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1. Introduction  

The problems of modern medicine and biotechnology involve not only creation of implants 
replacing bone tissues and organs, but also synthesis of biologically active materials 
promoting the fullest restoration of tissues and maintenance of necessary functions of an 
organism. It is well known that calcium is one of the elements important for a living 
organism, for its cations control the transportation of inorganic ions and organic substances 
through cell membranes in the metabolic process involving the delivery and removal of 
reaction products from a cell. Interacting with regulatory proteins, calcium participates in 
nerve impulse transmission to muscles. Calcium is necessary for blood coagulation and 
participation in the synthesis of hormones, neuromediators and other controlling substances 
(1). Calcium is a building material for the bone tissue, its inorganic part. The solid residual 
of the bone tissue contains 70 % of calcium hydroxide phosphate (calcium hydroxyapatite) 
Ca10(PO4)6(OH)2 and 30 % of an organic component, namely, collagen fiber. The bone tissue 
should be characterized as an organic matrix impregnated by amorphous Ca3(PO4)2 and 
crystals of calcium hydroxide phosphate synthesized in bone tissue osteoblast cells (2).  
Ions Na+, K+, Mg2+, Fe2+, Cl- and CǼ32- are contained in the structure of calcium hydroxide 
phosphate of the bone tissue besides ǿа2+ and ǾǼ43-. The content of anions ǿǼ32- in calcium 
hydroxide phosphate of the bone material can make up to 8 wt. %, and they substitute 
hydroxyl or phosphate groups. Therefore, in view of the carbonate groups introduced into 
the structure of calcium hydroxide phosphate, its probable formula will be as follows (3 – 5): 
Ca10(PO4)6(CO3)x(OH)2-x.  
Actually, the crystal structure, as well as the structure of chemical bonds, of calcium 
hydroxide phosphate is much more complex because of vacancies in the crystal structure of 
both anion and cation nature. The vacancies can be filled with bivalent cations of trace 
elements received by a living organism and with anions SiO2x 2-, SO42- and Cl-, F-. The crystal 
structure of calcium hydroxyapatite is considered in (4, 5) where there is a simplified form 
of an elementary cell. However, practically in all scientific works accessible for viewing it is 
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not mentioned that the structure of chemical bonds in calcium hydroxyapatites and apatites 

of the kind is more complex than their empirical formula and that it is not completely 

representative. Taking into consideration that phosphoric acids and their salts have basically 

polymeric structure with the formation of inorganic polymers due to hydrogen bonds and 

oxygen bridges, one can assume that calcium hydroxide phosphates are also characterized 

by the formation of inorganic polymers.  

It is well known that in an organism there is a complex system of storage and release of 

calcium, which involves the hormone of the parathyroid gland, calcitonin and vitamin D3. If 

an organism is unable to assimilate calcium because of age-related and hormonal changes, 

the lack of calcium begins to be filled with the dissolution of calcium hydroxide phosphate 

of the bone tissue. As a result, the bone tissue becomes less strong. Besides, deposition of 

phosphate salts in the cartilaginous connective tissue and on vessel walls is observed. A 

prominent feature of the growth of bones, teeth and other structures is the accumulation of 

calcium. On the other hand, the accumulation of calcium in atypical sites leads to the 

formation of stones, osteoarthritis, cataracts and arterial abnormalities (1). The entrance of 

calcium into an organism can proceed in the form of easily assimilated phosphates, which 

are also necessary for the synthesis of adenosine triphosphoric acid accumulating energy 

and participating in active transportation of ions through cell membranes. As after 55 the 

majority mankind suffers from various diseases of joints, lower strength of the bone tissue, 

osteochondrosis, osteoporosis and frequent fractures, it is necessary to create a material 

based on inorganic calcium phosphates easily assimilated by a living organism, and not only 

through the gastrointestinal tract. It is well known that, when calcium phosphate 

(hydroxyapatite) is introduced into the bone tissue, as a result of slow resorption in an 

organism and involving in metabolism, osteogenesis improves, but calcium phosphates fail 

to get into an organism through the skin. The solution to this problem is biomaterial 

developed on the basis of nanocrystalline doped microelements of calcium carbonate 

phosphates with a rapid impact on the process of osteogenesis and with the ability to 

penetrate into the organism through the skin, i.e., through the membranes of living cells 

(6 -8).  

Calcium phosphates are studied all over the world. Methods of synthesizing calcium 

hydroxide phosphates are known. They consist in the following: precipitation  from salts of 

calcium (or hydroxide, or oxide, or carbonate) with addition of о-phosphoric acid or mono- 

or double-substituted phosphate salts with the subsequent hydrolysis in the solution, under 

hydrothermal conditions, or as a result of pyrolysis (9 – 23). Methods for synthesizing 

calcium hydroxide phosphates are most exhaustively discussed in (4). It is hardly possible to 

adduce all the references. The issues concerning methods of production of calcium 

phosphates, their structure and properties are most fully elucidated in (14).  

These are problem of a resorption of calcium hydroxyapatite and osteogenesis in vivo 

organisms important (24 - 27). However, the patent and scientific literature does not offer 

any preparations based on inorganic calcium phosphates influencing the metabolism of 

calcium in a living organism through the skin.  

The aim of this work is to synthesize calcium carbonate-phosphates doped with cations, 

which are easily assimilated by a living organism, including through the skin. It presents a 

study of their crystal phases, chemical composition and particle size analysis, as well as their 

biological activity in the processes of osteogenesis. 
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2. Materials and methods  

For synthesizing samples of doped calcium carbonate-phosphate, calcium carbonate of three 
crystal structures was used. They are calcite (rhombohedral), vaterite (hexagonal) and 
aragonite (orthorhombic). Precipitation of calcium carbonate-phosphate was performed by 
o-phosphoric acid (2 mol/l), which was added dropwise into a calcium carbonate 
suspension in an ammonium chloride solution (2 mol/l) at 45 to 55oC. The size of the pH 
environment varied between 5.2 and 6.5 depending on the molar ratio Ca/P (1.55 to 1.67). 
Doping cations were added during calcium carbonate precipitation: Fe2+ and Mg2+ 0.0004–
0.06; Zn2+ 0.0015–0.002; K+  0.001– 0.01; SiO2  0.0002– 0.006; and Mn2+ 0.00002  – 0.001  mol %. 
The choice of the calcium-phosphorus - cations-doped molar ratio was caused by the known 
concentrations of these elements in the bone tissue (1). The precipitate of synthesized 
calcium carbonate-phosphates was separated by filtering, washed by water and dried at 
temperatures not higher than 75oC.  
The samples thus obtained were characterized by X-ray diffraction (XRD) (DRON-2 
diffractometer, ǿuKα radiation; STADI-P diffractometer, software for diffraction peak 
identification using JCPDS–ICDD PDF2 data); IR spectroscopy (Shimadzu JR-475 
spectrophotometer, KBr disk method) and differential thermal analysis (DTG) (MOM 
thermoanalytical system) at a heating rate of 10 to 11deg/min within the range of 
temperatures from 20 to 1000oC, with a weight of 500 mg. The particle size analysis of the 
samples was performed by gravitational centrifugal sedimentation with the use of the SA- 
CP2 analyzer produced by Shimadzu, Japan (dispersion medium viscosity 0.0093 P, density 
1.0 g/cm3).  
The chemical composition (Ca, Ǿ, Fe, Mg, Zn, Mn, K, Si) was determined by standard 
techniques of complexometric method (28) and X-ray fluorescent analyses with the use of 
the EDX-900HS energy dispersion spectrometer (Shimadzu, Japan). The mechanical strength 
of the bone and dental tissues was studied with the application of the method of stress 
determination in the bone tissue transverse section (29, 30). The calculation was made by the 
formula P=a F/S, where P is mechanical strength (shearing stress), ǺPа; S is the cross-sectional 
area of the specimen to produce the stress, mm2; F is the load applied to cut the bone and 
dental tissues, kg-wt. The relative error of the method was 2.5 %. Figure 1 is presented 
apparatus for research transverse mechanical strength of the bone and dental tissues. 
 

 

Fig. 1. Instrument  for research transverse mechanical strength of the bone  and dental  
tissues: 1-screw press; 2- poise; 3- pillar; 4- spring; 5 – spigot-matrix; 6 – force sensor; 
7- sample of bone and dental tissue 
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3. Results and discussion  

3.1 The synthesis of doped calcium carbonate- phosphate 
The mechanism of obtaining this biomaterial is quite difficult, and this process can be 

considered oscillating reactions of calcium in a living organism. Reaction of the synthesis of 

doped calcium carbonate phosphates, which were described in (6-8), include several initial 

compounds as a calcium carbonate of three polymorphic crystal forms (calcite, aragonite, 

and vaterite), ortho–phosphoric acid, ammonium chloride, ammonium hydroxide, and 

microelements of the living organism (K+, Mg2+, Fe2+, Zn2+, Mn2+, SiO2). The formation of 

complex of Mg–xMx(OH)2[(CO3)x–2·H2O]  were described in (7, 8).   

For example, in the medium of ammonium hydroxide, three polymorphic forms of CaCO3 
can form ammonium met stable Hydroxycarbonates complexes on the following scheme: 

 CaCO3 + NH4OH ⇄ NH4CaCO3OH     (1) 

Or in general terms: 

 A ⇄ X                (2) 

The formation of three types of crystal structures of calcium carbonate (in the medium of 

ammonium hydroxide and ammonium chloride) is typical for the reaction (1): calcite, 

vaterite, and aragonite, which was proven by the data of XRD (Figure 2). SEM micrographs 

of synthetic calcium carbonate: calcite, vaterite, and aragonite shown in Figure 3. 

 

 

Fig. 2. XRD patterns of calcium carbonate: calcite (53 wt.%), vaterite (6 wt.%) and aragonite 
(41 wt.%) 

Under the action of ortho-phosphate acid in the presence of magnesium cations and silicon 

dioxide, carbonate is replaced in the phosphate acid with the formation of CaHPO4 

(brushite) or ǿa8H2(PO4)6· according to the reaction: 

 NH4CaCO3OH + H3PO4  = NH4OH + CaHPO4             (3) 

 10NH4CaCO3OH + 6H3PO4 = Ca8H2(PO4)6 + 2CaCO3 + 8CO2 + 10NH4OH + 8H2O   (4) 
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           a)                                                                           b) 

Fig. 3. Scannig electron micrographs of calcium carbonate (a): calcite, vaterite, and 
aragonite; of doped Fe 0.004; Mg 0.007; Zn 0.002; Mn 0.00002 mol.% calcium carbonate-
phosphate (b) 

Or in general terms: 

 B + X   Y + C         (5) 

In the environment of ammonium chloride with the addition of о-phosphoric acid, with the 
рH environment from 5.2 to 6.5, calcium phosphate chloride may form from precipitated 
calcium carbonate, for example, by the following equation (for convenience of writing 
equations by integers in a formula, while XRD analysis the number of atoms shows 
fractional): 

 5CaCO3 + 2H3PO4 + 2NH4Cl + 2 NH4OH = 2Ca5(PO4)2(OH)2Cl2 + 5CO2+   
 + 5H2O +4NH3          (6) 

 ǿa8H2(PO4)6 +2CaCO3 + NH4Cl+ NH3 ⇄ Ca10(PO4)6OHCl +2NH4HCO3      (7,8) 

Or in general terms: 

C ⇄ R  

According to the law of mass action speed of responce (7, 8) characterize by the equation: ݀ݔସ݀ݐ ൌ ݇ସሾܰܪସାሿሾି݈ܥሿሾܰܪଷሿ; ݀ݔହ݀ݐ ൌ ݇ହሾܰܪସାሿଶሾܱܥܪଷି ሿଶ 
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3CaHPO4 + 2 CaCO3 + 2 NH4Cl +2 NH3 + 3 H2O + CO2 ⇄ 	 ⇄  Ca5(PO4)2(OH)2Cl2 +3 NH4HCO3  + NH4H2PO4        (9,10) 

Or in general terms: 

 C ⇄ R            (11) 

Reaction rate (9, 10) characterize by the equation: 

   
2 2 26

6 4 3 2
        

dx
k NH Cl NH CO

dt
 

ݐ଻݀ݔ݀ ൌ 	 ݇଻ሾܰܪସାሿସሾܱܥܪଷି 	ሿଷሾܪଶܲ ସܱି ሿ. 
In addition is transfomation cycle with response: 

CaHPO4 ⇄ CaCO3 

Or in general terms: 

 C ⇄ A         (12) 

Doping of calcium carbonate-phosphate with Mg2+ - cations leads to the formation of the 

following phases in them: octacalcium phosphate hydrogen, brushite, besides, the phases of 

calcite and aragonite partially remain there. Simultaneous doping with Fe2+ and Mg2+ 

cations causes the formation of the same phases as in case of introduction of Fe2+ cations 

alone, however, the calcium hydrogen phosphate ǿa8H2(PO4)6·5H2O and calcium phosphate 

chloride hydroxide  Ca9.70P6.04O23.86(OH)2.01Cl2.35. The insertion of cations Fe2+, Mg2 leads to 

the basic crystal phase of octacalcium phosphate hydrogen Ca8H2(PO4)6 5H2O. 

The next stage in the presence of such doping microelements as Fe2+, Mg2, Zn2+ K+, Si4+, 

Mn2+ is the formation of calcium phosphate chloride hydroxide according to the following 

scheme:  

 

The simplest classic example of the existence of autooscillations in the system of chemical 

reactions is the trimolecular model (“brusselator”) offered by I.R. Prigozhine and R. Lefebre 

(31). The main purpose for the study of this model was to determine the qualitative types of 

behavior, which are compatible with the fundamental laws of chemical and biological 

kinetics. In this context, the brusselator plays the role of a basic model, like a harmonic 

oscillator in physics. A classic brusselator model describes the hypothetical scheme of 

chemical reactions: 

AX 
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B+XY+C 

2X+Y3X 

XR 

 A+BR+C.        (13) 

The key is the stage of transformation of two X molecules and one Y molecule into X (the so-

called trimolecular reaction). Such a reaction is possible in processes with the participation 

of ferments with two catalytic centers. The nonlinearity of this reaction, coupled with 

processes of diffusion of the substance, well as the formation spatial structures in an initially 

homogeneous system of morphogenesis. Although the trimolecular stage in chemical 

kinetics is not as common as in biomolecular processes, expressions for the speed of some 

chemical reactions in some definite cases can be called cubic - type. Such equations are 

called “reaction diffusion”equations. The whole system has an oscillating character and can 

be presented as a brusselator of the simplest implementation of cubic nonlinearity by the 

following chemical reaction: 

 2X + Y3X             (14) 

If the final products C and R are immediately removed from the reaction, then the scheme of 

the reactions (in the case of a point system) can be given by the following system of 

equations: 

 

 

Inserting doping cations Mg2+ and K+ leads to the synthesis of the basic phase of calcium 

phosphate hydrogen Ca8H2(PO4)6 as the additional phase of calcium phosphate chloride 

hydroxide  Ca9.70P6.04O23.86(OH)2.01 Cl2.35 (up to 7 wt %) and calcium carbonate phosphate and 

potassium hydrate phosphate hydrogen Ca8H2(PO4)6H2O-KHCO3-H2O (up to 6 wt %, Table 

1). The regularities of the concentration change of hydroxychlorapatite, chloride, and 

magnesium in the products of reaction in the synthesis of calcium carbonate phosphate for 

the reaction with visible cations Mg2+, Fe2+, Zn2+, and Mn2+ are shown in Figure 4. 

The kinetic curves of concentration changes in the synthesis of doped calcium carbonate- 

phosphate are similar to the kinetics of concentration changes and the phase picture of the 

fructose-6-phosphate and fructose - diphosphate system. 

Therefore, the oscillating dynamics of the brusselator model and modeling with waves, 

which are proposed for the fructose-6-phosphate and fructose-diphosphate system in  

(31, 32). For comparison, see model of intracellular calcium oscillations, as described in  

(33-37), Figure 5.  

Oscillating character synthesis of the doped calcium carbonate-phosphate reply in the 

filtering and washing process doped calcium carbonate-phosphate precipitation what 

shown in Figure 6. 

XBYXA
dt

dx
)1(2 

.2YXBX
dt

dy

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Fig. 4. The kinetics of concentration dependencies of the chloride-ions (1), Mg2+ (2) and 
calcium chloride-hydroxide phosphate (3) precipitation on a time reaction  

 

 

Fig. 5. Model fluctuations in intracellular calcium. Kinetics of Ca concentration in different 
settings (33) 
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Fig. 6. Oscillating character in the filtering and washing process of the doped calcium 
carbonate-phosphate precipitation  

The results of X-ray diffraction and chemical analysis confirm this. Typical X-ray diffraction 
pattern of doped calcium carbonate-phosphate samples are presented in Figure 7.  SEM- 
micrographs of synthetic doped calcium carbonate-phosphate shown in Figure 3.  
The composition is also confirmed by the chemical analysis data and the obtained IR-spectra 
of calcium carbonate-phosphate samples. Figure 8 presents typical IR-spectra of calcium 
carbonate-phosphate samples doped with iron, magnesium, zinc, manganese where there 

are bands of absorption of valence vibration v of the ǾǼ43+ group 525, 560, 600 cm-1, bands 

of absorption of symmetric vibrations 1 865-870 and 960-980 cm-1 and asymmetric 

vibrations 3 1040 - 1050 and 1100 -1130cm-1, and also bands of absorption of the 

deformation vibration 3 of the ǿǼ32- group 1400 cm-1. The band of absorption of 1630 -1650 
cm-1 corresponds to the deformation vibrations of Ǽǻ¯ water groups. The band of 
absorption 3150, 3480 cm-1 corresponds to the valence vibration of water and characterizes 
the presence crystallization water. The values for the triplet of the valence vibration of the 

phosphate group v are close to those presented in (9 – 11). A comparison between the IR-
spectra of the calcium carbonate-phosphate samples and brushite CaHPO4·2H2O formed 
from calcium oxide revealed a difference. It has been found that brushite is characterized by 

bands of absorption of valence vibration v of group ǾǼ43+ 530, 575, 600 cm-1, bands of 

absorption of symmetric vibrations 1 790, 870 and 985 cm-1 and asymmetric vibrations 3 

1060, 1135 and 1210 cm-1, as well as bands of absorption of deformation vibration of the Ǽǻ¯ 
group 1645 cm-1. 
DTG-analysis establishes that the calcium hydroxyapatite crystallization temperature is 
840oC, which proves to be true judging by the endothermic effect on the thermograph. At 
temperatures 130, 190 and 240oC, endothermic effects are caused by the dehydration of 
crystallization waters and the removal of hydrogen ions. The general loss of the weight of 
the samples dried up at a temperature of 75oC makes 17.5 to 18.5 wt. %, and this agrees well 
with the chemical and phase analysis (Figure 9).  
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Fig. 7. XRD patterns of (a) iron, magnesium, zinc doped; (b) iron, magnesium, zinc, 
manganese doped; (c) iron, magnesium, silica doped calcium carbonate phosphate 
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Found,  mol. % Solid phase concentration, wt.% 

Fe Mg Zn K Mn SiO2 
 

0.001 0.02 - - - - 
                       76% 

        18% 

0.001 0.005 0.002 - 0.001 - 
                            72% 

 13% 

0.001 0.004 0.002    
                           72% 

 13% 

0.002 0.06 0.002    
                         70% 

18% 

0.002 0.01 0.002    
                          70% 

   18% 

0.003 0.02 - 0.001 - -                              80% 

- 0.06 - 0.001 - - 

                  85%  

  7 % 

6% 

- 0.003 - - - 0.002 
                          60% 

                  16% 

- 0.01 - 0.001 - -                        80% 

0.0004 0.035 0.002 - - - 

                 86% 

  2% 

                            6% 

   1% 

- 0.02 - - - - 
                         10% 

                   50% 

0.0004 0.02    0.0006                           84% 

0.004 0.007 0.002 - 0.00002 -       75% 
CaCO3                                                                25% 

Table 1. The phase and chemical composition of calcium carbonate-phosphate samples  
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Fig. 8. Typical IR-spectra of calcium carbonate-phosphate samples doped with iron, 
magnesium, zinc, manganese.   

Thus, doping cations of Fe2+, Mg2, Zn2+ K+, Mn2+ and Si4+ have an effect on the phase 

equilibrium in the system ǿаǿǼ3 – ǻ3ǾǼ4 – NH4Cl, as well as on the end products of the 

process of sedimentation and their properties. It is calcium phosphate chloride and calcium 

hydrogen phosphate that are general crystal phases for iron- and magnesium-doped 

samples. The particle-size analysis has shown that the composition of calcium carbonate-

phosphate samples is polydisperse. 

The basic fraction of particles ranges from 5 to 20 microns for samples doped with cations 

simultaneously. In addition the ultradispersed fraction with the size of particles up to 10 nm 

in amounts of 1.5 % is observed, and this allows the material to be especially active in all the 

samples. It is noted that material dispersiveness enables the material to get through the skin 

of an organism. The characteristic curves of the particle-size analysis of the samples are 

adduced in Figure 10.  

3.2 Studying biological activity  
The influence of the doped calcium carbonate-phosphate on the bone and dental tissues of a 

living organism was investigated experimentally in white rats. A 1 % water suspension of 

calcium carbonate-phosphates was introduced inside animals through an enteric tube in 

amounts of 5 ml within 40 days, 30 mg per 1 kg of live weight (there were five groups of 10 

animals, namely, I – placebo, II – within 10 days, III – within 20 days, IV – within 30 days, V 
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Fig. 9. A characteristic DTA-curve of calcium carbonate-phosphate samples doped with 
cations of iron and magnesium 

 

 

Fig. 10. Differential particle size distributions of calcium carbonate phosphates  prepared 
from them:  (1) doped with 0.02 mol % Fe, (2) doped with 0.02 mol % Mg, (3) doped with 
0.02 mol % Fe and 0.02 mol% Mg, (4) undoped 
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– within 40 days). The results are illustrated in Table 2 showing the transverse mechanical 
strength (shear stress) of the bone tissue (femur) and the dental enamel as a function of the 
duration suspension introduction into animals. As a result, it has been found that there is a 
13% increase in the mechanical strength (shear stress) of the bone tissue and a 7 % increase 
in the strength of the dental tissue (enamel), and this enables us to make an assumption of 
strengthened osteogenesis in a living organism. 
 

Gro-
ups 

on 10 
ani-
mals 

Shear 
strength 

of the 
bone 

tissue, 
MPa 

Standard 
devia-
tion, 

 
 

S2 

Content 
of Ca of 
the bone 

tissue, 
 

wt. % 

Standard  
deviation, 

 
 
 

S2 

Shear 
strength 
of dental 
enamel, 

 
MPa 

Standard 
deviation 

 
 
 

S2 

Content 
of Fe, 

 
 
 

wt. % 

Stan-
dard 

devia-
tion, 

 
S2 

Content 
of Mg, 

 
 
 

wt. % 

Stan-
dard 

devia-
tion, 

 
S2 

I 24.1 0.23 40.25 0.14 63.8 1.95 0.78 0.07 
0.06 

 
0.01 

II 17.2 0.98 41.72 0.45 50.0 1.20 0.40 0.09 
0.24 

 
0.04 

III 23.0 0.15 40.06 0.69 68.1 1.83 0.63 0.03 
0.26 

 
0.01 

IV 26.5 0.46 41.53 0.12 56.1 1.75 0.92 0.05 
0.16 

 
0.01 

V 27.3 0.59 41.78 0.10 57.9 1.90 0.70 0.05 
0.22 

 
0.03 

Table 2. Processed experimental data on the effect of doped calcium carbonate-phosphate on 
the mechanical strength of the bone tissue and the concentration of iron and magnesium in 
dental enamel  

 

 
a) 

Fig. 11. (Continued) 
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b) 

Fig. 11. Impact doped calcium carbonate-phosphate an bone tissue strength (curve 1, fig. a) 
and bone tissue calcium concentration (curve 2, fig. a) and impact an tooth tissue strength 
(curve 1, fig. 11b) and tooth tissue calcium concentration (curve 2, fig. 11 b) 

It is necessary to note that the first 10 days see a decrease in mechanical strength for the 

bone and dental tissues, and this is attributed to the insufficient number of receptors 

generated to assimilate calcium and phosphorus at the first stage. The results obtained have 

been processed by means of methods of mathematical statistics and the sampling has been 

verified for the normal distribution of the results. The comparison of the results with known 

ones (29) demonstrates a good agreement.  

The content of calcium in the bone tissue, iron and magnesium in the dental enamel of 

animals as dependent on the introduction of calcium phosphates doped with magnesium 

and iron is presented in Table 2 and in Figure 11. The changes in the mechanical strength of 

dental enamel and the content of iron and magnesium prove the activity of calcium 

phosphates and their influence on osteogenesis.  

4. Conclusion  

Thus, synthesized and investigated doped calcium carbonate-phosphate doped with cations 

represent a complex phase composition and constitute a biologically active material. The 

introduction of cations Fe2+, Mg2+, Zn2+, K+, Mn2+ and  Si4+ changes the phase equilibrium in 

the CaCO3 – NH4Cl – H3PO4 system and leads to the formation of calcium phosphate 

chloride hydroxide, octacalcium hydrogen phosphate, brushite as the most active 

components participating in osteogenesis and the strengthening of the bone and dental 

tissues. By virtue of the kinetic data of the reaction of the interaction between 

orthophosphate acid and calcium hydroxycarbonate complexes in the synthesis process of 

nanocrystalline doped calcium carbonate phosphate, this system can be submitted as being 

chemically oscillating, i.e., oscillating in time. To describe this oscillating system, one can use 
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a brusselator of the simplest cubic nonlinear realization. The kinetic curves of concentrated 

changes in the synthesis of nanocrystalline doped calcium carbonate phosphates are similar 

to the kinetics of concentration changes and phase pattern of the fructose-6-phosphate and 

fructose di-phosphate systems, respectively. The final reaction product output is determined 

as a result of oscillations. Doping cations have an impact on the formation of biologically 

active phosphate compounds. Doped calcium carbonate-phosphate are promising 

biocompatible materials designed to strengthen the bone and dental tissues and to replenish 

calcium in a living organism.  
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