chl a/b ratio. No difference in total chlorophyll and carotenoid content, between winter and 

spring, in mature leaves was detected. 
 

 

Fig. 7. Quantum yield of linear PSII electron transport (PSII), regulated energy dissipation 

(NPQ), non-regulated energy dissipation (NO) and maximum PSII photochemical efficiency 
(Fv/Fm) in C. incanus young and mature leaves during winter and in mature leaves  during 
spring. Different letters indicate statistical differences between young and mature leaves 
(small letters) and between seasons (capital letters). Values are means ± SD (n=6). 
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 Winter  Spring 

 Young leaves Mature leaves  Mature leaves 

LA (cm2) 3.02±0.14 a  8.01±0.28 b  8.32±0.44 b 
SLA (cm2 g-1 dw) 127.13±11.68 a  120.40±4.96 a  134.03±8.88 a 
LDMC (g g-1 wslm) 0.22±0.01 a  0.20±0.02 a  0.21±0.01 a 

chl (a+b) (g cm-2) 57.90±1.18 a  76.61±5.8 b  88,01±6 b 

car (x+c) (g cm-2) 11.09±0.29 a  14.22±1.05 b  16±2.32 b 

Chl a/b 3.03±0.01 a  2.37±0.23 b  2.5±0.34 b 

Table 2. Leaf Area (LA), Specific Leaf Area (SLA), Leaf Dry Matter Content (LDMC), total 
chlorophyll (chl a+b), total carotenoids (car x+c) and chlorophyll a/b ratio in C. incanus 
young and mature leaves during winter and in mature leaves during spring. Data reported 
are means ± SE (n=6). Different letters indicate statistically significant differences.  

4. Discussion 

4.1 Young and mature leaves of Laurus nobilis L., Phillyrea angustifolia L. and 
Quercus ilex L. in winter 

In disagreement with data reported in literature for other species (Urban et al., 2008), young 

leaves of all species showed lower AN values compared to mature ones, indicating a marked 

sensitivity to winter temperatures. It is likely to hypothesize that this could be attributable 

to a reduced capacity of the mesophyll to assimilate CO2 because no difference in apparent 

carboxilation efficiency (Ci/Ca) between young and mature leaves was found. The 

significant differences between the two leaf populations, indicate the higher resistance of 

mature leaves photosynthetic machinery to low temperature. However, despite 

photosynthesis reduction, no variation in PSII between young and mature leaves was 

detected; thus the lower AN values in young leaves may be due either to limitations in 

photosynthetic dark reactions or to additional dissipative processes, other than CO2 

assimilation, active in consuming the reductive power of the electron transport chain (e.g. 

photorespiration and/or Mehler reaction). The fluorescence analysis has evidenced that in 

young leaves the excess of absorbed light was dissipated more by photochemical processes 

than by thermal dissipation associated to xanthophylls cycle, as indicated by lower NPQ 

values compared to mature leaves. Although such photochemical processes are useful to 

protect the photosynthetic apparatus by photoinhibitory damage risks, it is well known that 

they can lead to an overproduction of reactive oxygen species (ROS). Even if ROS are 

continuously produced and removed during normal physiological events, when plants 

experience severe stress conditions, more O2 molecules are expected to be used as 

alternative electron acceptors disturbing the ROS production-removal balance and 

promoting the accumulation of ROS (Osório et al., 2011). Our results indicate that,  in young 

leaves, under winter temperature, a large part of absorbed energy was diverted to non-

regulated energy conversion processes (increase in ΦNO) than in mature leaves, a 

circumstance that favors the production of ROS.  

On the contrary, in mature leaves, more absorbed light was dissipated by thermal 

dissipation processes associated to xanthophylls cycle (higher NPQ). This result is in 
contrast with data reported by other authors who found a reduction in thermal dissipation 
by xanthophylls cycle as the leaves expanded (Choinski & Eamus, 2003; Jiang et al., 2005). 
Our data suggest that leaf age influences the photoprotection mechanisms. More 
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specifically, young and mature leaves regulate in a different way the dissipation of absorbed 
light energy in order to maintain high the photochemical efficiency. The absence of 
significant differences in Fv/Fm ratio between the two leaf population indicates that both 
thermal dissipation and the alternative electron sink and/or additional quenching 
mechanism(s) are suitable for photoprotection, assuming a similar weight in 
photoprotection.  
Among species, the higher AN rates in Q. ilex compared to P. angustifolia and L. nobilis in 

both young and mature leaves indicates Q. ilex as the species with more efficient 

photosynthetic process at low temperature (Ogaya & Peñuelas, 2003). This is likely due to 

the highest utilization of reductive power of electron transport chain in C fixation rather 

than in dissipative processes under low temperature. Our data demonstrate that under low 

temperatures, the strategies utilized to dissipate the excess of absorbed light vary among 

species. In particular in both young and mature leaves, L. nobilis, as compared to P. 

angustifolia and Q. ilex, diverts more excitation energy to regulated energy dissipation 

processes than to non-regulated energy dissipation processes (higher NPQ, lower NO). 

These different mechanisms seem equally important in maintaining an elevated maximum 

PSII photochemical efficiency,  as confirmed by comparable Fv/Fm ratio in all species.  

4.2 Mature leaves of L. nobilis L., P. angustifolia L. and Quercus ilex L. during winter 
and spring 

Equinoctial periods, characterized by the absence of drought and cold stress, are the most 
favorable seasons for the photosynthetic activity of Mediterranean vegetation (Savè et al., 
1999). Data presented in this section are consistent with literature, indeed in spring, 
compared to winter, high rates of gas exchanges and a better photochemical efficiency were 
measured for all species. The highest values of AN and gH2O measured during winter in Q. 
ilex, suggest for this species a better resistance to low temperature (Ogaya & Peñuelas, 2003), 
differently from L. nobilis that showed the lowest photosynthetic activity and stomatal 
conductance and the highest Ci/Ca ratio. This latter constitutes a proxy tool to evaluate the 
occurrence of non-stomatal limitations to photosynthesis. In L. nobilis, the similar Ci/Ca 
values found in winter compared to spring, despite the low photosynthetic activity, denote 
the presence of non-stomatal limitation to photosynthetic process likely due to a reduced 
activity of Rubisco (Sage & Sharkey, 1987), and/or of other carbon assimilation enzymes 
(Sassenrath et al., 1990) at low temperatures. The analysis of photosynthetic energy 
partitioning evidenced that in winter, when net CO2 assimilation was limited by low 
temperatures, more absorbed energy was converted into regulated energy dissipation 

(higher NPQ) compared to spring. On the contrary, in spring when air temperature became 
favourable for photosynthesis, the absorbed energy was diverted mainly to net CO2 

assimilation (higher PSII) and only a little in non-regulated energy dissipation (low NO). 
The higher thermal dissipation and the low Fv/Fm values in winter compared to spring were 
likely the result of a photoprotective mechanisms by which plants cope with winter stress. 
This strategy is probably based on maintaining PSII primed for energy dissipation and 
engaged in diurnal energy dissipation throughout the night (Adams et al., 2001). 

4.3 Cistus incanus L. young and mature leaves in winter 

Under winter temperature, C. incanus young leaves exhibit a higher photochemical activity 
than mature leaves. The utilization of reductive power of electron transport in 
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photochemistry reduces the need for the thermal dissipative process, in particular the 

fraction of the regulated thermal energy dissipation (low NPQ values). Mature leaves 
showed an opposite tendency. However in both leaf typologies no variation of non-

regulated energy dissipation component (ΦNO) was found. High values of NPQ are 
indicative of a high photoprotective capacity, whereas high values of ΦNO may reflect the 
inability of a plant to protect itself against photodamage (Klughammer & Schreiber, 2008; 
Osório et al., 2011). In our opinion, as maximum PSII photochemical efficiency (Fv/Fm) and 
ΦNO are similar in the two leaf populations, we suppose that the different strategies adopted 
by young and mature leaves are equally helpful in leaf photoprotection under winter 
temperatures. 
The acclimation of plants in relation to the environmental conditions is expressed, among 
other factors, also by their leaf characteristics (Bussotti et al., 2008) and photosynthetic 
pigment adjustments.  
Functional leaf traits analyses indicate that, even if specific leaf area (SLA) as well as the leaf 
dry matter content (LDMC) do not vary between young and mature C. incanus leaves, 
mature leaves present a greater leaf blade and have a higher total chlorophyll and 
carotenoid contents per unit leaf area. The adjustment of photosynthetic pigment 
composition in mature leaves could be interpreted as further strategy in order to enhance 
the light harvest and thus compensate for the reduction in allocation of absorbed light in 
photochemistry.  

4.4 Cistus incanus L. mature leaves in winter and spring 

The behaviour of C. incanus mature leaves differ in winter and spring. The analysis of 

photochemistry showed that temperatures of 11 °C does not injure the photosynthetic 

apparatus, but affects significantly its efficiency. Indeed, the low values of PSII evidenced a 

decline in photochemical activity that may lead to an increase of excitation pressure in 

photosystem II with important consequence for the plant cells in terms of decrease of 

intracellular ATP and NADP production. On the other hand, the fraction of the regulated 

energy dissipation (NPQ) higher in leaves during winter compared to spring, indicates that 

the regulated thermal dissipation for winter leaves was enhanced under low temperature to 

compensate for reduced photochemistry. Nevertheless during winter, leaves show also an 

higher non-regulated energy dissipation in PSII (ΦNO), indicating the occurrence of a stress 

condition for photosynthetic apparatus (Osòrio et al., 2011). It is reasonable to hypothesize 

that leaves during winter cope with low temperature by means of flexible component of 

thermal energy dissipation and the alternative electron sink and/or additional quenching 

mechanism(s). These factors may contribute to the high stress resistance of C. incanus leaves 

and allow photosynthetic apparatus to maintain during winter a high maximal PSII 

photochemical efficiency (Fv/Fm).  

The Fv/Fm values found in leaves during winter were close to those reported for winter 
leaves of other Cistus species as well as to those of unstressed plants of other Mediterranean 
species (Oliveira & Peñuelas, 2001, 2004). In spring, after the return to mild temperatures 

(i.e. 22 °C), an increase of (PSII) was observed.  
These results suggest that during February the reduction in photochemistry found at 

temperatures of 11 °C and at PPFD of about 700 mol photons m-2 s-1 (table 1) was due to a 
downregulation of PSII reaction centres, rather than to an impairment of photosynthetic 
apparatus. This strategy may represent a safety mechanism against the photoinhibitory 
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damage risk as a consequence of combined effect of low temperature and moderately high 
irradiances on photosystems. In this view, the lack of significant differences in maximum PSII 
photochemical efficiency (Fv/Fm), as well as in total chlorophylls and carotenoids content 
between mature leaves in winter and spring supports this hypothesis, confirming that 
photochemical apparatus of C. incanus remained stable and effective at winter temperatures.  

5. Conclusions 

The results of the present study indicate that leaf age influences the photoprotection 
mechanisms. Under saturating irradiance and low winter temperature mature leaves of all 
evergreen species, by higher CO2 assimilation rates and higher thermal energy dissipation 
linked to the flexible component, cope more efficiently with the excess of absorbed light and 
result to be less sensitive to photoinhibition. On the other hand young leaves utilize the 
reducing power mainly in processes other than photosynthesis and show higher values of 
non-regulated energy dissipation in PSII. However both different mechanisms are useful in 
maintain the maximum PSII photochemical efficiency at comparable values in young and 
mature leaves.  
Among species both young and mature leaves of Q. ilex exhibited the highest photosynthetic 
performance indicating a better resistance to low temperatures.  
The comparison between mature leaves in winter and spring shows higher values of net 
photosynthesis and photochemical efficiency in all evergreen species during spring and a 
lower contribute of flexible and sustained thermal dissipation in winter. At low 
temperature, the significant increase of thermal and photochemical processes other than 
photosynthesis allow mature leaves of evergreen species to maintain an elevated 
photochemical efficiency, despite the strong reduction of carbon assimilation. Among 
species, Q. ilex showed the best photosynthetic performance under winter, indicating a 
better acclimation capability of photosynthetic apparatus. 
In C. incanus species, during winter, young leaves showed a higher photochemical efficiency 
than mature leaves. The increase in photochemistry leads to a reduction of thermal 
dissipative processes. On the other hand, the mature leaves exhibited an opposite tendency. 
However, both strategies are useful in leaf photoprotection under winter since maximum 
PSII photochemical efficiency is high and similar in the two leaf populations.  
The comparison between mature leaves in winter and spring has evidenced a lower 

quantum yield of PSII linear electron transport and an increase of regulated thermal 

dissipation processes during winter. The recovery of photochemical activity in spring under 

mild temperature, indicates that the drop in photochemistry in winter was due to the 

balance between energy absorbed and dissipated at PSII level rather than to an impairment 

of photosynthetic apparatus. In this context, the higher thermal dissipation in winter 

compensate for the reduced photochemistry, allowing maximum PSII photochemical 

efficiency to remain unchanged compared to spring. This may be interpreted as a dynamic 

regulatory process protecting the photosynthetic apparatus from severe damage by excess 

light at low temperature. 
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