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1. Introduction

One of the main motivations for constructing a model of topological gravity in three dimensions

(3D) is that it might serve as a ‘laboratory’ for applying techniques appearing rather awkward

or even intractable in four dimensions. This stems from the fact that a Riemannian spacetime

is Ricci-flat, i.e., the Ricci tensor determines the Riemann tensor in 3D and as a result, the

only vacuum solutions of the Einstein equations with vanishing cosmological constant are

flat. This result implies that the dynamical properties may not be attributed to the metric but

rather to the coframe. When matter is included there are nontrivial solutions to the Einstein

equations and if topological terms are included, these may induce dynamical properties in

3D. Such a ‘laboratory’ may no longer be a suitable testing ground for higher–dimensional

models of Einsteinian gravity [5, 10, 18, 36].

There are other reasons for studying the dynamical aspects of topological gravity in three

dimensions: Some problems in 4D gravity reduce to an effective 3D theory, such as cosmic

strings, the high–temperature behavior of 4D theories and some membrane models of

extended relativistic systems. Moreover, many aspects of black hole thermodynamics can

be effectively reduced to problems in 3D, cf. Refs. [6, 7].

Outside of quantum gravity, the continuum theory of lattice defects in crystal physics can be

regarded as ‘analogue gravity’ with Cartan‘s torsion in 3D, where such defects are modeled by

connections in the orthonormal frame bundle and the Chern-Simons type free-energy integral

by Riemann–Cartan (RC) spaces with constant torsion [11, 26]. Recently, flexural modes

of graphene have also been considered as membranes with a ‘gravitational’ metric [25] or

coframe induced from its embedding into three-dimensional spacetime.

Our paper is organized as follow: In Section 2, we give a brief introduction to the

Mielke-Baekler (MB) model of toplogical gravity in 3D, in which the Einstein-Cartan

Lagrangian is substituted by a mixed topological term, the so-called mix-model. The coupling

of Rarita-Schwinger fields to topological gravity is presented in Section 3, whereas in Section

4 we deduce the restrictions on the coupling parameters in order to ensure that the model is

supersymmetric. The particular dynamical symmetry of the MB model, in Ref. [32] dubbed

“S–duality", is generalized in Section 5 to our topological supergravity model. In Section

6 and in an Outlook, we consider the still speculative applicability of this model to the
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2 Will-be-set-by-IN-TECH

objects p-forms components n=4 3 2

ϑα vector 1 n2 16 9 1
Γ
⋆
α vector 1 n2 16 9 1

Tα vector 2 n2(n − 1)/2 24 9 2

Rαβ bivector 2 n2(n − 1)2/4 36 9 1
Σα vector n − 1 n2 16 9 4
ταβ bivector n − 1 n2(n − 1)/2 24 9 2

ηα vector n − 1 n2 16 9 4

Table 1. Geometrical objects and fields

flexural modes of corrugated surfaces (2D membranes) embedded in 3D spacetime, as recently

realized by the rather prospective new material called graphene.

2. Topological gravity with torsion

In three spacetime dimensions, the basic gravitational variables in the Riemann-Cartan (RC)

formalisms are the one–forms of the coframe and the Lie dual of the (Lorentz-) rotational

connection Γ
βγ = Γj

βγdxj, i.e.,

ϑα = ei
αdxi and Γ

⋆
α :=

1

2
ηαβγΓ

βγ. (1)

The related field strengths are the two–forms of torsion

Tα := dϑα − (−1)s ηαβ ∧ Γ
⋆
β (2)

and curvature

R⋆
α =

1

2
ηαβγRβγ := dΓ

⋆
α +

(−1)s

2
ηαβγΓ

⋆
β ∧ Γ

⋆
γ, (3)

respectively, cf. the Appendices of Ref. [31]. Table 1 contains a summary of these basic

variables and their components in various dimensions. Observe that only for n = 3 all fields

have the same number of components. After converting bivectors into vectors via the Lie

dual, a linear combination of all variables could pave the way for a better understanding of

topological models.

In 3D, the Einstein-Cartan (EC) Lagrangian

LEC := −
χ

ℓ
ϑα ∧ R⋆

α ≡ −χ CTL −
χ

ℓ
d(Γ⋆

α ∧ ϑα) (4)

merely gives rise to a locally trivial dynamics [38]. This is due to its equivalence to a ‘mixed’

Chern-Simons type term CTL plus a total divergence, as indicated above.

In this paper, we generalize this trivial dynamics by adding Chern-Simons (CS) type terms,

following the lead of Witten [43]. By gauging the Poincaré group IR3 ⊂× SO(1, 2), we arrive at

the Mielke and Baekler (MB) model [2, 28] which is at most linear in the field strengths. This is

slightly modified here by replacing LEC via the ‘mixed’ Chern-Simons type term CTL, which

is simulating, in 3D, to some extend Einstein’s theory with ‘cosmological’ term, as is indicated

above. Thereby, we are able to depart from a completely topological theory.

38 Quantum Gravity
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S-Duality in Topological Supergravity 3

Allowing for arbitrary “vacuum angles" θT, θL and θTL = −χ, the most general purely

topological gravity Lagrangian in 3D, in first order formalism, takes the form

LMB(ϑ
α, Γ

⋆
α) = θTCT + θLCL + θTLCTL , (5)

where

CT :=
1

2ℓ2
ϑα ∧ Tα, CL := (−1)s

Γ
⋆α ∧ R⋆

α −
1

3!
ηαβγ Γ

⋆α ∧ Γ
⋆β ∧ Γ

⋆γ (6)

and

CTL :=
1

ℓ

(
Γ
⋆α ∧ Tα −

(−1)s

2
ηαβγ Γ

⋆α ∧ Γ
⋆β ∧ ϑγ

)
, (7)

respectively, are the translational, rotational and ‘mixed’ Chern-Simons type three forms

of gauge type C =Tr{A ∧ F} in RC spacetime [8, 12, 43]. The equation (5) is the known

topological Lagrangian of the Mielke-Baekler (MB) mix-model [28, 31]. Since the translational

term CT is covariant, it appears that the MB model is semi-topological, with interesting

consequence on the degrees of propagating modes, cf. Ref. [4, 32, 36].

Varying the Lagrangian (5) with respects to ϑα and Γ
⋆α and employing the results of Appendix

A, yields the topological field equations

− θTL R⋆
α −

θT

ℓ
Tα = ℓΣα , (8)

and

− (−1)sθTL Tα −
θT

2ℓ
ηα − θLℓ R⋆

α = ℓ τ⋆
α , (9)

cf. Eq. (6.9) of Ref. [2]. Observe that the translational CS term proportional to θT induces

in the second field equation a constant term, familiar in 4D from Einstein’s equation with

cosmological constant Λ.

Thereby, combining the vacuum field equations (9) and (8) yield for the torsion and the RC

curvature the constrictions:

Tα =
2κ

ℓ
ηα , R⋆

α =
ρ

ℓ2
ηα (10)

where the contortional constants κ = θTLθT/2A and ρ = −θ2
T/A are related to the vacuum

angles. A singular case is exclude by assuming that A =: −(−1)sθ2
TL + 2θTθL �= 0.

When including matter couplings, we explicitly find for the torsion

Tα −
2κ

ℓ
ηα =

2

A
ℓ (θTLτ⋆

α − θLℓΣα) , (11)

and the RC curvature

R⋆
α −

ρ

ℓ2
ηα =

2

A
(θTLℓΣα − θTτ⋆

α ) , (12)

cf. Ref. [31].

3. Rarita–Schwinger Lagrangian in 3D

Commonly, supergravity [15, 19] with one supersymmetry generator, i.e. N=1, represents the

simplest consistent coupling of a Rarita–Schwinger (RS) spin– 3
2 field [35] to gravity.

39S-Duality in Topological Supergravity
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4 Will-be-set-by-IN-TECH

The Rarita-Schwinger [35] type spinor-valued one-form1

Ψ = Ψidxi = Ψαϑα (13)

can be written holononically and anholononically. However, it does not depend on the

coframe, inasmuch Ψα := eα⌋Ψ involves the inverse tetrad. In 3D, we adhere to the

conventions that the holonomic indices run from i, j, k, . . . = 0, 1, 2, whereas α, β, . . . = 0̂, 1̂, 2̂

for the anholonomic indices.

We are going to provide a brief summary of the spinors that will be used in three dimensions:

As well known, the covering group of the rotation group SO(3) is isomorphic to the unitary

group SU(2). Since an element of SU(2) can be parameterized by three numbers, the most

convenient basis of the Lie algebra are the familiar Pauli spin matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (14)

These matrices satisfy the following Lie algebra:

[
σα, σβ

]
= 2iηαβγσγ. (15)

However, for Lorentzian signature s = 1, the covering group of SO(1, 2) is isomorphic to the

real group SL(2, IR). Then the generators of SL(2, IR) may be realized by the matrices

γ0 = iσ2, γ1 = σ1, γ2 = σ3. (16)

These real matrices [27] satisfying

γαγβ = gαβ + ηαβνγν (17)

also provide a realization of the Clifford algebra

γαγβ + γβγα = 2gαβ (18)

in 3D. In addition, the coframe basis ϑα converts into one Clifford algebra value one-form

γ = γαϑα (19)

Then Ψ will become real two-component spinors, with the Dirac adjoint defined by Ψ :=
Ψ

†γ0.

1 In four dimensions (4D), the Rarita–Schwinger field Ψ := Ψαϑα entering Eq. (13) is a Majorana spinor
valued one-form. As it is well known [34], it satisfies the Majorana condition, i.e. Ψ = CΨ

t, where C
is the charge conjugation matrix given by C = −iγ0 satisfying C† = C−1 , Ct = −C and C−1γαC =

− (γα)t. Consequently,
Ψ ∧ Ψ = 0 , Ψ ∧ γ5γα

Ψ = 0 , Ψ ∧ γ5Ψ = 0

For the real Majorana representation all γα are purely imaginary and the components of the gravitino
vector–spinor consequently are all real [30].

40 Quantum Gravity
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S-Duality in Topological Supergravity 5

The corresponding manifestly Hermitian RS type Lagrangian three–form of Howe and Tucker

[23] reads

LRS =
i

4

(
Ψ ∧ DΨ − Ψ ∧ DΨ

)
+

i

4
mΨ ∧ γ ∧ Ψ, (20)

including, however, a mass term. Here minimal coupling to gravity is achieved via

DΨ = dΨ −
1

2
γαΓ

⋆α ∧ Ψ, (21)

which is nothing more than the gauge covariant derivative of a spinor-valued one-form Ψ.

Only in 3D, however, there exists a generalization given by the following expression

LΨ = LRS + s1 DΨ ∧ ∗(DΨ) + s2 DΨ ∧ γ ∧ ∗(γ ∧ DΨ). (22)

As in the case of the Rarita-Schwinger Lagrangian LRS, it is manifestly Hermitian when the

additional quadratic derivative terms carry s1 and s2 as dimensionless coupling constants.

In order to supersymmetrize this action, it will be coupled to topological gravity later on.

3.1 Energy-momentum and spin currents

By definition, the energy-momentum current two-form Σα of matter is given by

Σα :=
δLΨ

δϑα
=

∂LΨ

∂ϑα
+ D

∂LΨ

∂Tα
, (23)

where the second term accounts for the possibility of a non-minimal coupling to torsion

via Pauli type terms, cf. Eq. (5.1.8) of Ref. [22]. According to the Noether theorem, the

energy-momentum current two-form of matter Σα without Pauli terms can be rewritten as

Σα := eα⌋LΨ − (eα⌋Ψ) ∧
∂LΨ

∂Ψ
− (eα⌋Ψ) ∧

∂LΨ

∂Ψ
− (eα⌋DΨ) ∧

∂LΨ

∂DΨ
− (eα⌋DΨ) ∧

∂LΨ

∂DΨ
, (24)

see Eq. (5.4.11) of Ref. [22] for details. This equivalent equation often is more convenient,

since it involves only partial derivatives of the matter fields and avoids the intricate treatment

of a possible dependence of the matter Lagrangian on the Hodge dual. Taking into account

the identities of Appendix B, we find

Σα = −
i

4
mΨ ∧ γαΨ + s1

{
DΨ ∧ eα⌋

∗(DΨ)− (eα⌋DΨ) ∧ ∗ (DΨ
)}

+s2

[
DΨ ∧ γα ∧

∗(γ ∧ DΨ)− (eα⌋DΨ) ∧ ∗ (DΨ ∧ γ
)
∧ γ

]
. (25)

Since the kinetic terms in the Rarita-Schwinger type Lagrangian LRS do not depend explicitly

on the coframe ϑα, they provides no contribution to the energy-momentum current.

The 3-dual of the spin current is defined by

τ⋆
α :=

1

2
ηαβγτβγ =

(−1)s

2

δLΨ

δΓ⋆
α

. (26)

41S-Duality in Topological Supergravity
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In view of the definition (21) of the covariant derivative, we find

τ⋆
α =

(−1)s

2

{
i

4
ΨγαΨ +

s1

2

[
Ψγα ∧

∗(DΨ) + γαΨ ∧ ∗ (DΨ
) ]

+
s2

2

[
Ψγα ∧ γ ∧ ∗(γ ∧ DΨ) + γαΨ ∧ γ ∧ ∗ (γ ∧ DΨ)

]}
. (27)

Using the Hermetian properties of the spinor-valued p–forms, we finally obtain

τ⋆
α =

(−1)s

2

[
i

4
Ψ ∧ γαΨ + s1 Ψγα ∧

∗(DΨ) + s2 Ψγα ∧ γ ∧ ∗(γ ∧ DΨ)

]
, (28)

cf. the identities of Appendix C.

It should be noted that for the pure Rarita-Schwinger Lagrangian with s1 = s2 = 0, the

energy-momentum current is proportional to its dual spin, i.e.

Σα = −(−1)s2mτ⋆
α . (29)

4. Topological supersymmetry in 3D

Let us consider the first order topological Lagrangian

L∞ = L∞(ϑα, Γ
⋆
α, Ψ) = LMB + LΨ (30)

and verify if it is supersymmetric or not: The variation of its independent variables (ϑα, Γ
⋆
α, Ψ)

yields

δL = δϑα ∧
δL

δϑα
+ δΓ

⋆
α ∧

δL

δΓ⋆
α
+ δΨ ∧

δL

δΨ
(31)

where, for convenience, it suffices to vary only for the Dirac adjoint Ψ.

The supersymmetric transformation of Deser [13, 14] read in exterior form notation

δsusyϑα = iσ Ψγα, δsusyΓ
⋆
α = iσ γ∗

αDΨ + icσ (γαΨ + eα⌋
∗
Ψ),

δsusyΨ = 2Dσ + cγσ, (32)

where σ stands in for a spinor valued zero form and c a real constant. Inserting this into Eq.

(31) yields

δsusyL = iσ Ψγα ∧
δL

δϑα
+ δsusyΓ

⋆
α ∧

δL

δΓ⋆
α
+

(
2Dσ + cσγ

)
∧

δL

δΨ
, (33)

where we used cγσ = cσγ for the Dirac adjoint.

In the following, we assume that the second field equation δL/δΓ
⋆
α
∼= 0 is fulfilled “on shell”,

i.e., Eq. (9) of the ‘mixed’ MB model. Then, the SUSY transformation reduce to

δsusyL ∼= σ

(
iγα

Ψ ∧
δL

δϑα
− 2D ∧

δL

δΨ
+ cγ ∧

δL

δΨ

)
+ 2d

(
σ ∧

δL

δΨ

)
(34)

42 Quantum Gravity
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S-Duality in Topological Supergravity 7

Let us restrict for the moment to the usual Rarita-Schwinger Lagrangian LRS, or equivalently

to LΨ with s1 = s2 = 0. Then the Rarita-Schwinger equation

2

i

δL

δΨ
= DΨ +

1

2
mγ ∧ Ψ ∼= 0 (35)

becomes massive. Moreover, in Eq. (34) the term in brackets following form the

supersymmetric transformations reads

iγα
Ψ ∧

δL

δϑα
+ cγ ∧

δL

δΨ
− 2D

δL

δΨ

∼= iγα
Ψ

(
θTL

ℓ
R⋆

α +
θT

ℓ2
Tα + Σα

)
+ cγ ∧

(
i

2
DΨ +

i

4
mγ ∧ Ψ

)

−D

(
iDΨ +

i

2
mγ ∧ Ψ

)

= iγα
Ψ

(
θTL

ℓ
R⋆

α +
θT

ℓ2
Tα

)
+ γα

Ψ

(
1

4
mΨγαΨ

)
(36)

+cγ ∧

(
i

2
DΨ +

i

4
mγ ∧ Ψ

)
− iR⋆

αγα
Ψ −

i

2
mTαγα

Ψ +
i

2
mγ ∧ DΨ

By a Fierz rearrangement, i.e.,

γα
Ψ ∧ ΨγαΨ = 0, (37)

terms arising from the energy-momentum current Σα, or likewise from the dual spin τ⋆
α , are

vanishing.

Moreover, in our restricted model with s1 = s2 = 0 we have to put

c = −m, (38)

in order to eliminate the kinetic γ ∧ DΨ terms. Then, using the formula

γ ∧ γ = −2γαηα, (39)

of Howe and Tucker [23], we find from Eq. (36) the requirement

i

[(
θTL

ℓ
− 1

)
R⋆

α +

(
θT

ℓ2
−

m

2

)
Tα +

m2

2
ηα

]
γα

Ψ = 0, (40)

in order that our Lagrangian becomes supersymmetric.

At first sight, it appears that there is no cosmological constant in order to compensate a similar

one arising from the RS mass. However, one should compare the bracket with the second field

equation (9) inserted, which indeed involves a cosmological term induced by the translational

Chern-Simons term proportional to θT. In this insertion

i

[(
θL +

θTL

ℓ
− 1

)
R⋆

α +

(
(−1)s θTL

ℓ
+

θT

ℓ2
−

m

2

)
Tα +

1

2

(
θT

ℓ2
+ m2

)
ηα + τ⋆

α

]
γα

Ψ = 0, (41)

43S-Duality in Topological Supergravity
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the dual spin τ⋆
α of the RS field will not contribute, again due to Fierz rearrangement (37). This

finally leads to the “on shell” conditions

θT = −m2
ℓ

2, θTL =
(−1)s

2
m(2m + 1)ℓ, θL = 1 −

θTL

ℓ
= 1 −

(−1)s

2
m(2m + 1) (42)

for the coupling constants of the bosonic part of our Lagrangian L∞. Consequently,

massless RS spinors do not require a translational nor a ‘mixed’ CS term in order to acquire

supersymmetry.

5. Towards supersymmetric S–duality

There exists a continuous deformation [or a field redefinition (FR)] of the (Lorentz-) rotational

connection by adding a tensor–valued one–form, similarly as in Eq. (3.11.1) of Ref. [22]. In

3D, the particular deformation

Γ̃
⋆
α = Γ

⋆
α − (−1)s ε

2ℓ
ϑα, (43)

where ε is a continuous parameter, is involving the Lie dual Γ
⋆
α = 1

2 ηαβγΓ
βγ of the connection.

In view of the definitions (2) and (3) of torsion and curvature, respectively, this FR implies

T̃α = Tα −
ε

ℓ
ηα, R̃⋆

α = R⋆
α − (−1)s ε

2ℓ
Tα + (−1)s ε2

4ℓ2
ηα (44)

for the deformed torsion and curvature, respectively. In particular, there can arise two

subcases: Riemannian spacetime with deformed torsion T̃α = 0, or deformed teleparallelism in

the gauge Γ̃
⋆
α

∗
= 0, equivalent to the covariant constraint of vanishing modified RC curvature,

i.e., R̃⋆
α = 0.

In the latter case, coframe and connection are Lie dual to each other, i.e.,

Γ
⋆
α = (−1)s ε

2ℓ
ϑα ⇔ ϑα = (−1)s 2ℓ

ε
Γ
⋆
α. (45)

Observe the inversion of the parameter ε, i.e., a small deformation ε of the connection will

induce a large coframe proportional to 1/ε and vice versa, resembling strong/weak duality.

Such a duality of the strong/weak coupling regime of gauge fields, is the so-called S–duality. For

Chern-Simons (super-)gravity, some of its aspects have also been discussed in Ref. [16, 20].

There could also arise the seemingly trivial case of a completely flat deformed spacetime, i.e.,

T̃α = 0 and R̃⋆
α = 0. This would correspond to configurations with constant axial torsion and

constant RC curvature as originally envision by E. Cartan, i.e.,

Tα =
ε

ℓ
ηα, R⋆

α =
ρ

ℓ2
ηα, (46)

where ρ = (−1)sε2/4 depends quadratically on the deformation parameter ε.

Let us extend such ideas to supergravity in 3D: Generalizing the peculiar dynamical symmetry

of BMH [2], identified as S–duality in Ref. [31], we try the following Ansatz

ϑα = (−1)s
ℓ Γ

⋆
α + σ γαΨ , (47)

44 Quantum Gravity
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S-Duality in Topological Supergravity 9

where σ is again a spinor valued zero-form and ℓ a fundamental length.

By exterior differentiation, we find

dϑα = (−1)s
ℓdΓ

⋆
α + d(σγαΨ), (48)

or, after separating the covariant two-forms of torsion and curvature,

Tα − (−1)sηαβ ∧ Γ
⋆β = (−1)s

ℓR⋆
α −

ℓ

2
ηαβγΓ

⋆β ∧ Γ
⋆γ + d(σ ∧ γαΨ) (49)

Let us reconstitute our Ansatz (47) in order to replace all the connection terms Γ
⋆β . Then,

using also the fundamental relation (18) for a Clifford algebra, we obtain

Tα +
2

ℓ
ηα +

1

ℓ
ηαβ ∧ σ γβ

Ψ (50)

= (−1)s
ℓR⋆

α −
1

2ℓ
ηαβγ(ϑ

β − σγβ
Ψ) ∧ (ϑγ − σγγ

Ψ) + d(σγαΨ).

Now we can eliminate torsion and RC curvature via (11) and (12) with the result

2

A

[
(θTL + (−1)sθT)τ

⋆
α − (θL + (−1)sθTL)ℓΣα

]
ℓ

2 + (3 + 2κ − (−1)sρ)ηα

= −2ηαβ ∧ σ γβ
Ψ −

1

2
ηαβμσγβ

Ψ ∧ σγμ
Ψ + ℓd(σγαΨ). (51)

Together with (29), this leads to

B

4A
iℓ2

ΨγαΨ +
C

A
ηα

= −2ηαβ ∧ σ γβ
Ψ −

1

2
ηαβμσγβ

Ψ ∧ σγμ
Ψ + ℓD(σγαΨ) (52)

as a condition for S-duality, where

B = θT + (−1)sθTL + 2mℓ[θL + (−1)sθTL] (53)

and

C = 3A + θT[θTL + (−1)sθT]. (54)

In the case of vanishing B and C and in view of the massive Rarita-Schwinger equation (35),

there remains a first order nonlinear differential equation for σ coupled to RS fields to be

satisfied.

6. Membranes with torsion defects

As an example of a spacetime with torsion and/or curvature defects [9] or singularities, let

us consider a a planar graphene solution within the ‘mixed’ MB model governed by the two

Einstein-Cartan type field equations (11) and (12).

45S-Duality in Topological Supergravity
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10 Will-be-set-by-IN-TECH

Fig. 1. ‘Screw’ dislocation with singular torsion in a cubic lattice. (The Cartan circuit is
indicate in blue, cf. Ref. [26].]

Let us assume that the 2D membrane of a corrugated graphene is evolving in an intrinsic

three-dimensional spacetime, suppressing for the moment the embedding of a real graphene

into flat 4D Minkowski spacetime. Then we may adopt the convention that xα together with

yα are spacelike orthogonal vectors which span the (x, y)–plane perpendicular to the time

coordinate t, which itself is orthogonal to the world sheet of the graphene. The corresponding

one–forms [29] are denoted by capital letters, i.e.

X := xα ϑα , Y := yα ϑα . (55)

Moreover, the vector nα is a timelike unit vector normal to the hypersurface with nα nα = s,

the signature s of our 3D spacetime.

Following Soleng [37], cf. Anandan [1, 3, 22], we assume that the two–forms Σα and τ⋆
α of

the energy–momentum and spin current, respectively, vanish outside of the graphene sheet,

whereas “inside" they are constant, i.e.

Σα = ε xα X ∧ Y , τ⋆
α = σ yα X ∧ Y , (56)

which satisfy

ϑα ∧ Σα = 0 , ϑα ∧ τ⋆
α = 0 (57)

by construction. The constant parameters ε and σ of this spinning string type Ansatz are related

to the exterior vacuum solution by appropriate matching conditions. For the related solution

with conical singularities and torsion of Tod [40], we can infer that ε and σ are delta distributions

[39] at the location of the defect, cf. Fig 1. From the specification (55) of the one–forms X and

Y it can easily be inferred that the only nonzero components are Σ0̂ �= 0 and τ1̂2̂ = −τ2̂1̂ �= 0.

Due to the identities (57), contractions of the second field equation (12) with xα and yα reveal

that x[αyβ] Rαβ = R1̂2̂ = −R2̂1̂ �= 0 are the only nonvanishing components of the RC curvature.

From its covariant expression

Rαβ = εℓ2 x[αyβ] X ∧ Y (58)
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there follows the identity

Rβ
α ∧ ϑβ =

εℓ2

2
(xα Y ∧ X ∧ Y − yα X ∧ X ∧ Y) = 0 . (59)

Recalling that Nα = n⌋ϑα is the lapse and shift vector in the (2+1)–decomposition a la ADM,

the corresponding coframe and connection can now explicitly be obtained by applying a finite

boost to the usual conical metric of a defect simulated by a cosmic string:

ϑ0̂ = dt + ℓ
2σρ∗2[1 − cos(ρ/ρ∗)]dφ

ϑ1̂ = dρ , ϑ2̂ = ρ∗ sin(ρ/ρ∗)dφ ,

Γ
1̂2̂ = cos(ρ/ρ∗)dφ = −Γ

2̂1̂ . (60)

From the Cartan type relation (11) and the identities (57) we can infer that the axial torsion

A = ∗(ϑα ∧ Tα) = −(−1)s 2κ

ℓ2
(61)

of such a membrane defect is a non-vanishing constant. Thus, in 3D there is no contribution

to the Pointrjagin type term d(A∧ dA) from the axial torsion.

Moreover, the Nieh–Yan term dCT proportional to d ∗A vanishes identically for this example of

a spinning cosmic string exhibiting a torsion line defect.

7. Outlook: Graphene and supersymmetry

Fundamental interactions are rather successful formulated in terms of Yang-Mills theories

with large gauge groups, stipulating that symmetry breaking is occurring in the ground state.

The idea of supersymmetry or supergravity, anticipated to some extent already by Hermann

Weyl [42], goes in the same direction but so far lacks empirical support in particle physics.

Recently, graphene [33] as a new material has attracted a lot of attention because its charge

carriers can be described by massless Dirac fields, cf. Ref. [41], whereas the flexural models

of the 2D membrane of graphene have been tentatively considered as membranes, cf. Ref.

[25], evolving in 2 + 1 dimensional curved, but conformally flat spacetime [24]. There are also

indications of dislocations [9] related to torsion.

A related topological framework with a coupling to Dirac fields in 3D has been considered

before by Lemke and Mielke [27]. It seems to be feasible to enlarge the dynamical framework

of the theory by including supersymmetry, cf. Ref. [17] and apply the topological ideas

developed to some extent in this paper.
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9. Appendices

A: Variations of Chern–Simons terms

Gauging the Poincaré group in (2+1) dimensions, local translations and (Lorentz-) rotations

give rise to two type of gauge potentials, the coframe ϑγ and the dual of Lorentz-connection

Γ
⋆
α. Then the two Bianchi identities of Riemann-Cartan geometry can be rewritten as

DTα ≡ (−1)s ηαβ ∧ R⋆
β , (62)

DR⋆
α ≡ 0. (63)

In 3D the corresponding Chern–Simons three–forms of gauge type C = Tr{A ∧ F}, are

CT :=
1

2ℓ2
ϑα ∧ Tα = −

(−1)s

ℓ2
ηα ∧ K⋆

α , CL := (−1)s
Γ
⋆α ∧ R⋆

α −
1

3!
ηαβγ Γ

⋆α ∧ Γ
⋆β ∧ Γ

⋆γ. (64)

and

CTL :=
1

ℓ

(
Γ
⋆α ∧ Tα −

(−1)s

2
ηαβγ Γ

⋆α ∧ Γ
⋆β ∧ ϑγ

)
. (65)

The variational derivatives of these terms lead us to the following expressions

δCT

δϑα
=

1

ℓ2
Tα

δCT

δΓ⋆α
=

(−1)s

ℓ2
ηα , (66)

δCL

δϑα
= 0 ,

δCL

δΓ⋆α
= (−1)s 2R⋆

α, (67)

δCTL

δϑα
=

1

ℓ
R⋆

α ,
δCTL

δΓ⋆α
=

1

ℓ
Tα, (68)

respectively. Note that these three–forms are uniquely related to the torsion Tα, the curvature

R⋆
α, and the cosmological term ηα, as developed in much more detail in Ref. [21].

B: The η–basis for exterior forms in 3D

The symbol ∧ denotes the exterior product of forms, the symbol ⌋ the interior product of a

vector with a form and ∗ the Hodge star (or left dual) operator which maps a p–form into a

(3 − p)–form. It has the property that

∗ ∗
Φ
(p) = (−1)p(3−p)+s

Φ
(p), (69)

where p is the degree of the form Φ and s denotes the number of negative eigenvalues of the

metric, i.e., the signature of spacetime.

The volume three–form is defined by

η :=
1

3!
ηαβγ ϑα ∧ ϑβ ∧ ϑγ, (70)
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where ηαβγ :=
√
|det gμν| ǫαβγ, and ǫαβγ is the Levi–Civita symbol. The forms

{η, ηα, ηαβ, ηαβγ} span a dual basis for the algebra of arbitrary p–forms in 3D, where

ηα := eα⌋η =
1

2
ηαβγϑβ ∧ ϑγ = ∗ϑα,

ηαβ := eβ⌋ηα = ηαβγϑγ = ∗(ϑα ∧ ϑβ),

ηαβγ := eγ⌋ηαβ. (71)

In 3D, the following relations for the η–basis hold:

ηαβγηαβγ = (−1)s3!,

ηαβγηαβν = (−1)s2δ
γ
ν ,

ηαβγηαμν = (−1)sδ
β
μδ

γ
ν = (−1)s2δ

β

[μ
δ

γ
ν]

,

ηαβγηρμν = (−1)sδ
αβγ
ρμν , (72)

and

ηβ ∧ ηαβ = eβ⌋(η ∧ ηαβ) + η ∧ eβ⌋ηαβ ≡ 0 (73)

due to the antisymmetry of ηαβ and the fact that η ∧ ηαβ would already be a four-form in 3D.

C: Identities for spinor–valued forms

Now some relations of special importance are presented which take care of the order of the

forms in the exterior products and its Dirac adjoint: We would like to remind the reader that

Φ is a p–form and Ψ a q–form with the spinor indices suppressed:

Φ
p ∧ Ψ

q = (−1)p·q
Ψ

q ∧ Φ
p, (74)

Φp ∧ Ψq = (−1)p·q
Ψq ∧ Φp, (75)

Φ
p ∧ ∗

Ψ
p = Ψ

p ∧ ∗
Φ

p, (76)

eα⌋ (Φ
p + Ψ

q) = eα⌋Φ
p + eα⌋Ψ

q, (77)

eα⌋(Φ
p ∧ Ψ

q) = (eα⌋Φ
p) ∧ Ψ

q + (−1)p
Φ

p ∧ (eα⌋Ψ
q), (78)

ϑα ∧ (eα⌋Φ) = pΦ (79)

∗(Φ ∧ ϑα) = eα⌋
∗
Φ, (80)

γ = γ. (81)

D: No axial torsion restrictions in 3D

Spaces of constant curvature deserve special attention in General Relativity, in particular in

the cosmological context. In particular, when the RC curvature is constant as in Eq. (10), i.e.

R⋆
α =

ρ

ℓ2
ηα =

ρ

2ℓ2
ηαβγϑβ ∧ ϑγ, (82)
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the Bianchi identities (62) and (63) could lead to constraints on the admissible torsion Tα, as in

4D and higher dimensions. However, in 3D the situation is different: Using Appendix B, the

first Bianchi identity yields

(−1)sηαβ ∧ R∗
β = (−1)s ρ

ℓ2
ηβ ∧ ηαβ = (−1)s ρ

2ℓ2

(
ηβμνηαβγ

)
ϑγ ∧ ϑμ ∧ ϑν (83)

= −(−1)s2δα
[μδ

γ
ν]

ϑγ ∧ ϑμ ∧ ϑν = 0.

Furthermore, the exterior covariant derivative of Eq. (10) provides the identity

DTα =
2κ

ℓ
Dηα =

2κ

ℓ
Tβ ∧ ηαβ =

4κ2

ℓ2
ηαβ ∧ ηβ ≡ 0. (84)

Thus the first Bianchi identity does not give any further information. The second Bianchi

identity (63) yields

DR⋆
α =

ρ

ℓ2
Dηα =

2κρ

ℓ3
ηαβ ∧ ηβ ≡ 0 (85)

which is identically zero by a similar argument, or by employing Eq. (73). Consequently, the

Bianchi identities impose no restrictions on the axial torsion given by (10) in 3D, a fact which

has allowed us to construct something non-trivial from the MB model.
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